1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
.. testsetup::
import math
from fractions import Fraction
.. _tut-fp-issues:
**************************************************
Floating-Point Arithmetic: Issues and Limitations
**************************************************
.. sectionauthor:: Tim Peters <tim_one@users.sourceforge.net>
.. sectionauthor:: Raymond Hettinger <python at rcn dot com>
Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the **decimal** fraction ``0.625``
has value 6/10 + 2/100 + 5/1000, and in the same way the **binary** fraction ``0.101``
has value 1/2 + 0/4 + 1/8. These two fractions have identical values, the only
real difference being that the first is written in base 10 fractional notation,
and the second in base 2.
Unfortunately, most decimal fractions cannot be represented exactly as binary
fractions. A consequence is that, in general, the decimal floating-point
numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.
The problem is easier to understand at first in base 10. Consider the fraction
1/3. You can approximate that as a base 10 fraction::
0.3
or, better, ::
0.33
or, better, ::
0.333
and so on. No matter how many digits you're willing to write down, the result
will never be exactly 1/3, but will be an increasingly better approximation of
1/3.
In the same way, no matter how many base 2 digits you're willing to use, the
decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base
2, 1/10 is the infinitely repeating fraction ::
0.0001100110011001100110011001100110011001100110011...
Stop at any finite number of bits, and you get an approximation. On most
machines today, floats are approximated using a binary fraction with
the numerator using the first 53 bits starting with the most significant bit and
with the denominator as a power of two. In the case of 1/10, the binary fraction
is ``3602879701896397 / 2 ** 55`` which is close to but not exactly
equal to the true value of 1/10.
Many users are not aware of the approximation because of the way values are
displayed. Python only prints a decimal approximation to the true decimal
value of the binary approximation stored by the machine. On most machines, if
Python were to print the true decimal value of the binary approximation stored
for 0.1, it would have to display::
>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
That is more digits than most people find useful, so Python keeps the number
of digits manageable by displaying a rounded value instead:
.. doctest::
>>> 1 / 10
0.1
Just remember, even though the printed result looks like the exact value
of 1/10, the actual stored value is the nearest representable binary fraction.
Interestingly, there are many different decimal numbers that share the same
nearest approximate binary fraction. For example, the numbers ``0.1`` and
``0.10000000000000001`` and
``0.1000000000000000055511151231257827021181583404541015625`` are all
approximated by ``3602879701896397 / 2 ** 55``. Since all of these decimal
values share the same approximation, any one of them could be displayed
while still preserving the invariant ``eval(repr(x)) == x``.
Historically, the Python prompt and built-in :func:`repr` function would choose
the one with 17 significant digits, ``0.10000000000000001``. Starting with
Python 3.1, Python (on most systems) is now able to choose the shortest of
these and simply display ``0.1``.
Note that this is in the very nature of binary floating point: this is not a bug
in Python, and it is not a bug in your code either. You'll see the same kind of
thing in all languages that support your hardware's floating-point arithmetic
(although some languages may not *display* the difference by default, or in all
output modes).
For more pleasant output, you may wish to use string formatting to produce a
limited number of significant digits:
.. doctest::
>>> format(math.pi, '.12g') # give 12 significant digits
'3.14159265359'
>>> format(math.pi, '.2f') # give 2 digits after the point
'3.14'
>>> repr(math.pi)
'3.141592653589793'
It's important to realize that this is, in a real sense, an illusion: you're
simply rounding the *display* of the true machine value.
One illusion may beget another. For example, since 0.1 is not exactly 1/10,
summing three values of 0.1 may not yield exactly 0.3, either:
.. doctest::
>>> 0.1 + 0.1 + 0.1 == 0.3
False
Also, since the 0.1 cannot get any closer to the exact value of 1/10 and
0.3 cannot get any closer to the exact value of 3/10, then pre-rounding with
:func:`round` function cannot help:
.. doctest::
>>> round(0.1, 1) + round(0.1, 1) + round(0.1, 1) == round(0.3, 1)
False
Though the numbers cannot be made closer to their intended exact values,
the :func:`math.isclose` function can be useful for comparing inexact values:
.. doctest::
>>> math.isclose(0.1 + 0.1 + 0.1, 0.3)
True
Alternatively, the :func:`round` function can be used to compare rough
approximations:
.. doctest::
>>> round(math.pi, ndigits=2) == round(22 / 7, ndigits=2)
True
Binary floating-point arithmetic holds many surprises like this. The problem
with "0.1" is explained in precise detail below, in the "Representation Error"
section. See `Examples of Floating Point Problems
<https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/>`_ for
a pleasant summary of how binary floating point works and the kinds of
problems commonly encountered in practice. Also see
`The Perils of Floating Point <http://www.indowsway.com/floatingpoint.htm>`_
for a more complete account of other common surprises.
As that says near the end, "there are no easy answers." Still, don't be unduly
wary of floating point! The errors in Python float operations are inherited
from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2\*\*53 per operation. That's more than adequate for most
tasks, but you do need to keep in mind that it's not decimal arithmetic and
that every float operation can suffer a new rounding error.
While pathological cases do exist, for most casual use of floating-point
arithmetic you'll see the result you expect in the end if you simply round the
display of your final results to the number of decimal digits you expect.
:func:`str` usually suffices, and for finer control see the :meth:`str.format`
method's format specifiers in :ref:`formatstrings`.
For use cases which require exact decimal representation, try using the
:mod:`decimal` module which implements decimal arithmetic suitable for
accounting applications and high-precision applications.
Another form of exact arithmetic is supported by the :mod:`fractions` module
which implements arithmetic based on rational numbers (so the numbers like
1/3 can be represented exactly).
If you are a heavy user of floating-point operations you should take a look
at the NumPy package and many other packages for mathematical and
statistical operations supplied by the SciPy project. See <https://scipy.org>.
Python provides tools that may help on those rare occasions when you really
*do* want to know the exact value of a float. The
:meth:`float.as_integer_ratio` method expresses the value of a float as a
fraction:
.. doctest::
>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)
Since the ratio is exact, it can be used to losslessly recreate the
original value:
.. doctest::
>>> x == 3537115888337719 / 1125899906842624
True
The :meth:`float.hex` method expresses a float in hexadecimal (base
16), again giving the exact value stored by your computer:
.. doctest::
>>> x.hex()
'0x1.921f9f01b866ep+1'
This precise hexadecimal representation can be used to reconstruct
the float value exactly:
.. doctest::
>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True
Since the representation is exact, it is useful for reliably porting values
across different versions of Python (platform independence) and exchanging
data with other languages that support the same format (such as Java and C99).
Another helpful tool is the :func:`sum` function which helps mitigate
loss-of-precision during summation. It uses extended precision for
intermediate rounding steps as values are added onto a running total.
That can make a difference in overall accuracy so that the errors do not
accumulate to the point where they affect the final total:
.. doctest::
>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0
False
>>> sum([0.1] * 10) == 1.0
True
The :func:`math.fsum` goes further and tracks all of the "lost digits"
as values are added onto a running total so that the result has only a
single rounding. This is slower than :func:`sum` but will be more
accurate in uncommon cases where large magnitude inputs mostly cancel
each other out leaving a final sum near zero:
.. doctest::
>>> arr = [-0.10430216751806065, -266310978.67179024, 143401161448607.16,
... -143401161400469.7, 266262841.31058735, -0.003244936839808227]
>>> float(sum(map(Fraction, arr))) # Exact summation with single rounding
8.042173697819788e-13
>>> math.fsum(arr) # Single rounding
8.042173697819788e-13
>>> sum(arr) # Multiple roundings in extended precision
8.042178034628478e-13
>>> total = 0.0
>>> for x in arr:
... total += x # Multiple roundings in standard precision
...
>>> total # Straight addition has no correct digits!
-0.0051575902860057365
.. _tut-fp-error:
Representation Error
====================
This section explains the "0.1" example in detail, and shows how you can perform
an exact analysis of cases like this yourself. Basic familiarity with binary
floating-point representation is assumed.
:dfn:`Representation error` refers to the fact that some (most, actually)
decimal fractions cannot be represented exactly as binary (base 2) fractions.
This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many
others) often won't display the exact decimal number you expect.
Why is that? 1/10 is not exactly representable as a binary fraction. Since at
least 2000, almost all machines use IEEE 754 binary floating-point arithmetic,
and almost all platforms map Python floats to IEEE 754 binary64 "double
precision" values. IEEE 754 binary64 values contain 53 bits of precision, so
on input the computer strives to convert 0.1 to the closest fraction it can of
the form *J*/2**\ *N* where *J* is an integer containing exactly 53 bits.
Rewriting
::
1 / 10 ~= J / (2**N)
as ::
J ~= 2**N / 10
and recalling that *J* has exactly 53 bits (is ``>= 2**52`` but ``< 2**53``),
the best value for *N* is 56:
.. doctest::
>>> 2**52 <= 2**56 // 10 < 2**53
True
That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The
best possible value for *J* is then that quotient rounded:
.. doctest::
>>> q, r = divmod(2**56, 10)
>>> r
6
Since the remainder is more than half of 10, the best approximation is obtained
by rounding up:
.. doctest::
>>> q+1
7205759403792794
Therefore the best possible approximation to 1/10 in IEEE 754 double precision
is::
7205759403792794 / 2 ** 56
Dividing both the numerator and denominator by two reduces the fraction to::
3602879701896397 / 2 ** 55
Note that since we rounded up, this is actually a little bit larger than 1/10;
if we had not rounded up, the quotient would have been a little bit smaller than
1/10. But in no case can it be *exactly* 1/10!
So the computer never "sees" 1/10: what it sees is the exact fraction given
above, the best IEEE 754 double approximation it can get:
.. doctest::
>>> 0.1 * 2 ** 55
3602879701896397.0
If we multiply that fraction by 10\*\*55, we can see the value out to
55 decimal digits:
.. doctest::
>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625
meaning that the exact number stored in the computer is equal to
the decimal value 0.1000000000000000055511151231257827021181583404541015625.
Instead of displaying the full decimal value, many languages (including
older versions of Python), round the result to 17 significant digits:
.. doctest::
>>> format(0.1, '.17f')
'0.10000000000000001'
The :mod:`fractions` and :mod:`decimal` modules make these calculations
easy:
.. doctest::
>>> from decimal import Decimal
>>> from fractions import Fraction
>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)
>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'
|