1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
:mod:`!operator` --- Standard operators as functions
====================================================
.. module:: operator
:synopsis: Functions corresponding to the standard operators.
.. sectionauthor:: Skip Montanaro <skip@automatrix.com>
**Source code:** :source:`Lib/operator.py`
.. testsetup::
import operator
from operator import itemgetter, iadd
--------------
The :mod:`operator` module exports a set of efficient functions corresponding to
the intrinsic operators of Python. For example, ``operator.add(x, y)`` is
equivalent to the expression ``x+y``. Many function names are those used for
special methods, without the double underscores. For backward compatibility,
many of these have a variant with the double underscores kept. The variants
without the double underscores are preferred for clarity.
The functions fall into categories that perform object comparisons, logical
operations, mathematical operations and sequence operations.
The object comparison functions are useful for all objects, and are named after
the rich comparison operators they support:
.. function:: lt(a, b)
le(a, b)
eq(a, b)
ne(a, b)
ge(a, b)
gt(a, b)
__lt__(a, b)
__le__(a, b)
__eq__(a, b)
__ne__(a, b)
__ge__(a, b)
__gt__(a, b)
Perform "rich comparisons" between *a* and *b*. Specifically, ``lt(a, b)`` is
equivalent to ``a < b``, ``le(a, b)`` is equivalent to ``a <= b``, ``eq(a,
b)`` is equivalent to ``a == b``, ``ne(a, b)`` is equivalent to ``a != b``,
``gt(a, b)`` is equivalent to ``a > b`` and ``ge(a, b)`` is equivalent to ``a
>= b``. Note that these functions can return any value, which may
or may not be interpretable as a Boolean value. See
:ref:`comparisons` for more information about rich comparisons.
The logical operations are also generally applicable to all objects, and support
truth tests, identity tests, and boolean operations:
.. function:: not_(obj)
__not__(obj)
Return the outcome of :keyword:`not` *obj*. (Note that there is no
:meth:`!__not__` method for object instances; only the interpreter core defines
this operation. The result is affected by the :meth:`~object.__bool__` and
:meth:`~object.__len__` methods.)
.. function:: truth(obj)
Return :const:`True` if *obj* is true, and :const:`False` otherwise. This is
equivalent to using the :class:`bool` constructor.
.. function:: is_(a, b)
Return ``a is b``. Tests object identity.
.. function:: is_not(a, b)
Return ``a is not b``. Tests object identity.
The mathematical and bitwise operations are the most numerous:
.. function:: abs(obj)
__abs__(obj)
Return the absolute value of *obj*.
.. function:: add(a, b)
__add__(a, b)
Return ``a + b``, for *a* and *b* numbers.
.. function:: and_(a, b)
__and__(a, b)
Return the bitwise and of *a* and *b*.
.. function:: floordiv(a, b)
__floordiv__(a, b)
Return ``a // b``.
.. function:: index(a)
__index__(a)
Return *a* converted to an integer. Equivalent to ``a.__index__()``.
.. versionchanged:: 3.10
The result always has exact type :class:`int`. Previously, the result
could have been an instance of a subclass of ``int``.
.. function:: inv(obj)
invert(obj)
__inv__(obj)
__invert__(obj)
Return the bitwise inverse of the number *obj*. This is equivalent to ``~obj``.
.. function:: lshift(a, b)
__lshift__(a, b)
Return *a* shifted left by *b*.
.. function:: mod(a, b)
__mod__(a, b)
Return ``a % b``.
.. function:: mul(a, b)
__mul__(a, b)
Return ``a * b``, for *a* and *b* numbers.
.. function:: matmul(a, b)
__matmul__(a, b)
Return ``a @ b``.
.. versionadded:: 3.5
.. function:: neg(obj)
__neg__(obj)
Return *obj* negated (``-obj``).
.. function:: or_(a, b)
__or__(a, b)
Return the bitwise or of *a* and *b*.
.. function:: pos(obj)
__pos__(obj)
Return *obj* positive (``+obj``).
.. function:: pow(a, b)
__pow__(a, b)
Return ``a ** b``, for *a* and *b* numbers.
.. function:: rshift(a, b)
__rshift__(a, b)
Return *a* shifted right by *b*.
.. function:: sub(a, b)
__sub__(a, b)
Return ``a - b``.
.. function:: truediv(a, b)
__truediv__(a, b)
Return ``a / b`` where 2/3 is .66 rather than 0. This is also known as
"true" division.
.. function:: xor(a, b)
__xor__(a, b)
Return the bitwise exclusive or of *a* and *b*.
Operations which work with sequences (some of them with mappings too) include:
.. function:: concat(a, b)
__concat__(a, b)
Return ``a + b`` for *a* and *b* sequences.
.. function:: contains(a, b)
__contains__(a, b)
Return the outcome of the test ``b in a``. Note the reversed operands.
.. function:: countOf(a, b)
Return the number of occurrences of *b* in *a*.
.. function:: delitem(a, b)
__delitem__(a, b)
Remove the value of *a* at index *b*.
.. function:: getitem(a, b)
__getitem__(a, b)
Return the value of *a* at index *b*.
.. function:: indexOf(a, b)
Return the index of the first of occurrence of *b* in *a*.
.. function:: setitem(a, b, c)
__setitem__(a, b, c)
Set the value of *a* at index *b* to *c*.
.. function:: length_hint(obj, default=0)
Return an estimated length for the object *obj*. First try to return its
actual length, then an estimate using :meth:`object.__length_hint__`, and
finally return the default value.
.. versionadded:: 3.4
The following operation works with callables:
.. function:: call(obj, /, *args, **kwargs)
__call__(obj, /, *args, **kwargs)
Return ``obj(*args, **kwargs)``.
.. versionadded:: 3.11
The :mod:`operator` module also defines tools for generalized attribute and item
lookups. These are useful for making fast field extractors as arguments for
:func:`map`, :func:`sorted`, :meth:`itertools.groupby`, or other functions that
expect a function argument.
.. function:: attrgetter(attr)
attrgetter(*attrs)
Return a callable object that fetches *attr* from its operand.
If more than one attribute is requested, returns a tuple of attributes.
The attribute names can also contain dots. For example:
* After ``f = attrgetter('name')``, the call ``f(b)`` returns ``b.name``.
* After ``f = attrgetter('name', 'date')``, the call ``f(b)`` returns
``(b.name, b.date)``.
* After ``f = attrgetter('name.first', 'name.last')``, the call ``f(b)``
returns ``(b.name.first, b.name.last)``.
Equivalent to::
def attrgetter(*items):
if any(not isinstance(item, str) for item in items):
raise TypeError('attribute name must be a string')
if len(items) == 1:
attr = items[0]
def g(obj):
return resolve_attr(obj, attr)
else:
def g(obj):
return tuple(resolve_attr(obj, attr) for attr in items)
return g
def resolve_attr(obj, attr):
for name in attr.split("."):
obj = getattr(obj, name)
return obj
.. function:: itemgetter(item)
itemgetter(*items)
Return a callable object that fetches *item* from its operand using the
operand's :meth:`~object.__getitem__` method. If multiple items are specified,
returns a tuple of lookup values. For example:
* After ``f = itemgetter(2)``, the call ``f(r)`` returns ``r[2]``.
* After ``g = itemgetter(2, 5, 3)``, the call ``g(r)`` returns
``(r[2], r[5], r[3])``.
Equivalent to::
def itemgetter(*items):
if len(items) == 1:
item = items[0]
def g(obj):
return obj[item]
else:
def g(obj):
return tuple(obj[item] for item in items)
return g
The items can be any type accepted by the operand's :meth:`~object.__getitem__`
method. Dictionaries accept any :term:`hashable` value. Lists, tuples, and
strings accept an index or a slice:
>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1, 3, 5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2, None))('ABCDEFG')
'CDEFG'
>>> soldier = dict(rank='captain', name='dotterbart')
>>> itemgetter('rank')(soldier)
'captain'
Example of using :func:`itemgetter` to retrieve specific fields from a
tuple record:
>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> list(map(getcount, inventory))
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
.. function:: methodcaller(name, /, *args, **kwargs)
Return a callable object that calls the method *name* on its operand. If
additional arguments and/or keyword arguments are given, they will be given
to the method as well. For example:
* After ``f = methodcaller('name')``, the call ``f(b)`` returns ``b.name()``.
* After ``f = methodcaller('name', 'foo', bar=1)``, the call ``f(b)``
returns ``b.name('foo', bar=1)``.
Equivalent to::
def methodcaller(name, /, *args, **kwargs):
def caller(obj):
return getattr(obj, name)(*args, **kwargs)
return caller
.. _operator-map:
Mapping Operators to Functions
------------------------------
This table shows how abstract operations correspond to operator symbols in the
Python syntax and the functions in the :mod:`operator` module.
+-----------------------+-------------------------+---------------------------------------+
| Operation | Syntax | Function |
+=======================+=========================+=======================================+
| Addition | ``a + b`` | ``add(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Concatenation | ``seq1 + seq2`` | ``concat(seq1, seq2)`` |
+-----------------------+-------------------------+---------------------------------------+
| Containment Test | ``obj in seq`` | ``contains(seq, obj)`` |
+-----------------------+-------------------------+---------------------------------------+
| Division | ``a / b`` | ``truediv(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Division | ``a // b`` | ``floordiv(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Bitwise And | ``a & b`` | ``and_(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Bitwise Exclusive Or | ``a ^ b`` | ``xor(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Bitwise Inversion | ``~ a`` | ``invert(a)`` |
+-----------------------+-------------------------+---------------------------------------+
| Bitwise Or | ``a | b`` | ``or_(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Exponentiation | ``a ** b`` | ``pow(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Identity | ``a is b`` | ``is_(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Identity | ``a is not b`` | ``is_not(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Indexed Assignment | ``obj[k] = v`` | ``setitem(obj, k, v)`` |
+-----------------------+-------------------------+---------------------------------------+
| Indexed Deletion | ``del obj[k]`` | ``delitem(obj, k)`` |
+-----------------------+-------------------------+---------------------------------------+
| Indexing | ``obj[k]`` | ``getitem(obj, k)`` |
+-----------------------+-------------------------+---------------------------------------+
| Left Shift | ``a << b`` | ``lshift(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Modulo | ``a % b`` | ``mod(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Multiplication | ``a * b`` | ``mul(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Matrix Multiplication | ``a @ b`` | ``matmul(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Negation (Arithmetic) | ``- a`` | ``neg(a)`` |
+-----------------------+-------------------------+---------------------------------------+
| Negation (Logical) | ``not a`` | ``not_(a)`` |
+-----------------------+-------------------------+---------------------------------------+
| Positive | ``+ a`` | ``pos(a)`` |
+-----------------------+-------------------------+---------------------------------------+
| Right Shift | ``a >> b`` | ``rshift(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Slice Assignment | ``seq[i:j] = values`` | ``setitem(seq, slice(i, j), values)`` |
+-----------------------+-------------------------+---------------------------------------+
| Slice Deletion | ``del seq[i:j]`` | ``delitem(seq, slice(i, j))`` |
+-----------------------+-------------------------+---------------------------------------+
| Slicing | ``seq[i:j]`` | ``getitem(seq, slice(i, j))`` |
+-----------------------+-------------------------+---------------------------------------+
| String Formatting | ``s % obj`` | ``mod(s, obj)`` |
+-----------------------+-------------------------+---------------------------------------+
| Subtraction | ``a - b`` | ``sub(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Truth Test | ``obj`` | ``truth(obj)`` |
+-----------------------+-------------------------+---------------------------------------+
| Ordering | ``a < b`` | ``lt(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Ordering | ``a <= b`` | ``le(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Equality | ``a == b`` | ``eq(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Difference | ``a != b`` | ``ne(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Ordering | ``a >= b`` | ``ge(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
| Ordering | ``a > b`` | ``gt(a, b)`` |
+-----------------------+-------------------------+---------------------------------------+
In-place Operators
------------------
Many operations have an "in-place" version. Listed below are functions
providing a more primitive access to in-place operators than the usual syntax
does; for example, the :term:`statement` ``x += y`` is equivalent to
``x = operator.iadd(x, y)``. Another way to put it is to say that
``z = operator.iadd(x, y)`` is equivalent to the compound statement
``z = x; z += y``.
In those examples, note that when an in-place method is called, the computation
and assignment are performed in two separate steps. The in-place functions
listed below only do the first step, calling the in-place method. The second
step, assignment, is not handled.
For immutable targets such as strings, numbers, and tuples, the updated
value is computed, but not assigned back to the input variable:
>>> a = 'hello'
>>> iadd(a, ' world')
'hello world'
>>> a
'hello'
For mutable targets such as lists and dictionaries, the in-place method
will perform the update, so no subsequent assignment is necessary:
>>> s = ['h', 'e', 'l', 'l', 'o']
>>> iadd(s, [' ', 'w', 'o', 'r', 'l', 'd'])
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
>>> s
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
.. function:: iadd(a, b)
__iadd__(a, b)
``a = iadd(a, b)`` is equivalent to ``a += b``.
.. function:: iand(a, b)
__iand__(a, b)
``a = iand(a, b)`` is equivalent to ``a &= b``.
.. function:: iconcat(a, b)
__iconcat__(a, b)
``a = iconcat(a, b)`` is equivalent to ``a += b`` for *a* and *b* sequences.
.. function:: ifloordiv(a, b)
__ifloordiv__(a, b)
``a = ifloordiv(a, b)`` is equivalent to ``a //= b``.
.. function:: ilshift(a, b)
__ilshift__(a, b)
``a = ilshift(a, b)`` is equivalent to ``a <<= b``.
.. function:: imod(a, b)
__imod__(a, b)
``a = imod(a, b)`` is equivalent to ``a %= b``.
.. function:: imul(a, b)
__imul__(a, b)
``a = imul(a, b)`` is equivalent to ``a *= b``.
.. function:: imatmul(a, b)
__imatmul__(a, b)
``a = imatmul(a, b)`` is equivalent to ``a @= b``.
.. versionadded:: 3.5
.. function:: ior(a, b)
__ior__(a, b)
``a = ior(a, b)`` is equivalent to ``a |= b``.
.. function:: ipow(a, b)
__ipow__(a, b)
``a = ipow(a, b)`` is equivalent to ``a **= b``.
.. function:: irshift(a, b)
__irshift__(a, b)
``a = irshift(a, b)`` is equivalent to ``a >>= b``.
.. function:: isub(a, b)
__isub__(a, b)
``a = isub(a, b)`` is equivalent to ``a -= b``.
.. function:: itruediv(a, b)
__itruediv__(a, b)
``a = itruediv(a, b)`` is equivalent to ``a /= b``.
.. function:: ixor(a, b)
__ixor__(a, b)
``a = ixor(a, b)`` is equivalent to ``a ^= b``.
|