1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
|
.. _debugger:
:mod:`pdb` --- The Python Debugger
==================================
.. module:: pdb
:synopsis: The Python debugger for interactive interpreters.
**Source code:** :source:`Lib/pdb.py`
.. index:: single: debugging
--------------
The module :mod:`pdb` defines an interactive source code debugger for Python
programs. It supports setting (conditional) breakpoints and single stepping at
the source line level, inspection of stack frames, source code listing, and
evaluation of arbitrary Python code in the context of any stack frame. It also
supports post-mortem debugging and can be called under program control.
.. index::
single: Pdb (class in pdb)
pair: module; bdb
pair: module; cmd
The debugger is extensible -- it is actually defined as the class :class:`Pdb`.
This is currently undocumented but easily understood by reading the source. The
extension interface uses the modules :mod:`bdb` and :mod:`cmd`.
.. seealso::
Module :mod:`faulthandler`
Used to dump Python tracebacks explicitly, on a fault, after a timeout,
or on a user signal.
Module :mod:`traceback`
Standard interface to extract, format and print stack traces of Python programs.
The typical usage to break into the debugger is to insert::
import pdb; pdb.set_trace()
Or::
breakpoint()
at the location you want to break into the debugger, and then run the program.
You can then step through the code following this statement, and continue
running without the debugger using the :pdbcmd:`continue` command.
.. versionchanged:: 3.7
The built-in :func:`breakpoint`, when called with defaults, can be used
instead of ``import pdb; pdb.set_trace()``.
::
def double(x):
breakpoint()
return x * 2
val = 3
print(f"{val} * 2 is {double(val)}")
The debugger's prompt is ``(Pdb)``, which is the indicator that you are in debug mode::
> ...(2)double()
-> breakpoint()
(Pdb) p x
3
(Pdb) continue
3 * 2 is 6
.. versionchanged:: 3.3
Tab-completion via the :mod:`readline` module is available for commands and
command arguments, e.g. the current global and local names are offered as
arguments of the ``p`` command.
.. program:: pdb
You can also invoke :mod:`pdb` from the command line to debug other scripts. For
example::
python -m pdb [-c command] (-m module | pyfile) [args ...]
When invoked as a module, pdb will automatically enter post-mortem debugging if
the program being debugged exits abnormally. After post-mortem debugging (or
after normal exit of the program), pdb will restart the program. Automatic
restarting preserves pdb's state (such as breakpoints) and in most cases is more
useful than quitting the debugger upon program's exit.
.. option:: -c, --command <command>
To execute commands as if given in a :file:`.pdbrc` file; see
:ref:`debugger-commands`.
.. versionchanged:: 3.2
Added the ``-c`` option.
.. option:: -m <module>
To execute modules similar to the way ``python -m`` does. As with a script,
the debugger will pause execution just before the first line of the module.
.. versionchanged:: 3.7
Added the ``-m`` option.
Typical usage to execute a statement under control of the debugger is::
>>> import pdb
>>> def f(x):
... print(1 / x)
>>> pdb.run("f(2)")
> <string>(1)<module>()
(Pdb) continue
0.5
>>>
The typical usage to inspect a crashed program is::
>>> import pdb
>>> def f(x):
... print(1 / x)
...
>>> f(0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in f
ZeroDivisionError: division by zero
>>> pdb.pm()
> <stdin>(2)f()
(Pdb) p x
0
(Pdb)
.. versionchanged:: 3.13
The implementation of :pep:`667` means that name assignments made via ``pdb``
will immediately affect the active scope, even when running inside an
:term:`optimized scope`.
The module defines the following functions; each enters the debugger in a
slightly different way:
.. function:: run(statement, globals=None, locals=None)
Execute the *statement* (given as a string or a code object) under debugger
control. The debugger prompt appears before any code is executed; you can
set breakpoints and type :pdbcmd:`continue`, or you can step through the
statement using :pdbcmd:`step` or :pdbcmd:`next` (all these commands are
explained below). The optional *globals* and *locals* arguments specify the
environment in which the code is executed; by default the dictionary of the
module :mod:`__main__` is used. (See the explanation of the built-in
:func:`exec` or :func:`eval` functions.)
.. function:: runeval(expression, globals=None, locals=None)
Evaluate the *expression* (given as a string or a code object) under debugger
control. When :func:`runeval` returns, it returns the value of the
*expression*. Otherwise this function is similar to :func:`run`.
.. function:: runcall(function, *args, **kwds)
Call the *function* (a function or method object, not a string) with the
given arguments. When :func:`runcall` returns, it returns whatever the
function call returned. The debugger prompt appears as soon as the function
is entered.
.. function:: set_trace(*, header=None)
Enter the debugger at the calling stack frame. This is useful to hard-code
a breakpoint at a given point in a program, even if the code is not
otherwise being debugged (e.g. when an assertion fails). If given,
*header* is printed to the console just before debugging begins.
.. versionchanged:: 3.7
The keyword-only argument *header*.
.. versionchanged:: 3.13
:func:`set_trace` will enter the debugger immediately, rather than
on the next line of code to be executed.
.. function:: post_mortem(t=None)
Enter post-mortem debugging of the given exception or
:ref:`traceback object <traceback-objects>`. If no value is given, it uses
the exception that is currently being handled, or raises ``ValueError`` if
there isn’t one.
.. versionchanged:: 3.13
Support for exception objects was added.
.. function:: pm()
Enter post-mortem debugging of the exception found in
:data:`sys.last_exc`.
The ``run*`` functions and :func:`set_trace` are aliases for instantiating the
:class:`Pdb` class and calling the method of the same name. If you want to
access further features, you have to do this yourself:
.. class:: Pdb(completekey='tab', stdin=None, stdout=None, skip=None, \
nosigint=False, readrc=True)
:class:`Pdb` is the debugger class.
The *completekey*, *stdin* and *stdout* arguments are passed to the
underlying :class:`cmd.Cmd` class; see the description there.
The *skip* argument, if given, must be an iterable of glob-style module name
patterns. The debugger will not step into frames that originate in a module
that matches one of these patterns. [1]_
By default, Pdb sets a handler for the SIGINT signal (which is sent when the
user presses :kbd:`Ctrl-C` on the console) when you give a :pdbcmd:`continue` command.
This allows you to break into the debugger again by pressing :kbd:`Ctrl-C`. If you
want Pdb not to touch the SIGINT handler, set *nosigint* to true.
The *readrc* argument defaults to true and controls whether Pdb will load
.pdbrc files from the filesystem.
Example call to enable tracing with *skip*::
import pdb; pdb.Pdb(skip=['django.*']).set_trace()
.. audit-event:: pdb.Pdb "" pdb.Pdb
.. versionchanged:: 3.1
Added the *skip* parameter.
.. versionchanged:: 3.2
Added the *nosigint* parameter.
Previously, a SIGINT handler was never set by Pdb.
.. versionchanged:: 3.6
The *readrc* argument.
.. method:: run(statement, globals=None, locals=None)
runeval(expression, globals=None, locals=None)
runcall(function, *args, **kwds)
set_trace()
See the documentation for the functions explained above.
.. _debugger-commands:
Debugger Commands
-----------------
The commands recognized by the debugger are listed below. Most commands can be
abbreviated to one or two letters as indicated; e.g. ``h(elp)`` means that
either ``h`` or ``help`` can be used to enter the help command (but not ``he``
or ``hel``, nor ``H`` or ``Help`` or ``HELP``). Arguments to commands must be
separated by whitespace (spaces or tabs). Optional arguments are enclosed in
square brackets (``[]``) in the command syntax; the square brackets must not be
typed. Alternatives in the command syntax are separated by a vertical bar
(``|``).
Entering a blank line repeats the last command entered. Exception: if the last
command was a :pdbcmd:`list` command, the next 11 lines are listed.
Commands that the debugger doesn't recognize are assumed to be Python statements
and are executed in the context of the program being debugged. Python
statements can also be prefixed with an exclamation point (``!``). This is a
powerful way to inspect the program being debugged; it is even possible to
change a variable or call a function. When an exception occurs in such a
statement, the exception name is printed but the debugger's state is not
changed.
.. versionchanged:: 3.13
Expressions/Statements whose prefix is a pdb command are now correctly
identified and executed.
The debugger supports :ref:`aliases <debugger-aliases>`. Aliases can have
parameters which allows one a certain level of adaptability to the context under
examination.
Multiple commands may be entered on a single line, separated by ``;;``. (A
single ``;`` is not used as it is the separator for multiple commands in a line
that is passed to the Python parser.) No intelligence is applied to separating
the commands; the input is split at the first ``;;`` pair, even if it is in the
middle of a quoted string. A workaround for strings with double semicolons
is to use implicit string concatenation ``';'';'`` or ``";"";"``.
To set a temporary global variable, use a *convenience variable*. A *convenience
variable* is a variable whose name starts with ``$``. For example, ``$foo = 1``
sets a global variable ``$foo`` which you can use in the debugger session. The
*convenience variables* are cleared when the program resumes execution so it's
less likely to interfere with your program compared to using normal variables
like ``foo = 1``.
There are three preset *convenience variables*:
* ``$_frame``: the current frame you are debugging
* ``$_retval``: the return value if the frame is returning
* ``$_exception``: the exception if the frame is raising an exception
.. versionadded:: 3.12
Added the *convenience variable* feature.
.. index::
pair: .pdbrc; file
triple: debugger; configuration; file
If a file :file:`.pdbrc` exists in the user's home directory or in the current
directory, it is read with ``'utf-8'`` encoding and executed as if it had been
typed at the debugger prompt, with the exception that empty lines and lines
starting with ``#`` are ignored. This is particularly useful for aliases. If both
files exist, the one in the home directory is read first and aliases defined there
can be overridden by the local file.
.. versionchanged:: 3.2
:file:`.pdbrc` can now contain commands that continue debugging, such as
:pdbcmd:`continue` or :pdbcmd:`next`. Previously, these commands had no
effect.
.. versionchanged:: 3.11
:file:`.pdbrc` is now read with ``'utf-8'`` encoding. Previously, it was read
with the system locale encoding.
.. pdbcommand:: h(elp) [command]
Without argument, print the list of available commands. With a *command* as
argument, print help about that command. ``help pdb`` displays the full
documentation (the docstring of the :mod:`pdb` module). Since the *command*
argument must be an identifier, ``help exec`` must be entered to get help on
the ``!`` command.
.. pdbcommand:: w(here)
Print a stack trace, with the most recent frame at the bottom. An arrow (``>``)
indicates the current frame, which determines the context of most commands.
.. pdbcommand:: d(own) [count]
Move the current frame *count* (default one) levels down in the stack trace
(to a newer frame).
.. pdbcommand:: u(p) [count]
Move the current frame *count* (default one) levels up in the stack trace (to
an older frame).
.. pdbcommand:: b(reak) [([filename:]lineno | function) [, condition]]
With a *lineno* argument, set a break at line *lineno* in the current file.
The line number may be prefixed with a *filename* and a colon,
to specify a breakpoint in another file (possibly one that hasn't been loaded
yet). The file is searched on :data:`sys.path`. Accepatable forms of *filename*
are ``/abspath/to/file.py``, ``relpath/file.py``, ``module`` and
``package.module``.
With a *function* argument, set a break at the first executable statement within
that function. *function* can be any expression that evaluates to a function
in the current namespace.
If a second argument is present, it is an expression which must evaluate to
true before the breakpoint is honored.
Without argument, list all breaks, including for each breakpoint, the number
of times that breakpoint has been hit, the current ignore count, and the
associated condition if any.
Each breakpoint is assigned a number to which all the other
breakpoint commands refer.
.. pdbcommand:: tbreak [([filename:]lineno | function) [, condition]]
Temporary breakpoint, which is removed automatically when it is first hit.
The arguments are the same as for :pdbcmd:`break`.
.. pdbcommand:: cl(ear) [filename:lineno | bpnumber ...]
With a *filename:lineno* argument, clear all the breakpoints at this line.
With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).
.. pdbcommand:: disable bpnumber [bpnumber ...]
Disable the breakpoints given as a space separated list of breakpoint
numbers. Disabling a breakpoint means it cannot cause the program to stop
execution, but unlike clearing a breakpoint, it remains in the list of
breakpoints and can be (re-)enabled.
.. pdbcommand:: enable bpnumber [bpnumber ...]
Enable the breakpoints specified.
.. pdbcommand:: ignore bpnumber [count]
Set the ignore count for the given breakpoint number. If *count* is omitted,
the ignore count is set to 0. A breakpoint becomes active when the ignore
count is zero. When non-zero, the *count* is decremented each time the
breakpoint is reached and the breakpoint is not disabled and any associated
condition evaluates to true.
.. pdbcommand:: condition bpnumber [condition]
Set a new *condition* for the breakpoint, an expression which must evaluate
to true before the breakpoint is honored. If *condition* is absent, any
existing condition is removed; i.e., the breakpoint is made unconditional.
.. pdbcommand:: commands [bpnumber]
Specify a list of commands for breakpoint number *bpnumber*. The commands
themselves appear on the following lines. Type a line containing just
``end`` to terminate the commands. An example::
(Pdb) commands 1
(com) p some_variable
(com) end
(Pdb)
To remove all commands from a breakpoint, type ``commands`` and follow it
immediately with ``end``; that is, give no commands.
With no *bpnumber* argument, ``commands`` refers to the last breakpoint set.
You can use breakpoint commands to start your program up again. Simply use
the :pdbcmd:`continue` command, or :pdbcmd:`step`,
or any other command that resumes execution.
Specifying any command resuming execution
(currently :pdbcmd:`continue`, :pdbcmd:`step`, :pdbcmd:`next`,
:pdbcmd:`return`, :pdbcmd:`jump`, :pdbcmd:`quit` and their abbreviations)
terminates the command list (as if
that command was immediately followed by end). This is because any time you
resume execution (even with a simple next or step), you may encounter another
breakpoint—which could have its own command list, leading to ambiguities about
which list to execute.
If you use the ``silent`` command in the command list, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints
that are to print a specific message and then continue. If none of the other
commands print anything, you see no sign that the breakpoint was reached.
.. pdbcommand:: s(tep)
Execute the current line, stop at the first possible occasion (either in a
function that is called or on the next line in the current function).
.. pdbcommand:: n(ext)
Continue execution until the next line in the current function is reached or
it returns. (The difference between :pdbcmd:`next` and :pdbcmd:`step` is
that :pdbcmd:`step` stops inside a called function, while :pdbcmd:`next`
executes called functions at (nearly) full speed, only stopping at the next
line in the current function.)
.. pdbcommand:: unt(il) [lineno]
Without argument, continue execution until the line with a number greater
than the current one is reached.
With *lineno*, continue execution until a line with a number greater or
equal to *lineno* is reached. In both cases, also stop when the current frame
returns.
.. versionchanged:: 3.2
Allow giving an explicit line number.
.. pdbcommand:: r(eturn)
Continue execution until the current function returns.
.. pdbcommand:: c(ont(inue))
Continue execution, only stop when a breakpoint is encountered.
.. pdbcommand:: j(ump) lineno
Set the next line that will be executed. Only available in the bottom-most
frame. This lets you jump back and execute code again, or jump forward to
skip code that you don't want to run.
It should be noted that not all jumps are allowed -- for instance it is not
possible to jump into the middle of a :keyword:`for` loop or out of a
:keyword:`finally` clause.
.. pdbcommand:: l(ist) [first[, last]]
List source code for the current file. Without arguments, list 11 lines
around the current line or continue the previous listing. With ``.`` as
argument, list 11 lines around the current line. With one argument,
list 11 lines around at that line. With two arguments, list the given range;
if the second argument is less than the first, it is interpreted as a count.
The current line in the current frame is indicated by ``->``. If an
exception is being debugged, the line where the exception was originally
raised or propagated is indicated by ``>>``, if it differs from the current
line.
.. versionchanged:: 3.2
Added the ``>>`` marker.
.. pdbcommand:: ll | longlist
List all source code for the current function or frame. Interesting lines
are marked as for :pdbcmd:`list`.
.. versionadded:: 3.2
.. pdbcommand:: a(rgs)
Print the arguments of the current function and their current values.
.. pdbcommand:: p expression
Evaluate *expression* in the current context and print its value.
.. note::
``print()`` can also be used, but is not a debugger command --- this executes the
Python :func:`print` function.
.. pdbcommand:: pp expression
Like the :pdbcmd:`p` command, except the value of *expression* is
pretty-printed using the :mod:`pprint` module.
.. pdbcommand:: whatis expression
Print the type of *expression*.
.. pdbcommand:: source expression
Try to get source code of *expression* and display it.
.. versionadded:: 3.2
.. pdbcommand:: display [expression]
Display the value of *expression* if it changed, each time execution stops
in the current frame.
Without *expression*, list all display expressions for the current frame.
.. note::
Display evaluates *expression* and compares to the result of the previous
evaluation of *expression*, so when the result is mutable, display may not
be able to pick up the changes.
Example::
lst = []
breakpoint()
pass
lst.append(1)
print(lst)
Display won't realize ``lst`` has been changed because the result of evaluation
is modified in place by ``lst.append(1)`` before being compared::
> example.py(3)<module>()
-> pass
(Pdb) display lst
display lst: []
(Pdb) n
> example.py(4)<module>()
-> lst.append(1)
(Pdb) n
> example.py(5)<module>()
-> print(lst)
(Pdb)
You can do some tricks with copy mechanism to make it work::
> example.py(3)<module>()
-> pass
(Pdb) display lst[:]
display lst[:]: []
(Pdb) n
> example.py(4)<module>()
-> lst.append(1)
(Pdb) n
> example.py(5)<module>()
-> print(lst)
display lst[:]: [1] [old: []]
(Pdb)
.. versionadded:: 3.2
.. pdbcommand:: undisplay [expression]
Do not display *expression* anymore in the current frame. Without
*expression*, clear all display expressions for the current frame.
.. versionadded:: 3.2
.. pdbcommand:: interact
Start an interactive interpreter (using the :mod:`code` module) in a new
global namespace initialised from the local and global namespaces for the
current scope. Use ``exit()`` or ``quit()`` to exit the interpreter and
return to the debugger.
.. note::
As ``interact`` creates a new dedicated namespace for code execution,
assignments to variables will not affect the original namespaces.
However, modifications to any referenced mutable objects will be reflected
in the original namespaces as usual.
.. versionadded:: 3.2
.. versionchanged:: 3.13
``exit()`` and ``quit()`` can be used to exit the :pdbcmd:`interact`
command.
.. versionchanged:: 3.13
:pdbcmd:`interact` directs its output to the debugger's
output channel rather than :data:`sys.stderr`.
.. _debugger-aliases:
.. pdbcommand:: alias [name [command]]
Create an alias called *name* that executes *command*. The *command* must
*not* be enclosed in quotes. Replaceable parameters can be indicated by
``%1``, ``%2``, ... and ``%9``, while ``%*`` is replaced by all the parameters.
If *command* is omitted, the current alias for *name* is shown. If no
arguments are given, all aliases are listed.
Aliases may be nested and can contain anything that can be legally typed at
the pdb prompt. Note that internal pdb commands *can* be overridden by
aliases. Such a command is then hidden until the alias is removed. Aliasing
is recursively applied to the first word of the command line; all other words
in the line are left alone.
As an example, here are two useful aliases (especially when placed in the
:file:`.pdbrc` file)::
# Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print(f"%1.{k} = {%1.__dict__[k]}")
# Print instance variables in self
alias ps pi self
.. pdbcommand:: unalias name
Delete the specified alias *name*.
.. pdbcommand:: ! statement
Execute the (one-line) *statement* in the context of the current stack frame.
The exclamation point can be omitted unless the first word of the statement
resembles a debugger command, e.g.:
.. code-block:: none
(Pdb) ! n=42
(Pdb)
To set a global variable, you can prefix the assignment command with a
:keyword:`global` statement on the same line, e.g.:
.. code-block:: none
(Pdb) global list_options; list_options = ['-l']
(Pdb)
.. pdbcommand:: run [args ...]
restart [args ...]
Restart the debugged Python program. If *args* is supplied, it is split
with :mod:`shlex` and the result is used as the new :data:`sys.argv`.
History, breakpoints, actions and debugger options are preserved.
:pdbcmd:`restart` is an alias for :pdbcmd:`run`.
.. pdbcommand:: q(uit)
Quit from the debugger. The program being executed is aborted.
.. pdbcommand:: debug code
Enter a recursive debugger that steps through *code*
(which is an arbitrary expression or statement to be
executed in the current environment).
.. pdbcommand:: retval
Print the return value for the last return of the current function.
.. pdbcommand:: exceptions [excnumber]
List or jump between chained exceptions.
When using ``pdb.pm()`` or ``Pdb.post_mortem(...)`` with a chained exception
instead of a traceback, it allows the user to move between the
chained exceptions using ``exceptions`` command to list exceptions, and
``exceptions <number>`` to switch to that exception.
Example::
def out():
try:
middle()
except Exception as e:
raise ValueError("reraise middle() error") from e
def middle():
try:
return inner(0)
except Exception as e:
raise ValueError("Middle fail")
def inner(x):
1 / x
out()
calling ``pdb.pm()`` will allow to move between exceptions::
> example.py(5)out()
-> raise ValueError("reraise middle() error") from e
(Pdb) exceptions
0 ZeroDivisionError('division by zero')
1 ValueError('Middle fail')
> 2 ValueError('reraise middle() error')
(Pdb) exceptions 0
> example.py(16)inner()
-> 1 / x
(Pdb) up
> example.py(10)middle()
-> return inner(0)
.. versionadded:: 3.13
.. rubric:: Footnotes
.. [1] Whether a frame is considered to originate in a certain module
is determined by the ``__name__`` in the frame globals.
|