1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
|
import re
import sys
import copy
import types
import inspect
import keyword
import itertools
import abc
from reprlib import recursive_repr
__all__ = ['dataclass',
'field',
'Field',
'FrozenInstanceError',
'InitVar',
'KW_ONLY',
'MISSING',
# Helper functions.
'fields',
'asdict',
'astuple',
'make_dataclass',
'replace',
'is_dataclass',
]
# Conditions for adding methods. The boxes indicate what action the
# dataclass decorator takes. For all of these tables, when I talk
# about init=, repr=, eq=, order=, unsafe_hash=, or frozen=, I'm
# referring to the arguments to the @dataclass decorator. When
# checking if a dunder method already exists, I mean check for an
# entry in the class's __dict__. I never check to see if an attribute
# is defined in a base class.
# Key:
# +=========+=========================================+
# + Value | Meaning |
# +=========+=========================================+
# | <blank> | No action: no method is added. |
# +---------+-----------------------------------------+
# | add | Generated method is added. |
# +---------+-----------------------------------------+
# | raise | TypeError is raised. |
# +---------+-----------------------------------------+
# | None | Attribute is set to None. |
# +=========+=========================================+
# __init__
#
# +--- init= parameter
# |
# v | | |
# | no | yes | <--- class has __init__ in __dict__?
# +=======+=======+=======+
# | False | | |
# +-------+-------+-------+
# | True | add | | <- the default
# +=======+=======+=======+
# __repr__
#
# +--- repr= parameter
# |
# v | | |
# | no | yes | <--- class has __repr__ in __dict__?
# +=======+=======+=======+
# | False | | |
# +-------+-------+-------+
# | True | add | | <- the default
# +=======+=======+=======+
# __setattr__
# __delattr__
#
# +--- frozen= parameter
# |
# v | | |
# | no | yes | <--- class has __setattr__ or __delattr__ in __dict__?
# +=======+=======+=======+
# | False | | | <- the default
# +-------+-------+-------+
# | True | add | raise |
# +=======+=======+=======+
# Raise because not adding these methods would break the "frozen-ness"
# of the class.
# __eq__
#
# +--- eq= parameter
# |
# v | | |
# | no | yes | <--- class has __eq__ in __dict__?
# +=======+=======+=======+
# | False | | |
# +-------+-------+-------+
# | True | add | | <- the default
# +=======+=======+=======+
# __lt__
# __le__
# __gt__
# __ge__
#
# +--- order= parameter
# |
# v | | |
# | no | yes | <--- class has any comparison method in __dict__?
# +=======+=======+=======+
# | False | | | <- the default
# +-------+-------+-------+
# | True | add | raise |
# +=======+=======+=======+
# Raise because to allow this case would interfere with using
# functools.total_ordering.
# __hash__
# +------------------- unsafe_hash= parameter
# | +----------- eq= parameter
# | | +--- frozen= parameter
# | | |
# v v v | | |
# | no | yes | <--- class has explicitly defined __hash__
# +=======+=======+=======+========+========+
# | False | False | False | | | No __eq__, use the base class __hash__
# +-------+-------+-------+--------+--------+
# | False | False | True | | | No __eq__, use the base class __hash__
# +-------+-------+-------+--------+--------+
# | False | True | False | None | | <-- the default, not hashable
# +-------+-------+-------+--------+--------+
# | False | True | True | add | | Frozen, so hashable, allows override
# +-------+-------+-------+--------+--------+
# | True | False | False | add | raise | Has no __eq__, but hashable
# +-------+-------+-------+--------+--------+
# | True | False | True | add | raise | Has no __eq__, but hashable
# +-------+-------+-------+--------+--------+
# | True | True | False | add | raise | Not frozen, but hashable
# +-------+-------+-------+--------+--------+
# | True | True | True | add | raise | Frozen, so hashable
# +=======+=======+=======+========+========+
# For boxes that are blank, __hash__ is untouched and therefore
# inherited from the base class. If the base is object, then
# id-based hashing is used.
#
# Note that a class may already have __hash__=None if it specified an
# __eq__ method in the class body (not one that was created by
# @dataclass).
#
# See _hash_action (below) for a coded version of this table.
# __match_args__
#
# +--- match_args= parameter
# |
# v | | |
# | no | yes | <--- class has __match_args__ in __dict__?
# +=======+=======+=======+
# | False | | |
# +-------+-------+-------+
# | True | add | | <- the default
# +=======+=======+=======+
# __match_args__ is always added unless the class already defines it. It is a
# tuple of __init__ parameter names; non-init fields must be matched by keyword.
# Raised when an attempt is made to modify a frozen class.
class FrozenInstanceError(AttributeError): pass
# A sentinel object for default values to signal that a default
# factory will be used. This is given a nice repr() which will appear
# in the function signature of dataclasses' constructors.
class _HAS_DEFAULT_FACTORY_CLASS:
def __repr__(self):
return '<factory>'
_HAS_DEFAULT_FACTORY = _HAS_DEFAULT_FACTORY_CLASS()
# A sentinel object to detect if a parameter is supplied or not. Use
# a class to give it a better repr.
class _MISSING_TYPE:
pass
MISSING = _MISSING_TYPE()
# A sentinel object to indicate that following fields are keyword-only by
# default. Use a class to give it a better repr.
class _KW_ONLY_TYPE:
pass
KW_ONLY = _KW_ONLY_TYPE()
# Since most per-field metadata will be unused, create an empty
# read-only proxy that can be shared among all fields.
_EMPTY_METADATA = types.MappingProxyType({})
# Markers for the various kinds of fields and pseudo-fields.
class _FIELD_BASE:
def __init__(self, name):
self.name = name
def __repr__(self):
return self.name
_FIELD = _FIELD_BASE('_FIELD')
_FIELD_CLASSVAR = _FIELD_BASE('_FIELD_CLASSVAR')
_FIELD_INITVAR = _FIELD_BASE('_FIELD_INITVAR')
# The name of an attribute on the class where we store the Field
# objects. Also used to check if a class is a Data Class.
_FIELDS = '__dataclass_fields__'
# The name of an attribute on the class that stores the parameters to
# @dataclass.
_PARAMS = '__dataclass_params__'
# The name of the function, that if it exists, is called at the end of
# __init__.
_POST_INIT_NAME = '__post_init__'
# String regex that string annotations for ClassVar or InitVar must match.
# Allows "identifier.identifier[" or "identifier[".
# https://bugs.python.org/issue33453 for details.
_MODULE_IDENTIFIER_RE = re.compile(r'^(?:\s*(\w+)\s*\.)?\s*(\w+)')
# Atomic immutable types which don't require any recursive handling and for which deepcopy
# returns the same object. We can provide a fast-path for these types in asdict and astuple.
_ATOMIC_TYPES = frozenset({
# Common JSON Serializable types
types.NoneType,
bool,
int,
float,
str,
# Other common types
complex,
bytes,
# Other types that are also unaffected by deepcopy
types.EllipsisType,
types.NotImplementedType,
types.CodeType,
types.BuiltinFunctionType,
types.FunctionType,
type,
range,
property,
})
class InitVar:
__slots__ = ('type', )
def __init__(self, type):
self.type = type
def __repr__(self):
if isinstance(self.type, type):
type_name = self.type.__name__
else:
# typing objects, e.g. List[int]
type_name = repr(self.type)
return f'dataclasses.InitVar[{type_name}]'
def __class_getitem__(cls, type):
return InitVar(type)
# Instances of Field are only ever created from within this module,
# and only from the field() function, although Field instances are
# exposed externally as (conceptually) read-only objects.
#
# name and type are filled in after the fact, not in __init__.
# They're not known at the time this class is instantiated, but it's
# convenient if they're available later.
#
# When cls._FIELDS is filled in with a list of Field objects, the name
# and type fields will have been populated.
class Field:
__slots__ = ('name',
'type',
'default',
'default_factory',
'repr',
'hash',
'init',
'compare',
'metadata',
'kw_only',
'_field_type', # Private: not to be used by user code.
)
def __init__(self, default, default_factory, init, repr, hash, compare,
metadata, kw_only):
self.name = None
self.type = None
self.default = default
self.default_factory = default_factory
self.init = init
self.repr = repr
self.hash = hash
self.compare = compare
self.metadata = (_EMPTY_METADATA
if metadata is None else
types.MappingProxyType(metadata))
self.kw_only = kw_only
self._field_type = None
@recursive_repr()
def __repr__(self):
return ('Field('
f'name={self.name!r},'
f'type={self.type!r},'
f'default={self.default!r},'
f'default_factory={self.default_factory!r},'
f'init={self.init!r},'
f'repr={self.repr!r},'
f'hash={self.hash!r},'
f'compare={self.compare!r},'
f'metadata={self.metadata!r},'
f'kw_only={self.kw_only!r},'
f'_field_type={self._field_type}'
')')
# This is used to support the PEP 487 __set_name__ protocol in the
# case where we're using a field that contains a descriptor as a
# default value. For details on __set_name__, see
# https://peps.python.org/pep-0487/#implementation-details.
#
# Note that in _process_class, this Field object is overwritten
# with the default value, so the end result is a descriptor that
# had __set_name__ called on it at the right time.
def __set_name__(self, owner, name):
func = getattr(type(self.default), '__set_name__', None)
if func:
# There is a __set_name__ method on the descriptor, call
# it.
func(self.default, owner, name)
__class_getitem__ = classmethod(types.GenericAlias)
class _DataclassParams:
__slots__ = ('init',
'repr',
'eq',
'order',
'unsafe_hash',
'frozen',
'match_args',
'kw_only',
'slots',
'weakref_slot',
)
def __init__(self,
init, repr, eq, order, unsafe_hash, frozen,
match_args, kw_only, slots, weakref_slot):
self.init = init
self.repr = repr
self.eq = eq
self.order = order
self.unsafe_hash = unsafe_hash
self.frozen = frozen
self.match_args = match_args
self.kw_only = kw_only
self.slots = slots
self.weakref_slot = weakref_slot
def __repr__(self):
return ('_DataclassParams('
f'init={self.init!r},'
f'repr={self.repr!r},'
f'eq={self.eq!r},'
f'order={self.order!r},'
f'unsafe_hash={self.unsafe_hash!r},'
f'frozen={self.frozen!r},'
f'match_args={self.match_args!r},'
f'kw_only={self.kw_only!r},'
f'slots={self.slots!r},'
f'weakref_slot={self.weakref_slot!r}'
')')
# This function is used instead of exposing Field creation directly,
# so that a type checker can be told (via overloads) that this is a
# function whose type depends on its parameters.
def field(*, default=MISSING, default_factory=MISSING, init=True, repr=True,
hash=None, compare=True, metadata=None, kw_only=MISSING):
"""Return an object to identify dataclass fields.
default is the default value of the field. default_factory is a
0-argument function called to initialize a field's value. If init
is true, the field will be a parameter to the class's __init__()
function. If repr is true, the field will be included in the
object's repr(). If hash is true, the field will be included in the
object's hash(). If compare is true, the field will be used in
comparison functions. metadata, if specified, must be a mapping
which is stored but not otherwise examined by dataclass. If kw_only
is true, the field will become a keyword-only parameter to
__init__().
It is an error to specify both default and default_factory.
"""
if default is not MISSING and default_factory is not MISSING:
raise ValueError('cannot specify both default and default_factory')
return Field(default, default_factory, init, repr, hash, compare,
metadata, kw_only)
def _fields_in_init_order(fields):
# Returns the fields as __init__ will output them. It returns 2 tuples:
# the first for normal args, and the second for keyword args.
return (tuple(f for f in fields if f.init and not f.kw_only),
tuple(f for f in fields if f.init and f.kw_only)
)
def _tuple_str(obj_name, fields):
# Return a string representing each field of obj_name as a tuple
# member. So, if fields is ['x', 'y'] and obj_name is "self",
# return "(self.x,self.y)".
# Special case for the 0-tuple.
if not fields:
return '()'
# Note the trailing comma, needed if this turns out to be a 1-tuple.
return f'({",".join([f"{obj_name}.{f.name}" for f in fields])},)'
class _FuncBuilder:
def __init__(self, globals):
self.names = []
self.src = []
self.globals = globals
self.locals = {}
self.overwrite_errors = {}
self.unconditional_adds = {}
def add_fn(self, name, args, body, *, locals=None, return_type=MISSING,
overwrite_error=False, unconditional_add=False, decorator=None):
if locals is not None:
self.locals.update(locals)
# Keep track if this method is allowed to be overwritten if it already
# exists in the class. The error is method-specific, so keep it with
# the name. We'll use this when we generate all of the functions in
# the add_fns_to_class call. overwrite_error is either True, in which
# case we'll raise an error, or it's a string, in which case we'll
# raise an error and append this string.
if overwrite_error:
self.overwrite_errors[name] = overwrite_error
# Should this function always overwrite anything that's already in the
# class? The default is to not overwrite a function that already
# exists.
if unconditional_add:
self.unconditional_adds[name] = True
self.names.append(name)
if return_type is not MISSING:
self.locals[f'__dataclass_{name}_return_type__'] = return_type
return_annotation = f'->__dataclass_{name}_return_type__'
else:
return_annotation = ''
args = ','.join(args)
body = '\n'.join(body)
# Compute the text of the entire function, add it to the text we're generating.
self.src.append(f'{f' {decorator}\n' if decorator else ''} def {name}({args}){return_annotation}:\n{body}')
def add_fns_to_class(self, cls):
# The source to all of the functions we're generating.
fns_src = '\n'.join(self.src)
# The locals they use.
local_vars = ','.join(self.locals.keys())
# The names of all of the functions, used for the return value of the
# outer function. Need to handle the 0-tuple specially.
if len(self.names) == 0:
return_names = '()'
else:
return_names =f'({",".join(self.names)},)'
# txt is the entire function we're going to execute, including the
# bodies of the functions we're defining. Here's a greatly simplified
# version:
# def __create_fn__():
# def __init__(self, x, y):
# self.x = x
# self.y = y
# @recursive_repr
# def __repr__(self):
# return f"cls(x={self.x!r},y={self.y!r})"
# return __init__,__repr__
txt = f"def __create_fn__({local_vars}):\n{fns_src}\n return {return_names}"
ns = {}
exec(txt, self.globals, ns)
fns = ns['__create_fn__'](**self.locals)
# Now that we've generated the functions, assign them into cls.
for name, fn in zip(self.names, fns):
fn.__qualname__ = f"{cls.__qualname__}.{fn.__name__}"
if self.unconditional_adds.get(name, False):
setattr(cls, name, fn)
else:
already_exists = _set_new_attribute(cls, name, fn)
# See if it's an error to overwrite this particular function.
if already_exists and (msg_extra := self.overwrite_errors.get(name)):
error_msg = (f'Cannot overwrite attribute {fn.__name__} '
f'in class {cls.__name__}')
if not msg_extra is True:
error_msg = f'{error_msg} {msg_extra}'
raise TypeError(error_msg)
def _field_assign(frozen, name, value, self_name):
# If we're a frozen class, then assign to our fields in __init__
# via object.__setattr__. Otherwise, just use a simple
# assignment.
#
# self_name is what "self" is called in this function: don't
# hard-code "self", since that might be a field name.
if frozen:
return f' __dataclass_builtins_object__.__setattr__({self_name},{name!r},{value})'
return f' {self_name}.{name}={value}'
def _field_init(f, frozen, globals, self_name, slots):
# Return the text of the line in the body of __init__ that will
# initialize this field.
default_name = f'__dataclass_dflt_{f.name}__'
if f.default_factory is not MISSING:
if f.init:
# This field has a default factory. If a parameter is
# given, use it. If not, call the factory.
globals[default_name] = f.default_factory
value = (f'{default_name}() '
f'if {f.name} is __dataclass_HAS_DEFAULT_FACTORY__ '
f'else {f.name}')
else:
# This is a field that's not in the __init__ params, but
# has a default factory function. It needs to be
# initialized here by calling the factory function,
# because there's no other way to initialize it.
# For a field initialized with a default=defaultvalue, the
# class dict just has the default value
# (cls.fieldname=defaultvalue). But that won't work for a
# default factory, the factory must be called in __init__
# and we must assign that to self.fieldname. We can't
# fall back to the class dict's value, both because it's
# not set, and because it might be different per-class
# (which, after all, is why we have a factory function!).
globals[default_name] = f.default_factory
value = f'{default_name}()'
else:
# No default factory.
if f.init:
if f.default is MISSING:
# There's no default, just do an assignment.
value = f.name
elif f.default is not MISSING:
globals[default_name] = f.default
value = f.name
else:
# If the class has slots, then initialize this field.
if slots and f.default is not MISSING:
globals[default_name] = f.default
value = default_name
else:
# This field does not need initialization: reading from it will
# just use the class attribute that contains the default.
# Signify that to the caller by returning None.
return None
# Only test this now, so that we can create variables for the
# default. However, return None to signify that we're not going
# to actually do the assignment statement for InitVars.
if f._field_type is _FIELD_INITVAR:
return None
# Now, actually generate the field assignment.
return _field_assign(frozen, f.name, value, self_name)
def _init_param(f):
# Return the __init__ parameter string for this field. For
# example, the equivalent of 'x:int=3' (except instead of 'int',
# reference a variable set to int, and instead of '3', reference a
# variable set to 3).
if f.default is MISSING and f.default_factory is MISSING:
# There's no default, and no default_factory, just output the
# variable name and type.
default = ''
elif f.default is not MISSING:
# There's a default, this will be the name that's used to look
# it up.
default = f'=__dataclass_dflt_{f.name}__'
elif f.default_factory is not MISSING:
# There's a factory function. Set a marker.
default = '=__dataclass_HAS_DEFAULT_FACTORY__'
return f'{f.name}:__dataclass_type_{f.name}__{default}'
def _init_fn(fields, std_fields, kw_only_fields, frozen, has_post_init,
self_name, func_builder, slots):
# fields contains both real fields and InitVar pseudo-fields.
# Make sure we don't have fields without defaults following fields
# with defaults. This actually would be caught when exec-ing the
# function source code, but catching it here gives a better error
# message, and future-proofs us in case we build up the function
# using ast.
seen_default = None
for f in std_fields:
# Only consider the non-kw-only fields in the __init__ call.
if f.init:
if not (f.default is MISSING and f.default_factory is MISSING):
seen_default = f
elif seen_default:
raise TypeError(f'non-default argument {f.name!r} '
f'follows default argument {seen_default.name!r}')
locals = {**{f'__dataclass_type_{f.name}__': f.type for f in fields},
**{'__dataclass_HAS_DEFAULT_FACTORY__': _HAS_DEFAULT_FACTORY,
'__dataclass_builtins_object__': object,
}
}
body_lines = []
for f in fields:
line = _field_init(f, frozen, locals, self_name, slots)
# line is None means that this field doesn't require
# initialization (it's a pseudo-field). Just skip it.
if line:
body_lines.append(line)
# Does this class have a post-init function?
if has_post_init:
params_str = ','.join(f.name for f in fields
if f._field_type is _FIELD_INITVAR)
body_lines.append(f' {self_name}.{_POST_INIT_NAME}({params_str})')
# If no body lines, use 'pass'.
if not body_lines:
body_lines = [' pass']
_init_params = [_init_param(f) for f in std_fields]
if kw_only_fields:
# Add the keyword-only args. Because the * can only be added if
# there's at least one keyword-only arg, there needs to be a test here
# (instead of just concatenting the lists together).
_init_params += ['*']
_init_params += [_init_param(f) for f in kw_only_fields]
func_builder.add_fn('__init__',
[self_name] + _init_params,
body_lines,
locals=locals,
return_type=None)
def _frozen_get_del_attr(cls, fields, func_builder):
locals = {'cls': cls,
'FrozenInstanceError': FrozenInstanceError}
condition = 'type(self) is cls'
if fields:
condition += ' or name in {' + ', '.join(repr(f.name) for f in fields) + '}'
func_builder.add_fn('__setattr__',
('self', 'name', 'value'),
(f' if {condition}:',
' raise FrozenInstanceError(f"cannot assign to field {name!r}")',
f' super(cls, self).__setattr__(name, value)'),
locals=locals,
overwrite_error=True)
func_builder.add_fn('__delattr__',
('self', 'name'),
(f' if {condition}:',
' raise FrozenInstanceError(f"cannot delete field {name!r}")',
f' super(cls, self).__delattr__(name)'),
locals=locals,
overwrite_error=True)
def _is_classvar(a_type, typing):
# This test uses a typing internal class, but it's the best way to
# test if this is a ClassVar.
return (a_type is typing.ClassVar
or (type(a_type) is typing._GenericAlias
and a_type.__origin__ is typing.ClassVar))
def _is_initvar(a_type, dataclasses):
# The module we're checking against is the module we're
# currently in (dataclasses.py).
return (a_type is dataclasses.InitVar
or type(a_type) is dataclasses.InitVar)
def _is_kw_only(a_type, dataclasses):
return a_type is dataclasses.KW_ONLY
def _is_type(annotation, cls, a_module, a_type, is_type_predicate):
# Given a type annotation string, does it refer to a_type in
# a_module? For example, when checking that annotation denotes a
# ClassVar, then a_module is typing, and a_type is
# typing.ClassVar.
# It's possible to look up a_module given a_type, but it involves
# looking in sys.modules (again!), and seems like a waste since
# the caller already knows a_module.
# - annotation is a string type annotation
# - cls is the class that this annotation was found in
# - a_module is the module we want to match
# - a_type is the type in that module we want to match
# - is_type_predicate is a function called with (obj, a_module)
# that determines if obj is of the desired type.
# Since this test does not do a local namespace lookup (and
# instead only a module (global) lookup), there are some things it
# gets wrong.
# With string annotations, cv0 will be detected as a ClassVar:
# CV = ClassVar
# @dataclass
# class C0:
# cv0: CV
# But in this example cv1 will not be detected as a ClassVar:
# @dataclass
# class C1:
# CV = ClassVar
# cv1: CV
# In C1, the code in this function (_is_type) will look up "CV" in
# the module and not find it, so it will not consider cv1 as a
# ClassVar. This is a fairly obscure corner case, and the best
# way to fix it would be to eval() the string "CV" with the
# correct global and local namespaces. However that would involve
# a eval() penalty for every single field of every dataclass
# that's defined. It was judged not worth it.
match = _MODULE_IDENTIFIER_RE.match(annotation)
if match:
ns = None
module_name = match.group(1)
if not module_name:
# No module name, assume the class's module did
# "from dataclasses import InitVar".
ns = sys.modules.get(cls.__module__).__dict__
else:
# Look up module_name in the class's module.
module = sys.modules.get(cls.__module__)
if module and module.__dict__.get(module_name) is a_module:
ns = sys.modules.get(a_type.__module__).__dict__
if ns and is_type_predicate(ns.get(match.group(2)), a_module):
return True
return False
def _get_field(cls, a_name, a_type, default_kw_only):
# Return a Field object for this field name and type. ClassVars and
# InitVars are also returned, but marked as such (see f._field_type).
# default_kw_only is the value of kw_only to use if there isn't a field()
# that defines it.
# If the default value isn't derived from Field, then it's only a
# normal default value. Convert it to a Field().
default = getattr(cls, a_name, MISSING)
if isinstance(default, Field):
f = default
else:
if isinstance(default, types.MemberDescriptorType):
# This is a field in __slots__, so it has no default value.
default = MISSING
f = field(default=default)
# Only at this point do we know the name and the type. Set them.
f.name = a_name
f.type = a_type
# Assume it's a normal field until proven otherwise. We're next
# going to decide if it's a ClassVar or InitVar, everything else
# is just a normal field.
f._field_type = _FIELD
# In addition to checking for actual types here, also check for
# string annotations. get_type_hints() won't always work for us
# (see https://github.com/python/typing/issues/508 for example),
# plus it's expensive and would require an eval for every string
# annotation. So, make a best effort to see if this is a ClassVar
# or InitVar using regex's and checking that the thing referenced
# is actually of the correct type.
# For the complete discussion, see https://bugs.python.org/issue33453
# If typing has not been imported, then it's impossible for any
# annotation to be a ClassVar. So, only look for ClassVar if
# typing has been imported by any module (not necessarily cls's
# module).
typing = sys.modules.get('typing')
if typing:
if (_is_classvar(a_type, typing)
or (isinstance(f.type, str)
and _is_type(f.type, cls, typing, typing.ClassVar,
_is_classvar))):
f._field_type = _FIELD_CLASSVAR
# If the type is InitVar, or if it's a matching string annotation,
# then it's an InitVar.
if f._field_type is _FIELD:
# The module we're checking against is the module we're
# currently in (dataclasses.py).
dataclasses = sys.modules[__name__]
if (_is_initvar(a_type, dataclasses)
or (isinstance(f.type, str)
and _is_type(f.type, cls, dataclasses, dataclasses.InitVar,
_is_initvar))):
f._field_type = _FIELD_INITVAR
# Validations for individual fields. This is delayed until now,
# instead of in the Field() constructor, since only here do we
# know the field name, which allows for better error reporting.
# Special restrictions for ClassVar and InitVar.
if f._field_type in (_FIELD_CLASSVAR, _FIELD_INITVAR):
if f.default_factory is not MISSING:
raise TypeError(f'field {f.name} cannot have a '
'default factory')
# Should I check for other field settings? default_factory
# seems the most serious to check for. Maybe add others. For
# example, how about init=False (or really,
# init=<not-the-default-init-value>)? It makes no sense for
# ClassVar and InitVar to specify init=<anything>.
# kw_only validation and assignment.
if f._field_type in (_FIELD, _FIELD_INITVAR):
# For real and InitVar fields, if kw_only wasn't specified use the
# default value.
if f.kw_only is MISSING:
f.kw_only = default_kw_only
else:
# Make sure kw_only isn't set for ClassVars
assert f._field_type is _FIELD_CLASSVAR
if f.kw_only is not MISSING:
raise TypeError(f'field {f.name} is a ClassVar but specifies '
'kw_only')
# For real fields, disallow mutable defaults. Use unhashable as a proxy
# indicator for mutability. Read the __hash__ attribute from the class,
# not the instance.
if f._field_type is _FIELD and f.default.__class__.__hash__ is None:
raise ValueError(f'mutable default {type(f.default)} for field '
f'{f.name} is not allowed: use default_factory')
return f
def _set_new_attribute(cls, name, value):
# Never overwrites an existing attribute. Returns True if the
# attribute already exists.
if name in cls.__dict__:
return True
setattr(cls, name, value)
return False
# Decide if/how we're going to create a hash function. Key is
# (unsafe_hash, eq, frozen, does-hash-exist). Value is the action to
# take. The common case is to do nothing, so instead of providing a
# function that is a no-op, use None to signify that.
def _hash_set_none(cls, fields, func_builder):
# It's sort of a hack that I'm setting this here, instead of at
# func_builder.add_fns_to_class time, but since this is an exceptional case
# (it's not setting an attribute to a function, but to a scalar value),
# just do it directly here. I might come to regret this.
cls.__hash__ = None
def _hash_add(cls, fields, func_builder):
flds = [f for f in fields if (f.compare if f.hash is None else f.hash)]
self_tuple = _tuple_str('self', flds)
func_builder.add_fn('__hash__',
('self',),
[f' return hash({self_tuple})'],
unconditional_add=True)
def _hash_exception(cls, fields, func_builder):
# Raise an exception.
raise TypeError(f'Cannot overwrite attribute __hash__ '
f'in class {cls.__name__}')
#
# +-------------------------------------- unsafe_hash?
# | +------------------------------- eq?
# | | +------------------------ frozen?
# | | | +---------------- has-explicit-hash?
# | | | |
# | | | | +------- action
# | | | | |
# v v v v v
_hash_action = {(False, False, False, False): None,
(False, False, False, True ): None,
(False, False, True, False): None,
(False, False, True, True ): None,
(False, True, False, False): _hash_set_none,
(False, True, False, True ): None,
(False, True, True, False): _hash_add,
(False, True, True, True ): None,
(True, False, False, False): _hash_add,
(True, False, False, True ): _hash_exception,
(True, False, True, False): _hash_add,
(True, False, True, True ): _hash_exception,
(True, True, False, False): _hash_add,
(True, True, False, True ): _hash_exception,
(True, True, True, False): _hash_add,
(True, True, True, True ): _hash_exception,
}
# See https://bugs.python.org/issue32929#msg312829 for an if-statement
# version of this table.
def _process_class(cls, init, repr, eq, order, unsafe_hash, frozen,
match_args, kw_only, slots, weakref_slot):
# Now that dicts retain insertion order, there's no reason to use
# an ordered dict. I am leveraging that ordering here, because
# derived class fields overwrite base class fields, but the order
# is defined by the base class, which is found first.
fields = {}
if cls.__module__ in sys.modules:
globals = sys.modules[cls.__module__].__dict__
else:
# Theoretically this can happen if someone writes
# a custom string to cls.__module__. In which case
# such dataclass won't be fully introspectable
# (w.r.t. typing.get_type_hints) but will still function
# correctly.
globals = {}
setattr(cls, _PARAMS, _DataclassParams(init, repr, eq, order,
unsafe_hash, frozen,
match_args, kw_only,
slots, weakref_slot))
# Find our base classes in reverse MRO order, and exclude
# ourselves. In reversed order so that more derived classes
# override earlier field definitions in base classes. As long as
# we're iterating over them, see if all or any of them are frozen.
any_frozen_base = False
# By default `all_frozen_bases` is `None` to represent a case,
# where some dataclasses does not have any bases with `_FIELDS`
all_frozen_bases = None
has_dataclass_bases = False
for b in cls.__mro__[-1:0:-1]:
# Only process classes that have been processed by our
# decorator. That is, they have a _FIELDS attribute.
base_fields = getattr(b, _FIELDS, None)
if base_fields is not None:
has_dataclass_bases = True
for f in base_fields.values():
fields[f.name] = f
if all_frozen_bases is None:
all_frozen_bases = True
current_frozen = getattr(b, _PARAMS).frozen
all_frozen_bases = all_frozen_bases and current_frozen
any_frozen_base = any_frozen_base or current_frozen
# Annotations defined specifically in this class (not in base classes).
#
# Fields are found from cls_annotations, which is guaranteed to be
# ordered. Default values are from class attributes, if a field
# has a default. If the default value is a Field(), then it
# contains additional info beyond (and possibly including) the
# actual default value. Pseudo-fields ClassVars and InitVars are
# included, despite the fact that they're not real fields. That's
# dealt with later.
cls_annotations = inspect.get_annotations(cls)
# Now find fields in our class. While doing so, validate some
# things, and set the default values (as class attributes) where
# we can.
cls_fields = []
# Get a reference to this module for the _is_kw_only() test.
KW_ONLY_seen = False
dataclasses = sys.modules[__name__]
for name, type in cls_annotations.items():
# See if this is a marker to change the value of kw_only.
if (_is_kw_only(type, dataclasses)
or (isinstance(type, str)
and _is_type(type, cls, dataclasses, dataclasses.KW_ONLY,
_is_kw_only))):
# Switch the default to kw_only=True, and ignore this
# annotation: it's not a real field.
if KW_ONLY_seen:
raise TypeError(f'{name!r} is KW_ONLY, but KW_ONLY '
'has already been specified')
KW_ONLY_seen = True
kw_only = True
else:
# Otherwise it's a field of some type.
cls_fields.append(_get_field(cls, name, type, kw_only))
for f in cls_fields:
fields[f.name] = f
# If the class attribute (which is the default value for this
# field) exists and is of type 'Field', replace it with the
# real default. This is so that normal class introspection
# sees a real default value, not a Field.
if isinstance(getattr(cls, f.name, None), Field):
if f.default is MISSING:
# If there's no default, delete the class attribute.
# This happens if we specify field(repr=False), for
# example (that is, we specified a field object, but
# no default value). Also if we're using a default
# factory. The class attribute should not be set at
# all in the post-processed class.
delattr(cls, f.name)
else:
setattr(cls, f.name, f.default)
# Do we have any Field members that don't also have annotations?
for name, value in cls.__dict__.items():
if isinstance(value, Field) and not name in cls_annotations:
raise TypeError(f'{name!r} is a field but has no type annotation')
# Check rules that apply if we are derived from any dataclasses.
if has_dataclass_bases:
# Raise an exception if any of our bases are frozen, but we're not.
if any_frozen_base and not frozen:
raise TypeError('cannot inherit non-frozen dataclass from a '
'frozen one')
# Raise an exception if we're frozen, but none of our bases are.
if all_frozen_bases is False and frozen:
raise TypeError('cannot inherit frozen dataclass from a '
'non-frozen one')
# Remember all of the fields on our class (including bases). This
# also marks this class as being a dataclass.
setattr(cls, _FIELDS, fields)
# Was this class defined with an explicit __hash__? Note that if
# __eq__ is defined in this class, then python will automatically
# set __hash__ to None. This is a heuristic, as it's possible
# that such a __hash__ == None was not auto-generated, but it's
# close enough.
class_hash = cls.__dict__.get('__hash__', MISSING)
has_explicit_hash = not (class_hash is MISSING or
(class_hash is None and '__eq__' in cls.__dict__))
# If we're generating ordering methods, we must be generating the
# eq methods.
if order and not eq:
raise ValueError('eq must be true if order is true')
# Include InitVars and regular fields (so, not ClassVars). This is
# initialized here, outside of the "if init:" test, because std_init_fields
# is used with match_args, below.
all_init_fields = [f for f in fields.values()
if f._field_type in (_FIELD, _FIELD_INITVAR)]
(std_init_fields,
kw_only_init_fields) = _fields_in_init_order(all_init_fields)
func_builder = _FuncBuilder(globals)
if init:
# Does this class have a post-init function?
has_post_init = hasattr(cls, _POST_INIT_NAME)
_init_fn(all_init_fields,
std_init_fields,
kw_only_init_fields,
frozen,
has_post_init,
# The name to use for the "self"
# param in __init__. Use "self"
# if possible.
'__dataclass_self__' if 'self' in fields
else 'self',
func_builder,
slots,
)
_set_new_attribute(cls, '__replace__', _replace)
# Get the fields as a list, and include only real fields. This is
# used in all of the following methods.
field_list = [f for f in fields.values() if f._field_type is _FIELD]
if repr:
flds = [f for f in field_list if f.repr]
func_builder.add_fn('__repr__',
('self',),
[' return f"{self.__class__.__qualname__}(' +
', '.join([f"{f.name}={{self.{f.name}!r}}"
for f in flds]) + ')"'],
locals={'__dataclasses_recursive_repr': recursive_repr},
decorator="@__dataclasses_recursive_repr()")
if eq:
# Create __eq__ method. There's no need for a __ne__ method,
# since python will call __eq__ and negate it.
cmp_fields = (field for field in field_list if field.compare)
terms = [f'self.{field.name}==other.{field.name}' for field in cmp_fields]
field_comparisons = ' and '.join(terms) or 'True'
func_builder.add_fn('__eq__',
('self', 'other'),
[ ' if self is other:',
' return True',
' if other.__class__ is self.__class__:',
f' return {field_comparisons}',
' return NotImplemented'])
if order:
# Create and set the ordering methods.
flds = [f for f in field_list if f.compare]
self_tuple = _tuple_str('self', flds)
other_tuple = _tuple_str('other', flds)
for name, op in [('__lt__', '<'),
('__le__', '<='),
('__gt__', '>'),
('__ge__', '>='),
]:
# Create a comparison function. If the fields in the object are
# named 'x' and 'y', then self_tuple is the string
# '(self.x,self.y)' and other_tuple is the string
# '(other.x,other.y)'.
func_builder.add_fn(name,
('self', 'other'),
[ ' if other.__class__ is self.__class__:',
f' return {self_tuple}{op}{other_tuple}',
' return NotImplemented'],
overwrite_error='Consider using functools.total_ordering')
if frozen:
_frozen_get_del_attr(cls, field_list, func_builder)
# Decide if/how we're going to create a hash function.
hash_action = _hash_action[bool(unsafe_hash),
bool(eq),
bool(frozen),
has_explicit_hash]
if hash_action:
cls.__hash__ = hash_action(cls, field_list, func_builder)
# Generate the methods and add them to the class. This needs to be done
# before the __doc__ logic below, since inspect will look at the __init__
# signature.
func_builder.add_fns_to_class(cls)
if not getattr(cls, '__doc__'):
# Create a class doc-string.
try:
# In some cases fetching a signature is not possible.
# But, we surely should not fail in this case.
text_sig = str(inspect.signature(cls)).replace(' -> None', '')
except (TypeError, ValueError):
text_sig = ''
cls.__doc__ = (cls.__name__ + text_sig)
if match_args:
# I could probably compute this once.
_set_new_attribute(cls, '__match_args__',
tuple(f.name for f in std_init_fields))
# It's an error to specify weakref_slot if slots is False.
if weakref_slot and not slots:
raise TypeError('weakref_slot is True but slots is False')
if slots:
cls = _add_slots(cls, frozen, weakref_slot)
abc.update_abstractmethods(cls)
return cls
# _dataclass_getstate and _dataclass_setstate are needed for pickling frozen
# classes with slots. These could be slightly more performant if we generated
# the code instead of iterating over fields. But that can be a project for
# another day, if performance becomes an issue.
def _dataclass_getstate(self):
return [getattr(self, f.name) for f in fields(self)]
def _dataclass_setstate(self, state):
for field, value in zip(fields(self), state):
# use setattr because dataclass may be frozen
object.__setattr__(self, field.name, value)
def _get_slots(cls):
match cls.__dict__.get('__slots__'):
# `__dictoffset__` and `__weakrefoffset__` can tell us whether
# the base type has dict/weakref slots, in a way that works correctly
# for both Python classes and C extension types. Extension types
# don't use `__slots__` for slot creation
case None:
slots = []
if getattr(cls, '__weakrefoffset__', -1) != 0:
slots.append('__weakref__')
if getattr(cls, '__dictoffset__', -1) != 0:
slots.append('__dict__')
yield from slots
case str(slot):
yield slot
# Slots may be any iterable, but we cannot handle an iterator
# because it will already be (partially) consumed.
case iterable if not hasattr(iterable, '__next__'):
yield from iterable
case _:
raise TypeError(f"Slots of '{cls.__name__}' cannot be determined")
def _add_slots(cls, is_frozen, weakref_slot):
# Need to create a new class, since we can't set __slots__
# after a class has been created.
# Make sure __slots__ isn't already set.
if '__slots__' in cls.__dict__:
raise TypeError(f'{cls.__name__} already specifies __slots__')
# Create a new dict for our new class.
cls_dict = dict(cls.__dict__)
field_names = tuple(f.name for f in fields(cls))
# Make sure slots don't overlap with those in base classes.
inherited_slots = set(
itertools.chain.from_iterable(map(_get_slots, cls.__mro__[1:-1]))
)
# The slots for our class. Remove slots from our base classes. Add
# '__weakref__' if weakref_slot was given, unless it is already present.
cls_dict["__slots__"] = tuple(
itertools.filterfalse(
inherited_slots.__contains__,
itertools.chain(
# gh-93521: '__weakref__' also needs to be filtered out if
# already present in inherited_slots
field_names, ('__weakref__',) if weakref_slot else ()
)
),
)
for field_name in field_names:
# Remove our attributes, if present. They'll still be
# available in _MARKER.
cls_dict.pop(field_name, None)
# Remove __dict__ itself.
cls_dict.pop('__dict__', None)
# Clear existing `__weakref__` descriptor, it belongs to a previous type:
cls_dict.pop('__weakref__', None) # gh-102069
# And finally create the class.
qualname = getattr(cls, '__qualname__', None)
cls = type(cls)(cls.__name__, cls.__bases__, cls_dict)
if qualname is not None:
cls.__qualname__ = qualname
if is_frozen:
# Need this for pickling frozen classes with slots.
if '__getstate__' not in cls_dict:
cls.__getstate__ = _dataclass_getstate
if '__setstate__' not in cls_dict:
cls.__setstate__ = _dataclass_setstate
return cls
def dataclass(cls=None, /, *, init=True, repr=True, eq=True, order=False,
unsafe_hash=False, frozen=False, match_args=True,
kw_only=False, slots=False, weakref_slot=False):
"""Add dunder methods based on the fields defined in the class.
Examines PEP 526 __annotations__ to determine fields.
If init is true, an __init__() method is added to the class. If repr
is true, a __repr__() method is added. If order is true, rich
comparison dunder methods are added. If unsafe_hash is true, a
__hash__() method is added. If frozen is true, fields may not be
assigned to after instance creation. If match_args is true, the
__match_args__ tuple is added. If kw_only is true, then by default
all fields are keyword-only. If slots is true, a new class with a
__slots__ attribute is returned.
"""
def wrap(cls):
return _process_class(cls, init, repr, eq, order, unsafe_hash,
frozen, match_args, kw_only, slots,
weakref_slot)
# See if we're being called as @dataclass or @dataclass().
if cls is None:
# We're called with parens.
return wrap
# We're called as @dataclass without parens.
return wrap(cls)
def fields(class_or_instance):
"""Return a tuple describing the fields of this dataclass.
Accepts a dataclass or an instance of one. Tuple elements are of
type Field.
"""
# Might it be worth caching this, per class?
try:
fields = getattr(class_or_instance, _FIELDS)
except AttributeError:
raise TypeError('must be called with a dataclass type or instance') from None
# Exclude pseudo-fields. Note that fields is sorted by insertion
# order, so the order of the tuple is as the fields were defined.
return tuple(f for f in fields.values() if f._field_type is _FIELD)
def _is_dataclass_instance(obj):
"""Returns True if obj is an instance of a dataclass."""
return hasattr(type(obj), _FIELDS)
def is_dataclass(obj):
"""Returns True if obj is a dataclass or an instance of a
dataclass."""
cls = obj if isinstance(obj, type) else type(obj)
return hasattr(cls, _FIELDS)
def asdict(obj, *, dict_factory=dict):
"""Return the fields of a dataclass instance as a new dictionary mapping
field names to field values.
Example usage::
@dataclass
class C:
x: int
y: int
c = C(1, 2)
assert asdict(c) == {'x': 1, 'y': 2}
If given, 'dict_factory' will be used instead of built-in dict.
The function applies recursively to field values that are
dataclass instances. This will also look into built-in containers:
tuples, lists, and dicts. Other objects are copied with 'copy.deepcopy()'.
"""
if not _is_dataclass_instance(obj):
raise TypeError("asdict() should be called on dataclass instances")
return _asdict_inner(obj, dict_factory)
def _asdict_inner(obj, dict_factory):
obj_type = type(obj)
if obj_type in _ATOMIC_TYPES:
return obj
elif hasattr(obj_type, _FIELDS):
# dataclass instance: fast path for the common case
if dict_factory is dict:
return {
f.name: _asdict_inner(getattr(obj, f.name), dict)
for f in fields(obj)
}
else:
return dict_factory([
(f.name, _asdict_inner(getattr(obj, f.name), dict_factory))
for f in fields(obj)
])
# handle the builtin types first for speed; subclasses handled below
elif obj_type is list:
return [_asdict_inner(v, dict_factory) for v in obj]
elif obj_type is dict:
return {
_asdict_inner(k, dict_factory): _asdict_inner(v, dict_factory)
for k, v in obj.items()
}
elif obj_type is tuple:
return tuple([_asdict_inner(v, dict_factory) for v in obj])
elif issubclass(obj_type, tuple):
if hasattr(obj, '_fields'):
# obj is a namedtuple. Recurse into it, but the returned
# object is another namedtuple of the same type. This is
# similar to how other list- or tuple-derived classes are
# treated (see below), but we just need to create them
# differently because a namedtuple's __init__ needs to be
# called differently (see bpo-34363).
# I'm not using namedtuple's _asdict()
# method, because:
# - it does not recurse in to the namedtuple fields and
# convert them to dicts (using dict_factory).
# - I don't actually want to return a dict here. The main
# use case here is json.dumps, and it handles converting
# namedtuples to lists. Admittedly we're losing some
# information here when we produce a json list instead of a
# dict. Note that if we returned dicts here instead of
# namedtuples, we could no longer call asdict() on a data
# structure where a namedtuple was used as a dict key.
return obj_type(*[_asdict_inner(v, dict_factory) for v in obj])
else:
return obj_type(_asdict_inner(v, dict_factory) for v in obj)
elif issubclass(obj_type, dict):
if hasattr(obj_type, 'default_factory'):
# obj is a defaultdict, which has a different constructor from
# dict as it requires the default_factory as its first arg.
result = obj_type(obj.default_factory)
for k, v in obj.items():
result[_asdict_inner(k, dict_factory)] = _asdict_inner(v, dict_factory)
return result
return obj_type((_asdict_inner(k, dict_factory),
_asdict_inner(v, dict_factory))
for k, v in obj.items())
elif issubclass(obj_type, list):
# Assume we can create an object of this type by passing in a
# generator
return obj_type(_asdict_inner(v, dict_factory) for v in obj)
else:
return copy.deepcopy(obj)
def astuple(obj, *, tuple_factory=tuple):
"""Return the fields of a dataclass instance as a new tuple of field values.
Example usage::
@dataclass
class C:
x: int
y: int
c = C(1, 2)
assert astuple(c) == (1, 2)
If given, 'tuple_factory' will be used instead of built-in tuple.
The function applies recursively to field values that are
dataclass instances. This will also look into built-in containers:
tuples, lists, and dicts. Other objects are copied with 'copy.deepcopy()'.
"""
if not _is_dataclass_instance(obj):
raise TypeError("astuple() should be called on dataclass instances")
return _astuple_inner(obj, tuple_factory)
def _astuple_inner(obj, tuple_factory):
if type(obj) in _ATOMIC_TYPES:
return obj
elif _is_dataclass_instance(obj):
return tuple_factory([
_astuple_inner(getattr(obj, f.name), tuple_factory)
for f in fields(obj)
])
elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
# obj is a namedtuple. Recurse into it, but the returned
# object is another namedtuple of the same type. This is
# similar to how other list- or tuple-derived classes are
# treated (see below), but we just need to create them
# differently because a namedtuple's __init__ needs to be
# called differently (see bpo-34363).
return type(obj)(*[_astuple_inner(v, tuple_factory) for v in obj])
elif isinstance(obj, (list, tuple)):
# Assume we can create an object of this type by passing in a
# generator (which is not true for namedtuples, handled
# above).
return type(obj)(_astuple_inner(v, tuple_factory) for v in obj)
elif isinstance(obj, dict):
obj_type = type(obj)
if hasattr(obj_type, 'default_factory'):
# obj is a defaultdict, which has a different constructor from
# dict as it requires the default_factory as its first arg.
result = obj_type(getattr(obj, 'default_factory'))
for k, v in obj.items():
result[_astuple_inner(k, tuple_factory)] = _astuple_inner(v, tuple_factory)
return result
return obj_type((_astuple_inner(k, tuple_factory), _astuple_inner(v, tuple_factory))
for k, v in obj.items())
else:
return copy.deepcopy(obj)
def make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True,
repr=True, eq=True, order=False, unsafe_hash=False,
frozen=False, match_args=True, kw_only=False, slots=False,
weakref_slot=False, module=None):
"""Return a new dynamically created dataclass.
The dataclass name will be 'cls_name'. 'fields' is an iterable
of either (name), (name, type) or (name, type, Field) objects. If type is
omitted, use the string 'typing.Any'. Field objects are created by
the equivalent of calling 'field(name, type [, Field-info])'.::
C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,))
is equivalent to::
@dataclass
class C(Base):
x: 'typing.Any'
y: int
z: int = field(init=False)
For the bases and namespace parameters, see the builtin type() function.
The parameters init, repr, eq, order, unsafe_hash, frozen, match_args, kw_only,
slots, and weakref_slot are passed to dataclass().
If module parameter is defined, the '__module__' attribute of the dataclass is
set to that value.
"""
if namespace is None:
namespace = {}
# While we're looking through the field names, validate that they
# are identifiers, are not keywords, and not duplicates.
seen = set()
annotations = {}
defaults = {}
for item in fields:
if isinstance(item, str):
name = item
tp = 'typing.Any'
elif len(item) == 2:
name, tp, = item
elif len(item) == 3:
name, tp, spec = item
defaults[name] = spec
else:
raise TypeError(f'Invalid field: {item!r}')
if not isinstance(name, str) or not name.isidentifier():
raise TypeError(f'Field names must be valid identifiers: {name!r}')
if keyword.iskeyword(name):
raise TypeError(f'Field names must not be keywords: {name!r}')
if name in seen:
raise TypeError(f'Field name duplicated: {name!r}')
seen.add(name)
annotations[name] = tp
# Update 'ns' with the user-supplied namespace plus our calculated values.
def exec_body_callback(ns):
ns.update(namespace)
ns.update(defaults)
ns['__annotations__'] = annotations
# We use `types.new_class()` instead of simply `type()` to allow dynamic creation
# of generic dataclasses.
cls = types.new_class(cls_name, bases, {}, exec_body_callback)
# For pickling to work, the __module__ variable needs to be set to the frame
# where the dataclass is created.
if module is None:
try:
module = sys._getframemodulename(1) or '__main__'
except AttributeError:
try:
module = sys._getframe(1).f_globals.get('__name__', '__main__')
except (AttributeError, ValueError):
pass
if module is not None:
cls.__module__ = module
# Apply the normal decorator.
return dataclass(cls, init=init, repr=repr, eq=eq, order=order,
unsafe_hash=unsafe_hash, frozen=frozen,
match_args=match_args, kw_only=kw_only, slots=slots,
weakref_slot=weakref_slot)
def replace(obj, /, **changes):
"""Return a new object replacing specified fields with new values.
This is especially useful for frozen classes. Example usage::
@dataclass(frozen=True)
class C:
x: int
y: int
c = C(1, 2)
c1 = replace(c, x=3)
assert c1.x == 3 and c1.y == 2
"""
if not _is_dataclass_instance(obj):
raise TypeError("replace() should be called on dataclass instances")
return _replace(obj, **changes)
def _replace(self, /, **changes):
# We're going to mutate 'changes', but that's okay because it's a
# new dict, even if called with 'replace(self, **my_changes)'.
# It's an error to have init=False fields in 'changes'.
# If a field is not in 'changes', read its value from the provided 'self'.
for f in getattr(self, _FIELDS).values():
# Only consider normal fields or InitVars.
if f._field_type is _FIELD_CLASSVAR:
continue
if not f.init:
# Error if this field is specified in changes.
if f.name in changes:
raise TypeError(f'field {f.name} is declared with '
f'init=False, it cannot be specified with '
f'replace()')
continue
if f.name not in changes:
if f._field_type is _FIELD_INITVAR and f.default is MISSING:
raise TypeError(f"InitVar {f.name!r} "
f'must be specified with replace()')
changes[f.name] = getattr(self, f.name)
# Create the new object, which calls __init__() and
# __post_init__() (if defined), using all of the init fields we've
# added and/or left in 'changes'. If there are values supplied in
# changes that aren't fields, this will correctly raise a
# TypeError.
return self.__class__(**changes)
|