1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
|
"""functools.py - Tools for working with functions and callable objects
"""
# Python module wrapper for _functools C module
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>,
# Raymond Hettinger <python at rcn.com>,
# and Ćukasz Langa <lukasz at langa.pl>.
# Copyright (C) 2006-2013 Python Software Foundation.
# See C source code for _functools credits/copyright
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
'total_ordering', 'cache', 'cmp_to_key', 'lru_cache', 'reduce',
'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod',
'cached_property']
from abc import get_cache_token
from collections import namedtuple
# import types, weakref # Deferred to single_dispatch()
from reprlib import recursive_repr
from _thread import RLock
# Avoid importing types, so we can speedup import time
GenericAlias = type(list[int])
################################################################################
### update_wrapper() and wraps() decorator
################################################################################
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
'__annotations__', '__type_params__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Update a wrapper function to look like the wrapped function
wrapper is the function to be updated
wrapped is the original function
assigned is a tuple naming the attributes assigned directly
from the wrapped function to the wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)
updated is a tuple naming the attributes of the wrapper that
are updated with the corresponding attribute from the wrapped
function (defaults to functools.WRAPPER_UPDATES)
"""
for attr in assigned:
try:
value = getattr(wrapped, attr)
except AttributeError:
pass
else:
setattr(wrapper, attr, value)
for attr in updated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
# Issue #17482: set __wrapped__ last so we don't inadvertently copy it
# from the wrapped function when updating __dict__
wrapper.__wrapped__ = wrapped
# Return the wrapper so this can be used as a decorator via partial()
return wrapper
def wraps(wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated
function as the wrapper argument and the arguments to wraps() as the
remaining arguments. Default arguments are as for update_wrapper().
This is a convenience function to simplify applying partial() to
update_wrapper().
"""
return partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated)
################################################################################
### total_ordering class decorator
################################################################################
# The total ordering functions all invoke the root magic method directly
# rather than using the corresponding operator. This avoids possible
# infinite recursion that could occur when the operator dispatch logic
# detects a NotImplemented result and then calls a reflected method.
def _gt_from_lt(self, other):
'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).'
op_result = type(self).__lt__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result and self != other
def _le_from_lt(self, other):
'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).'
op_result = type(self).__lt__(self, other)
if op_result is NotImplemented:
return op_result
return op_result or self == other
def _ge_from_lt(self, other):
'Return a >= b. Computed by @total_ordering from (not a < b).'
op_result = type(self).__lt__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result
def _ge_from_le(self, other):
'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).'
op_result = type(self).__le__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result or self == other
def _lt_from_le(self, other):
'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).'
op_result = type(self).__le__(self, other)
if op_result is NotImplemented:
return op_result
return op_result and self != other
def _gt_from_le(self, other):
'Return a > b. Computed by @total_ordering from (not a <= b).'
op_result = type(self).__le__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result
def _lt_from_gt(self, other):
'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).'
op_result = type(self).__gt__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result and self != other
def _ge_from_gt(self, other):
'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).'
op_result = type(self).__gt__(self, other)
if op_result is NotImplemented:
return op_result
return op_result or self == other
def _le_from_gt(self, other):
'Return a <= b. Computed by @total_ordering from (not a > b).'
op_result = type(self).__gt__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result
def _le_from_ge(self, other):
'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).'
op_result = type(self).__ge__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result or self == other
def _gt_from_ge(self, other):
'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).'
op_result = type(self).__ge__(self, other)
if op_result is NotImplemented:
return op_result
return op_result and self != other
def _lt_from_ge(self, other):
'Return a < b. Computed by @total_ordering from (not a >= b).'
op_result = type(self).__ge__(self, other)
if op_result is NotImplemented:
return op_result
return not op_result
_convert = {
'__lt__': [('__gt__', _gt_from_lt),
('__le__', _le_from_lt),
('__ge__', _ge_from_lt)],
'__le__': [('__ge__', _ge_from_le),
('__lt__', _lt_from_le),
('__gt__', _gt_from_le)],
'__gt__': [('__lt__', _lt_from_gt),
('__ge__', _ge_from_gt),
('__le__', _le_from_gt)],
'__ge__': [('__le__', _le_from_ge),
('__gt__', _gt_from_ge),
('__lt__', _lt_from_ge)]
}
def total_ordering(cls):
"""Class decorator that fills in missing ordering methods"""
# Find user-defined comparisons (not those inherited from object).
roots = {op for op in _convert if getattr(cls, op, None) is not getattr(object, op, None)}
if not roots:
raise ValueError('must define at least one ordering operation: < > <= >=')
root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
for opname, opfunc in _convert[root]:
if opname not in roots:
opfunc.__name__ = opname
setattr(cls, opname, opfunc)
return cls
################################################################################
### cmp_to_key() function converter
################################################################################
def cmp_to_key(mycmp):
"""Convert a cmp= function into a key= function"""
class K(object):
__slots__ = ['obj']
def __init__(self, obj):
self.obj = obj
def __lt__(self, other):
return mycmp(self.obj, other.obj) < 0
def __gt__(self, other):
return mycmp(self.obj, other.obj) > 0
def __eq__(self, other):
return mycmp(self.obj, other.obj) == 0
def __le__(self, other):
return mycmp(self.obj, other.obj) <= 0
def __ge__(self, other):
return mycmp(self.obj, other.obj) >= 0
__hash__ = None
return K
try:
from _functools import cmp_to_key
except ImportError:
pass
################################################################################
### reduce() sequence to a single item
################################################################################
_initial_missing = object()
def reduce(function, sequence, initial=_initial_missing):
"""
reduce(function, iterable[, initial], /) -> value
Apply a function of two arguments cumulatively to the items of an iterable, from left to right.
This effectively reduces the iterable to a single value. If initial is present,
it is placed before the items of the iterable in the calculation, and serves as
a default when the iterable is empty.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1 + 2) + 3) + 4) + 5).
"""
it = iter(sequence)
if initial is _initial_missing:
try:
value = next(it)
except StopIteration:
raise TypeError(
"reduce() of empty iterable with no initial value") from None
else:
value = initial
for element in it:
value = function(value, element)
return value
try:
from _functools import reduce
except ImportError:
pass
################################################################################
### partial() argument application
################################################################################
# Purely functional, no descriptor behaviour
class partial:
"""New function with partial application of the given arguments
and keywords.
"""
__slots__ = "func", "args", "keywords", "__dict__", "__weakref__"
def __new__(cls, func, /, *args, **keywords):
if not callable(func):
raise TypeError("the first argument must be callable")
if isinstance(func, partial):
args = func.args + args
keywords = {**func.keywords, **keywords}
func = func.func
self = super(partial, cls).__new__(cls)
self.func = func
self.args = args
self.keywords = keywords
return self
def __call__(self, /, *args, **keywords):
keywords = {**self.keywords, **keywords}
return self.func(*self.args, *args, **keywords)
@recursive_repr()
def __repr__(self):
cls = type(self)
qualname = cls.__qualname__
module = cls.__module__
args = [repr(self.func)]
args.extend(repr(x) for x in self.args)
args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items())
return f"{module}.{qualname}({', '.join(args)})"
def __get__(self, obj, objtype=None):
if obj is None:
return self
import warnings
warnings.warn('functools.partial will be a method descriptor in '
'future Python versions; wrap it in staticmethod() '
'if you want to preserve the old behavior',
FutureWarning, 2)
return self
def __reduce__(self):
return type(self), (self.func,), (self.func, self.args,
self.keywords or None, self.__dict__ or None)
def __setstate__(self, state):
if not isinstance(state, tuple):
raise TypeError("argument to __setstate__ must be a tuple")
if len(state) != 4:
raise TypeError(f"expected 4 items in state, got {len(state)}")
func, args, kwds, namespace = state
if (not callable(func) or not isinstance(args, tuple) or
(kwds is not None and not isinstance(kwds, dict)) or
(namespace is not None and not isinstance(namespace, dict))):
raise TypeError("invalid partial state")
args = tuple(args) # just in case it's a subclass
if kwds is None:
kwds = {}
elif type(kwds) is not dict: # XXX does it need to be *exactly* dict?
kwds = dict(kwds)
if namespace is None:
namespace = {}
self.__dict__ = namespace
self.func = func
self.args = args
self.keywords = kwds
__class_getitem__ = classmethod(GenericAlias)
try:
from _functools import partial
except ImportError:
pass
# Descriptor version
class partialmethod(object):
"""Method descriptor with partial application of the given arguments
and keywords.
Supports wrapping existing descriptors and handles non-descriptor
callables as instance methods.
"""
def __init__(self, func, /, *args, **keywords):
if not callable(func) and not hasattr(func, "__get__"):
raise TypeError("{!r} is not callable or a descriptor"
.format(func))
# func could be a descriptor like classmethod which isn't callable,
# so we can't inherit from partial (it verifies func is callable)
if isinstance(func, partialmethod):
# flattening is mandatory in order to place cls/self before all
# other arguments
# it's also more efficient since only one function will be called
self.func = func.func
self.args = func.args + args
self.keywords = {**func.keywords, **keywords}
else:
self.func = func
self.args = args
self.keywords = keywords
def __repr__(self):
cls = type(self)
module = cls.__module__
qualname = cls.__qualname__
args = [repr(self.func)]
args.extend(map(repr, self.args))
args.extend(f"{k}={v!r}" for k, v in self.keywords.items())
return f"{module}.{qualname}({', '.join(args)})"
def _make_unbound_method(self):
def _method(cls_or_self, /, *args, **keywords):
keywords = {**self.keywords, **keywords}
return self.func(cls_or_self, *self.args, *args, **keywords)
_method.__isabstractmethod__ = self.__isabstractmethod__
_method.__partialmethod__ = self
return _method
def __get__(self, obj, cls=None):
get = getattr(self.func, "__get__", None)
result = None
if get is not None and not isinstance(self.func, partial):
new_func = get(obj, cls)
if new_func is not self.func:
# Assume __get__ returning something new indicates the
# creation of an appropriate callable
result = partial(new_func, *self.args, **self.keywords)
try:
result.__self__ = new_func.__self__
except AttributeError:
pass
if result is None:
# If the underlying descriptor didn't do anything, treat this
# like an instance method
result = self._make_unbound_method().__get__(obj, cls)
return result
@property
def __isabstractmethod__(self):
return getattr(self.func, "__isabstractmethod__", False)
__class_getitem__ = classmethod(GenericAlias)
# Helper functions
def _unwrap_partial(func):
while isinstance(func, partial):
func = func.func
return func
def _unwrap_partialmethod(func):
prev = None
while func is not prev:
prev = func
while isinstance(getattr(func, "__partialmethod__", None), partialmethod):
func = func.__partialmethod__
while isinstance(func, partialmethod):
func = getattr(func, 'func')
func = _unwrap_partial(func)
return func
################################################################################
### LRU Cache function decorator
################################################################################
_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
class _HashedSeq(list):
""" This class guarantees that hash() will be called no more than once
per element. This is important because the lru_cache() will hash
the key multiple times on a cache miss.
"""
__slots__ = 'hashvalue'
def __init__(self, tup, hash=hash):
self[:] = tup
self.hashvalue = hash(tup)
def __hash__(self):
return self.hashvalue
def _make_key(args, kwds, typed,
kwd_mark = (object(),),
fasttypes = {int, str},
tuple=tuple, type=type, len=len):
"""Make a cache key from optionally typed positional and keyword arguments
The key is constructed in a way that is flat as possible rather than
as a nested structure that would take more memory.
If there is only a single argument and its data type is known to cache
its hash value, then that argument is returned without a wrapper. This
saves space and improves lookup speed.
"""
# All of code below relies on kwds preserving the order input by the user.
# Formerly, we sorted() the kwds before looping. The new way is *much*
# faster; however, it means that f(x=1, y=2) will now be treated as a
# distinct call from f(y=2, x=1) which will be cached separately.
key = args
if kwds:
key += kwd_mark
for item in kwds.items():
key += item
if typed:
key += tuple(type(v) for v in args)
if kwds:
key += tuple(type(v) for v in kwds.values())
elif len(key) == 1 and type(key[0]) in fasttypes:
return key[0]
return _HashedSeq(key)
def lru_cache(maxsize=128, typed=False):
"""Least-recently-used cache decorator.
If *maxsize* is set to None, the LRU features are disabled and the cache
can grow without bound.
If *typed* is True, arguments of different types will be cached separately.
For example, f(decimal.Decimal("3.0")) and f(3.0) will be treated as
distinct calls with distinct results. Some types such as str and int may
be cached separately even when typed is false.
Arguments to the cached function must be hashable.
View the cache statistics named tuple (hits, misses, maxsize, currsize)
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.
See: https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)
"""
# Users should only access the lru_cache through its public API:
# cache_info, cache_clear, and f.__wrapped__
# The internals of the lru_cache are encapsulated for thread safety and
# to allow the implementation to change (including a possible C version).
if isinstance(maxsize, int):
# Negative maxsize is treated as 0
if maxsize < 0:
maxsize = 0
elif callable(maxsize) and isinstance(typed, bool):
# The user_function was passed in directly via the maxsize argument
user_function, maxsize = maxsize, 128
wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
return update_wrapper(wrapper, user_function)
elif maxsize is not None:
raise TypeError(
'Expected first argument to be an integer, a callable, or None')
def decorating_function(user_function):
wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed}
return update_wrapper(wrapper, user_function)
return decorating_function
def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo):
# Constants shared by all lru cache instances:
sentinel = object() # unique object used to signal cache misses
make_key = _make_key # build a key from the function arguments
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
cache = {}
hits = misses = 0
full = False
cache_get = cache.get # bound method to lookup a key or return None
cache_len = cache.__len__ # get cache size without calling len()
lock = RLock() # because linkedlist updates aren't threadsafe
root = [] # root of the circular doubly linked list
root[:] = [root, root, None, None] # initialize by pointing to self
if maxsize == 0:
def wrapper(*args, **kwds):
# No caching -- just a statistics update
nonlocal misses
misses += 1
result = user_function(*args, **kwds)
return result
elif maxsize is None:
def wrapper(*args, **kwds):
# Simple caching without ordering or size limit
nonlocal hits, misses
key = make_key(args, kwds, typed)
result = cache_get(key, sentinel)
if result is not sentinel:
hits += 1
return result
misses += 1
result = user_function(*args, **kwds)
cache[key] = result
return result
else:
def wrapper(*args, **kwds):
# Size limited caching that tracks accesses by recency
nonlocal root, hits, misses, full
key = make_key(args, kwds, typed)
with lock:
link = cache_get(key)
if link is not None:
# Move the link to the front of the circular queue
link_prev, link_next, _key, result = link
link_prev[NEXT] = link_next
link_next[PREV] = link_prev
last = root[PREV]
last[NEXT] = root[PREV] = link
link[PREV] = last
link[NEXT] = root
hits += 1
return result
misses += 1
result = user_function(*args, **kwds)
with lock:
if key in cache:
# Getting here means that this same key was added to the
# cache while the lock was released. Since the link
# update is already done, we need only return the
# computed result and update the count of misses.
pass
elif full:
# Use the old root to store the new key and result.
oldroot = root
oldroot[KEY] = key
oldroot[RESULT] = result
# Empty the oldest link and make it the new root.
# Keep a reference to the old key and old result to
# prevent their ref counts from going to zero during the
# update. That will prevent potentially arbitrary object
# clean-up code (i.e. __del__) from running while we're
# still adjusting the links.
root = oldroot[NEXT]
oldkey = root[KEY]
oldresult = root[RESULT]
root[KEY] = root[RESULT] = None
# Now update the cache dictionary.
del cache[oldkey]
# Save the potentially reentrant cache[key] assignment
# for last, after the root and links have been put in
# a consistent state.
cache[key] = oldroot
else:
# Put result in a new link at the front of the queue.
last = root[PREV]
link = [last, root, key, result]
last[NEXT] = root[PREV] = cache[key] = link
# Use the cache_len bound method instead of the len() function
# which could potentially be wrapped in an lru_cache itself.
full = (cache_len() >= maxsize)
return result
def cache_info():
"""Report cache statistics"""
with lock:
return _CacheInfo(hits, misses, maxsize, cache_len())
def cache_clear():
"""Clear the cache and cache statistics"""
nonlocal hits, misses, full
with lock:
cache.clear()
root[:] = [root, root, None, None]
hits = misses = 0
full = False
wrapper.cache_info = cache_info
wrapper.cache_clear = cache_clear
return wrapper
try:
from _functools import _lru_cache_wrapper
except ImportError:
pass
################################################################################
### cache -- simplified access to the infinity cache
################################################################################
def cache(user_function, /):
'Simple lightweight unbounded cache. Sometimes called "memoize".'
return lru_cache(maxsize=None)(user_function)
################################################################################
### singledispatch() - single-dispatch generic function decorator
################################################################################
def _c3_merge(sequences):
"""Merges MROs in *sequences* to a single MRO using the C3 algorithm.
Adapted from https://docs.python.org/3/howto/mro.html.
"""
result = []
while True:
sequences = [s for s in sequences if s] # purge empty sequences
if not sequences:
return result
for s1 in sequences: # find merge candidates among seq heads
candidate = s1[0]
for s2 in sequences:
if candidate in s2[1:]:
candidate = None
break # reject the current head, it appears later
else:
break
if candidate is None:
raise RuntimeError("Inconsistent hierarchy")
result.append(candidate)
# remove the chosen candidate
for seq in sequences:
if seq[0] == candidate:
del seq[0]
def _c3_mro(cls, abcs=None):
"""Computes the method resolution order using extended C3 linearization.
If no *abcs* are given, the algorithm works exactly like the built-in C3
linearization used for method resolution.
If given, *abcs* is a list of abstract base classes that should be inserted
into the resulting MRO. Unrelated ABCs are ignored and don't end up in the
result. The algorithm inserts ABCs where their functionality is introduced,
i.e. issubclass(cls, abc) returns True for the class itself but returns
False for all its direct base classes. Implicit ABCs for a given class
(either registered or inferred from the presence of a special method like
__len__) are inserted directly after the last ABC explicitly listed in the
MRO of said class. If two implicit ABCs end up next to each other in the
resulting MRO, their ordering depends on the order of types in *abcs*.
"""
for i, base in enumerate(reversed(cls.__bases__)):
if hasattr(base, '__abstractmethods__'):
boundary = len(cls.__bases__) - i
break # Bases up to the last explicit ABC are considered first.
else:
boundary = 0
abcs = list(abcs) if abcs else []
explicit_bases = list(cls.__bases__[:boundary])
abstract_bases = []
other_bases = list(cls.__bases__[boundary:])
for base in abcs:
if issubclass(cls, base) and not any(
issubclass(b, base) for b in cls.__bases__
):
# If *cls* is the class that introduces behaviour described by
# an ABC *base*, insert said ABC to its MRO.
abstract_bases.append(base)
for base in abstract_bases:
abcs.remove(base)
explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases]
abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases]
other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases]
return _c3_merge(
[[cls]] +
explicit_c3_mros + abstract_c3_mros + other_c3_mros +
[explicit_bases] + [abstract_bases] + [other_bases]
)
def _compose_mro(cls, types):
"""Calculates the method resolution order for a given class *cls*.
Includes relevant abstract base classes (with their respective bases) from
the *types* iterable. Uses a modified C3 linearization algorithm.
"""
bases = set(cls.__mro__)
# Remove entries which are already present in the __mro__ or unrelated.
def is_related(typ):
return (typ not in bases and hasattr(typ, '__mro__')
and not isinstance(typ, GenericAlias)
and issubclass(cls, typ))
types = [n for n in types if is_related(n)]
# Remove entries which are strict bases of other entries (they will end up
# in the MRO anyway.
def is_strict_base(typ):
for other in types:
if typ != other and typ in other.__mro__:
return True
return False
types = [n for n in types if not is_strict_base(n)]
# Subclasses of the ABCs in *types* which are also implemented by
# *cls* can be used to stabilize ABC ordering.
type_set = set(types)
mro = []
for typ in types:
found = []
for sub in typ.__subclasses__():
if sub not in bases and issubclass(cls, sub):
found.append([s for s in sub.__mro__ if s in type_set])
if not found:
mro.append(typ)
continue
# Favor subclasses with the biggest number of useful bases
found.sort(key=len, reverse=True)
for sub in found:
for subcls in sub:
if subcls not in mro:
mro.append(subcls)
return _c3_mro(cls, abcs=mro)
def _find_impl(cls, registry):
"""Returns the best matching implementation from *registry* for type *cls*.
Where there is no registered implementation for a specific type, its method
resolution order is used to find a more generic implementation.
Note: if *registry* does not contain an implementation for the base
*object* type, this function may return None.
"""
mro = _compose_mro(cls, registry.keys())
match = None
for t in mro:
if match is not None:
# If *match* is an implicit ABC but there is another unrelated,
# equally matching implicit ABC, refuse the temptation to guess.
if (t in registry and t not in cls.__mro__
and match not in cls.__mro__
and not issubclass(match, t)):
raise RuntimeError("Ambiguous dispatch: {} or {}".format(
match, t))
break
if t in registry:
match = t
return registry.get(match)
def singledispatch(func):
"""Single-dispatch generic function decorator.
Transforms a function into a generic function, which can have different
behaviours depending upon the type of its first argument. The decorated
function acts as the default implementation, and additional
implementations can be registered using the register() attribute of the
generic function.
"""
# There are many programs that use functools without singledispatch, so we
# trade-off making singledispatch marginally slower for the benefit of
# making start-up of such applications slightly faster.
import types, weakref
registry = {}
dispatch_cache = weakref.WeakKeyDictionary()
cache_token = None
def dispatch(cls):
"""generic_func.dispatch(cls) -> <function implementation>
Runs the dispatch algorithm to return the best available implementation
for the given *cls* registered on *generic_func*.
"""
nonlocal cache_token
if cache_token is not None:
current_token = get_cache_token()
if cache_token != current_token:
dispatch_cache.clear()
cache_token = current_token
try:
impl = dispatch_cache[cls]
except KeyError:
try:
impl = registry[cls]
except KeyError:
impl = _find_impl(cls, registry)
dispatch_cache[cls] = impl
return impl
def _is_union_type(cls):
from typing import get_origin, Union
return get_origin(cls) in {Union, types.UnionType}
def _is_valid_dispatch_type(cls):
if isinstance(cls, type):
return True
from typing import get_args
return (_is_union_type(cls) and
all(isinstance(arg, type) for arg in get_args(cls)))
def register(cls, func=None):
"""generic_func.register(cls, func) -> func
Registers a new implementation for the given *cls* on a *generic_func*.
"""
nonlocal cache_token
if _is_valid_dispatch_type(cls):
if func is None:
return lambda f: register(cls, f)
else:
if func is not None:
raise TypeError(
f"Invalid first argument to `register()`. "
f"{cls!r} is not a class or union type."
)
ann = getattr(cls, '__annotations__', {})
if not ann:
raise TypeError(
f"Invalid first argument to `register()`: {cls!r}. "
f"Use either `@register(some_class)` or plain `@register` "
f"on an annotated function."
)
func = cls
# only import typing if annotation parsing is necessary
from typing import get_type_hints
argname, cls = next(iter(get_type_hints(func).items()))
if not _is_valid_dispatch_type(cls):
if _is_union_type(cls):
raise TypeError(
f"Invalid annotation for {argname!r}. "
f"{cls!r} not all arguments are classes."
)
else:
raise TypeError(
f"Invalid annotation for {argname!r}. "
f"{cls!r} is not a class."
)
if _is_union_type(cls):
from typing import get_args
for arg in get_args(cls):
registry[arg] = func
else:
registry[cls] = func
if cache_token is None and hasattr(cls, '__abstractmethods__'):
cache_token = get_cache_token()
dispatch_cache.clear()
return func
def wrapper(*args, **kw):
if not args:
raise TypeError(f'{funcname} requires at least '
'1 positional argument')
return dispatch(args[0].__class__)(*args, **kw)
funcname = getattr(func, '__name__', 'singledispatch function')
registry[object] = func
wrapper.register = register
wrapper.dispatch = dispatch
wrapper.registry = types.MappingProxyType(registry)
wrapper._clear_cache = dispatch_cache.clear
update_wrapper(wrapper, func)
return wrapper
# Descriptor version
class singledispatchmethod:
"""Single-dispatch generic method descriptor.
Supports wrapping existing descriptors and handles non-descriptor
callables as instance methods.
"""
def __init__(self, func):
if not callable(func) and not hasattr(func, "__get__"):
raise TypeError(f"{func!r} is not callable or a descriptor")
self.dispatcher = singledispatch(func)
self.func = func
def register(self, cls, method=None):
"""generic_method.register(cls, func) -> func
Registers a new implementation for the given *cls* on a *generic_method*.
"""
return self.dispatcher.register(cls, func=method)
def __get__(self, obj, cls=None):
dispatch = self.dispatcher.dispatch
funcname = getattr(self.func, '__name__', 'singledispatchmethod method')
def _method(*args, **kwargs):
if not args:
raise TypeError(f'{funcname} requires at least '
'1 positional argument')
return dispatch(args[0].__class__).__get__(obj, cls)(*args, **kwargs)
_method.__isabstractmethod__ = self.__isabstractmethod__
_method.register = self.register
update_wrapper(_method, self.func)
return _method
@property
def __isabstractmethod__(self):
return getattr(self.func, '__isabstractmethod__', False)
################################################################################
### cached_property() - property result cached as instance attribute
################################################################################
_NOT_FOUND = object()
class cached_property:
def __init__(self, func):
self.func = func
self.attrname = None
self.__doc__ = func.__doc__
self.__module__ = func.__module__
def __set_name__(self, owner, name):
if self.attrname is None:
self.attrname = name
elif name != self.attrname:
raise TypeError(
"Cannot assign the same cached_property to two different names "
f"({self.attrname!r} and {name!r})."
)
def __get__(self, instance, owner=None):
if instance is None:
return self
if self.attrname is None:
raise TypeError(
"Cannot use cached_property instance without calling __set_name__ on it.")
try:
cache = instance.__dict__
except AttributeError: # not all objects have __dict__ (e.g. class defines slots)
msg = (
f"No '__dict__' attribute on {type(instance).__name__!r} "
f"instance to cache {self.attrname!r} property."
)
raise TypeError(msg) from None
val = cache.get(self.attrname, _NOT_FOUND)
if val is _NOT_FOUND:
val = self.func(instance)
try:
cache[self.attrname] = val
except TypeError:
msg = (
f"The '__dict__' attribute on {type(instance).__name__!r} instance "
f"does not support item assignment for caching {self.attrname!r} property."
)
raise TypeError(msg) from None
return val
__class_getitem__ = classmethod(GenericAlias)
|