1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
|
"""
Basic statistics module.
This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.
Calculating averages
--------------------
================== ==================================================
Function Description
================== ==================================================
mean Arithmetic mean (average) of data.
fmean Fast, floating-point arithmetic mean.
geometric_mean Geometric mean of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
multimode List of modes (most common values of data).
quantiles Divide data into intervals with equal probability.
================== ==================================================
Calculate the arithmetic mean ("the average") of data:
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625
Calculate the standard median of discrete data:
>>> median([2, 3, 4, 5])
3.5
Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...
This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...
Calculating variability or spread
---------------------------------
================== =============================================
Function Description
================== =============================================
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== =============================================
Calculate the standard deviation of sample data:
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...
If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5
Statistics for relations between two inputs
-------------------------------------------
================== ====================================================
Function Description
================== ====================================================
covariance Sample covariance for two variables.
correlation Pearson's correlation coefficient for two variables.
linear_regression Intercept and slope for simple linear regression.
================== ====================================================
Calculate covariance, Pearson's correlation, and simple linear regression
for two inputs:
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> correlation(x, y) #doctest: +ELLIPSIS
0.31622776601...
>>> linear_regression(x, y) #doctest:
LinearRegression(slope=0.1, intercept=1.5)
Exceptions
----------
A single exception is defined: StatisticsError is a subclass of ValueError.
"""
__all__ = [
'NormalDist',
'StatisticsError',
'correlation',
'covariance',
'fmean',
'geometric_mean',
'harmonic_mean',
'kde',
'kde_random',
'linear_regression',
'mean',
'median',
'median_grouped',
'median_high',
'median_low',
'mode',
'multimode',
'pstdev',
'pvariance',
'quantiles',
'stdev',
'variance',
]
import math
import numbers
import random
import sys
from fractions import Fraction
from decimal import Decimal
from itertools import count, groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
from math import isfinite, isinf, pi, cos, sin, tan, cosh, asin, atan, acos
from functools import reduce
from operator import itemgetter
from collections import Counter, namedtuple, defaultdict
_SQRT2 = sqrt(2.0)
_random = random
# === Exceptions ===
class StatisticsError(ValueError):
pass
# === Private utilities ===
def _sum(data):
"""_sum(data) -> (type, sum, count)
Return a high-precision sum of the given numeric data as a fraction,
together with the type to be converted to and the count of items.
Examples
--------
>>> _sum([3, 2.25, 4.5, -0.5, 0.25])
(<class 'float'>, Fraction(19, 2), 5)
Some sources of round-off error will be avoided:
# Built-in sum returns zero.
>>> _sum([1e50, 1, -1e50] * 1000)
(<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
>>> from fractions import Fraction as F
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
>>> from decimal import Decimal as D
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
>>> _sum(data)
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Mixed types are currently treated as an error, except that int is
allowed.
"""
count = 0
types = set()
types_add = types.add
partials = {}
partials_get = partials.get
for typ, values in groupby(data, type):
types_add(typ)
for n, d in map(_exact_ratio, values):
count += 1
partials[d] = partials_get(d, 0) + n
if None in partials:
# The sum will be a NAN or INF. We can ignore all the finite
# partials, and just look at this special one.
total = partials[None]
assert not _isfinite(total)
else:
# Sum all the partial sums using builtin sum.
total = sum(Fraction(n, d) for d, n in partials.items())
T = reduce(_coerce, types, int) # or raise TypeError
return (T, total, count)
def _ss(data, c=None):
"""Return the exact mean and sum of square deviations of sequence data.
Calculations are done in a single pass, allowing the input to be an iterator.
If given *c* is used the mean; otherwise, it is calculated from the data.
Use the *c* argument with care, as it can lead to garbage results.
"""
if c is not None:
T, ssd, count = _sum((d := x - c) * d for x in data)
return (T, ssd, c, count)
count = 0
types = set()
types_add = types.add
sx_partials = defaultdict(int)
sxx_partials = defaultdict(int)
for typ, values in groupby(data, type):
types_add(typ)
for n, d in map(_exact_ratio, values):
count += 1
sx_partials[d] += n
sxx_partials[d] += n * n
if not count:
ssd = c = Fraction(0)
elif None in sx_partials:
# The sum will be a NAN or INF. We can ignore all the finite
# partials, and just look at this special one.
ssd = c = sx_partials[None]
assert not _isfinite(ssd)
else:
sx = sum(Fraction(n, d) for d, n in sx_partials.items())
sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
# This formula has poor numeric properties for floats,
# but with fractions it is exact.
ssd = (count * sxx - sx * sx) / count
c = sx / count
T = reduce(_coerce, types, int) # or raise TypeError
return (T, ssd, c, count)
def _isfinite(x):
try:
return x.is_finite() # Likely a Decimal.
except AttributeError:
return math.isfinite(x) # Coerces to float first.
def _coerce(T, S):
"""Coerce types T and S to a common type, or raise TypeError.
Coercion rules are currently an implementation detail. See the CoerceTest
test class in test_statistics for details.
"""
# See http://bugs.python.org/issue24068.
assert T is not bool, "initial type T is bool"
# If the types are the same, no need to coerce anything. Put this
# first, so that the usual case (no coercion needed) happens as soon
# as possible.
if T is S: return T
# Mixed int & other coerce to the other type.
if S is int or S is bool: return T
if T is int: return S
# If one is a (strict) subclass of the other, coerce to the subclass.
if issubclass(S, T): return S
if issubclass(T, S): return T
# Ints coerce to the other type.
if issubclass(T, int): return S
if issubclass(S, int): return T
# Mixed fraction & float coerces to float (or float subclass).
if issubclass(T, Fraction) and issubclass(S, float):
return S
if issubclass(T, float) and issubclass(S, Fraction):
return T
# Any other combination is disallowed.
msg = "don't know how to coerce %s and %s"
raise TypeError(msg % (T.__name__, S.__name__))
def _exact_ratio(x):
"""Return Real number x to exact (numerator, denominator) pair.
>>> _exact_ratio(0.25)
(1, 4)
x is expected to be an int, Fraction, Decimal or float.
"""
# XXX We should revisit whether using fractions to accumulate exact
# ratios is the right way to go.
# The integer ratios for binary floats can have numerators or
# denominators with over 300 decimal digits. The problem is more
# acute with decimal floats where the default decimal context
# supports a huge range of exponents from Emin=-999999 to
# Emax=999999. When expanded with as_integer_ratio(), numbers like
# Decimal('3.14E+5000') and Decimal('3.14E-5000') have large
# numerators or denominators that will slow computation.
# When the integer ratios are accumulated as fractions, the size
# grows to cover the full range from the smallest magnitude to the
# largest. For example, Fraction(3.14E+300) + Fraction(3.14E-300),
# has a 616 digit numerator. Likewise,
# Fraction(Decimal('3.14E+5000')) + Fraction(Decimal('3.14E-5000'))
# has 10,003 digit numerator.
# This doesn't seem to have been problem in practice, but it is a
# potential pitfall.
try:
return x.as_integer_ratio()
except AttributeError:
pass
except (OverflowError, ValueError):
# float NAN or INF.
assert not _isfinite(x)
return (x, None)
try:
# x may be an Integral ABC.
return (x.numerator, x.denominator)
except AttributeError:
msg = f"can't convert type '{type(x).__name__}' to numerator/denominator"
raise TypeError(msg)
def _convert(value, T):
"""Convert value to given numeric type T."""
if type(value) is T:
# This covers the cases where T is Fraction, or where value is
# a NAN or INF (Decimal or float).
return value
if issubclass(T, int) and value.denominator != 1:
T = float
try:
# FIXME: what do we do if this overflows?
return T(value)
except TypeError:
if issubclass(T, Decimal):
return T(value.numerator) / T(value.denominator)
else:
raise
def _fail_neg(values, errmsg='negative value'):
"""Iterate over values, failing if any are less than zero."""
for x in values:
if x < 0:
raise StatisticsError(errmsg)
yield x
def _rank(data, /, *, key=None, reverse=False, ties='average', start=1) -> list[float]:
"""Rank order a dataset. The lowest value has rank 1.
Ties are averaged so that equal values receive the same rank:
>>> data = [31, 56, 31, 25, 75, 18]
>>> _rank(data)
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
The operation is idempotent:
>>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
It is possible to rank the data in reverse order so that the
highest value has rank 1. Also, a key-function can extract
the field to be ranked:
>>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
>>> _rank(goals, key=itemgetter(1), reverse=True)
[2.0, 1.0, 3.0]
Ranks are conventionally numbered starting from one; however,
setting *start* to zero allows the ranks to be used as array indices:
>>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
>>> scores = [8.1, 7.3, 9.4, 8.3]
>>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
['Bronze', 'Certificate', 'Gold', 'Silver']
"""
# If this function becomes public at some point, more thought
# needs to be given to the signature. A list of ints is
# plausible when ties is "min" or "max". When ties is "average",
# either list[float] or list[Fraction] is plausible.
# Default handling of ties matches scipy.stats.mstats.spearmanr.
if ties != 'average':
raise ValueError(f'Unknown tie resolution method: {ties!r}')
if key is not None:
data = map(key, data)
val_pos = sorted(zip(data, count()), reverse=reverse)
i = start - 1
result = [0] * len(val_pos)
for _, g in groupby(val_pos, key=itemgetter(0)):
group = list(g)
size = len(group)
rank = i + (size + 1) / 2
for value, orig_pos in group:
result[orig_pos] = rank
i += size
return result
def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
"""Square root of n/m, rounded to the nearest integer using round-to-odd."""
# Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
a = math.isqrt(n // m)
return a | (a*a*m != n)
# For 53 bit precision floats, the bit width used in
# _float_sqrt_of_frac() is 109.
_sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
def _float_sqrt_of_frac(n: int, m: int) -> float:
"""Square root of n/m as a float, correctly rounded."""
# See principle and proof sketch at: https://bugs.python.org/msg407078
q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
if q >= 0:
numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
denominator = 1
else:
numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
denominator = 1 << -q
return numerator / denominator # Convert to float
def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
"""Square root of n/m as a Decimal, correctly rounded."""
# Premise: For decimal, computing (n/m).sqrt() can be off
# by 1 ulp from the correctly rounded result.
# Method: Check the result, moving up or down a step if needed.
if n <= 0:
if not n:
return Decimal('0.0')
n, m = -n, -m
root = (Decimal(n) / Decimal(m)).sqrt()
nr, dr = root.as_integer_ratio()
plus = root.next_plus()
np, dp = plus.as_integer_ratio()
# test: n / m > ((root + plus) / 2) ** 2
if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
return plus
minus = root.next_minus()
nm, dm = minus.as_integer_ratio()
# test: n / m < ((root + minus) / 2) ** 2
if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
return minus
return root
# === Measures of central tendency (averages) ===
def mean(data):
"""Return the sample arithmetic mean of data.
>>> mean([1, 2, 3, 4, 4])
2.8
>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)
>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')
If ``data`` is empty, StatisticsError will be raised.
"""
T, total, n = _sum(data)
if n < 1:
raise StatisticsError('mean requires at least one data point')
return _convert(total / n, T)
def fmean(data, weights=None):
"""Convert data to floats and compute the arithmetic mean.
This runs faster than the mean() function and it always returns a float.
If the input dataset is empty, it raises a StatisticsError.
>>> fmean([3.5, 4.0, 5.25])
4.25
"""
if weights is None:
try:
n = len(data)
except TypeError:
# Handle iterators that do not define __len__().
n = 0
def count(iterable):
nonlocal n
for n, x in enumerate(iterable, start=1):
yield x
data = count(data)
total = fsum(data)
if not n:
raise StatisticsError('fmean requires at least one data point')
return total / n
if not isinstance(weights, (list, tuple)):
weights = list(weights)
try:
num = sumprod(data, weights)
except ValueError:
raise StatisticsError('data and weights must be the same length')
den = fsum(weights)
if not den:
raise StatisticsError('sum of weights must be non-zero')
return num / den
def geometric_mean(data):
"""Convert data to floats and compute the geometric mean.
Raises a StatisticsError if the input dataset is empty
or if it contains a negative value.
Returns zero if the product of inputs is zero.
No special efforts are made to achieve exact results.
(However, this may change in the future.)
>>> round(geometric_mean([54, 24, 36]), 9)
36.0
"""
n = 0
found_zero = False
def count_positive(iterable):
nonlocal n, found_zero
for n, x in enumerate(iterable, start=1):
if x > 0.0 or math.isnan(x):
yield x
elif x == 0.0:
found_zero = True
else:
raise StatisticsError('No negative inputs allowed', x)
total = fsum(map(log, count_positive(data)))
if not n:
raise StatisticsError('Must have a non-empty dataset')
if math.isnan(total):
return math.nan
if found_zero:
return math.nan if total == math.inf else 0.0
return exp(total / n)
def harmonic_mean(data, weights=None):
"""Return the harmonic mean of data.
The harmonic mean is the reciprocal of the arithmetic mean of the
reciprocals of the data. It can be used for averaging ratios or
rates, for example speeds.
Suppose a car travels 40 km/hr for 5 km and then speeds-up to
60 km/hr for another 5 km. What is the average speed?
>>> harmonic_mean([40, 60])
48.0
Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
speeds-up to 60 km/hr for the remaining 30 km of the journey. What
is the average speed?
>>> harmonic_mean([40, 60], weights=[5, 30])
56.0
If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.
"""
if iter(data) is data:
data = list(data)
errmsg = 'harmonic mean does not support negative values'
n = len(data)
if n < 1:
raise StatisticsError('harmonic_mean requires at least one data point')
elif n == 1 and weights is None:
x = data[0]
if isinstance(x, (numbers.Real, Decimal)):
if x < 0:
raise StatisticsError(errmsg)
return x
else:
raise TypeError('unsupported type')
if weights is None:
weights = repeat(1, n)
sum_weights = n
else:
if iter(weights) is weights:
weights = list(weights)
if len(weights) != n:
raise StatisticsError('Number of weights does not match data size')
_, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
try:
data = _fail_neg(data, errmsg)
T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
except ZeroDivisionError:
return 0
if total <= 0:
raise StatisticsError('Weighted sum must be positive')
return _convert(sum_weights / total, T)
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
"""Return the median (middle value) of numeric data.
When the number of data points is odd, return the middle data point.
When the number of data points is even, the median is interpolated by
taking the average of the two middle values:
>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
if n % 2 == 1:
return data[n // 2]
else:
i = n // 2
return (data[i - 1] + data[i]) / 2
def median_low(data):
"""Return the low median of numeric data.
When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.
>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
if n % 2 == 1:
return data[n // 2]
else:
return data[n // 2 - 1]
def median_high(data):
"""Return the high median of data.
When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.
>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
return data[n // 2]
def median_grouped(data, interval=1.0):
"""Estimates the median for numeric data binned around the midpoints
of consecutive, fixed-width intervals.
The *data* can be any iterable of numeric data with each value being
exactly the midpoint of a bin. At least one value must be present.
The *interval* is width of each bin.
For example, demographic information may have been summarized into
consecutive ten-year age groups with each group being represented
by the 5-year midpoints of the intervals:
>>> demographics = Counter({
... 25: 172, # 20 to 30 years old
... 35: 484, # 30 to 40 years old
... 45: 387, # 40 to 50 years old
... 55: 22, # 50 to 60 years old
... 65: 6, # 60 to 70 years old
... })
The 50th percentile (median) is the 536th person out of the 1071
member cohort. That person is in the 30 to 40 year old age group.
The regular median() function would assume that everyone in the
tricenarian age group was exactly 35 years old. A more tenable
assumption is that the 484 members of that age group are evenly
distributed between 30 and 40. For that, we use median_grouped().
>>> data = list(demographics.elements())
>>> median(data)
35
>>> round(median_grouped(data, interval=10), 1)
37.5
The caller is responsible for making sure the data points are separated
by exact multiples of *interval*. This is essential for getting a
correct result. The function does not check this precondition.
Inputs may be any numeric type that can be coerced to a float during
the interpolation step.
"""
data = sorted(data)
n = len(data)
if not n:
raise StatisticsError("no median for empty data")
# Find the value at the midpoint. Remember this corresponds to the
# midpoint of the class interval.
x = data[n // 2]
# Using O(log n) bisection, find where all the x values occur in the data.
# All x will lie within data[i:j].
i = bisect_left(data, x)
j = bisect_right(data, x, lo=i)
# Coerce to floats, raising a TypeError if not possible
try:
interval = float(interval)
x = float(x)
except ValueError:
raise TypeError(f'Value cannot be converted to a float')
# Interpolate the median using the formula found at:
# https://www.cuemath.com/data/median-of-grouped-data/
L = x - interval / 2.0 # Lower limit of the median interval
cf = i # Cumulative frequency of the preceding interval
f = j - i # Number of elements in the median internal
return L + interval * (n / 2 - cf) / f
def mode(data):
"""Return the most common data point from discrete or nominal data.
``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3
This also works with nominal (non-numeric) data:
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
If there are multiple modes with same frequency, return the first one
encountered:
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
'red'
If *data* is empty, ``mode``, raises StatisticsError.
"""
pairs = Counter(iter(data)).most_common(1)
try:
return pairs[0][0]
except IndexError:
raise StatisticsError('no mode for empty data') from None
def multimode(data):
"""Return a list of the most frequently occurring values.
Will return more than one result if there are multiple modes
or an empty list if *data* is empty.
>>> multimode('aabbbbbbbbcc')
['b']
>>> multimode('aabbbbccddddeeffffgg')
['b', 'd', 'f']
>>> multimode('')
[]
"""
counts = Counter(iter(data))
if not counts:
return []
maxcount = max(counts.values())
return [value for value, count in counts.items() if count == maxcount]
def kde(data, h, kernel='normal', *, cumulative=False):
"""Kernel Density Estimation: Create a continuous probability density
function or cumulative distribution function from discrete samples.
The basic idea is to smooth the data using a kernel function
to help draw inferences about a population from a sample.
The degree of smoothing is controlled by the scaling parameter h
which is called the bandwidth. Smaller values emphasize local
features while larger values give smoother results.
The kernel determines the relative weights of the sample data
points. Generally, the choice of kernel shape does not matter
as much as the more influential bandwidth smoothing parameter.
Kernels that give some weight to every sample point:
normal (gauss)
logistic
sigmoid
Kernels that only give weight to sample points within
the bandwidth:
rectangular (uniform)
triangular
parabolic (epanechnikov)
quartic (biweight)
triweight
cosine
If *cumulative* is true, will return a cumulative distribution function.
A StatisticsError will be raised if the data sequence is empty.
Example
-------
Given a sample of six data points, construct a continuous
function that estimates the underlying probability density:
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> f_hat = kde(sample, h=1.5)
Compute the area under the curve:
>>> area = sum(f_hat(x) for x in range(-20, 20))
>>> round(area, 4)
1.0
Plot the estimated probability density function at
evenly spaced points from -6 to 10:
>>> for x in range(-6, 11):
... density = f_hat(x)
... plot = ' ' * int(density * 400) + 'x'
... print(f'{x:2}: {density:.3f} {plot}')
...
-6: 0.002 x
-5: 0.009 x
-4: 0.031 x
-3: 0.070 x
-2: 0.111 x
-1: 0.125 x
0: 0.110 x
1: 0.086 x
2: 0.068 x
3: 0.059 x
4: 0.066 x
5: 0.082 x
6: 0.082 x
7: 0.058 x
8: 0.028 x
9: 0.009 x
10: 0.002 x
Estimate P(4.5 < X <= 7.5), the probability that a new sample value
will be between 4.5 and 7.5:
>>> cdf = kde(sample, h=1.5, cumulative=True)
>>> round(cdf(7.5) - cdf(4.5), 2)
0.22
References
----------
Kernel density estimation and its application:
https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
Kernel functions in common use:
https://en.wikipedia.org/wiki/Kernel_(statistics)#kernel_functions_in_common_use
Interactive graphical demonstration and exploration:
https://demonstrations.wolfram.com/KernelDensityEstimation/
Kernel estimation of cumulative distribution function of a random variable with bounded support
https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf
"""
n = len(data)
if not n:
raise StatisticsError('Empty data sequence')
if not isinstance(data[0], (int, float)):
raise TypeError('Data sequence must contain ints or floats')
if h <= 0.0:
raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
match kernel:
case 'normal' | 'gauss':
sqrt2pi = sqrt(2 * pi)
sqrt2 = sqrt(2)
K = lambda t: exp(-1/2 * t * t) / sqrt2pi
W = lambda t: 1/2 * (1.0 + erf(t / sqrt2))
support = None
case 'logistic':
# 1.0 / (exp(t) + 2.0 + exp(-t))
K = lambda t: 1/2 / (1.0 + cosh(t))
W = lambda t: 1.0 - 1.0 / (exp(t) + 1.0)
support = None
case 'sigmoid':
# (2/pi) / (exp(t) + exp(-t))
c1 = 1 / pi
c2 = 2 / pi
K = lambda t: c1 / cosh(t)
W = lambda t: c2 * atan(exp(t))
support = None
case 'rectangular' | 'uniform':
K = lambda t: 1/2
W = lambda t: 1/2 * t + 1/2
support = 1.0
case 'triangular':
K = lambda t: 1.0 - abs(t)
W = lambda t: t*t * (1/2 if t < 0.0 else -1/2) + t + 1/2
support = 1.0
case 'parabolic' | 'epanechnikov':
K = lambda t: 3/4 * (1.0 - t * t)
W = lambda t: -1/4 * t**3 + 3/4 * t + 1/2
support = 1.0
case 'quartic' | 'biweight':
K = lambda t: 15/16 * (1.0 - t * t) ** 2
W = lambda t: 3/16 * t**5 - 5/8 * t**3 + 15/16 * t + 1/2
support = 1.0
case 'triweight':
K = lambda t: 35/32 * (1.0 - t * t) ** 3
W = lambda t: 35/32 * (-1/7*t**7 + 3/5*t**5 - t**3 + t) + 1/2
support = 1.0
case 'cosine':
c1 = pi / 4
c2 = pi / 2
K = lambda t: c1 * cos(c2 * t)
W = lambda t: 1/2 * sin(c2 * t) + 1/2
support = 1.0
case _:
raise StatisticsError(f'Unknown kernel name: {kernel!r}')
if support is None:
def pdf(x):
n = len(data)
return sum(K((x - x_i) / h) for x_i in data) / (n * h)
def cdf(x):
n = len(data)
return sum(W((x - x_i) / h) for x_i in data) / n
else:
sample = sorted(data)
bandwidth = h * support
def pdf(x):
nonlocal n, sample
if len(data) != n:
sample = sorted(data)
n = len(data)
i = bisect_left(sample, x - bandwidth)
j = bisect_right(sample, x + bandwidth)
supported = sample[i : j]
return sum(K((x - x_i) / h) for x_i in supported) / (n * h)
def cdf(x):
nonlocal n, sample
if len(data) != n:
sample = sorted(data)
n = len(data)
i = bisect_left(sample, x - bandwidth)
j = bisect_right(sample, x + bandwidth)
supported = sample[i : j]
return sum((W((x - x_i) / h) for x_i in supported), i) / n
if cumulative:
cdf.__doc__ = f'CDF estimate with {h=!r} and {kernel=!r}'
return cdf
else:
pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}'
return pdf
# Notes on methods for computing quantiles
# ----------------------------------------
#
# There is no one perfect way to compute quantiles. Here we offer
# two methods that serve common needs. Most other packages
# surveyed offered at least one or both of these two, making them
# "standard" in the sense of "widely-adopted and reproducible".
# They are also easy to explain, easy to compute manually, and have
# straight-forward interpretations that aren't surprising.
# The default method is known as "R6", "PERCENTILE.EXC", or "expected
# value of rank order statistics". The alternative method is known as
# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
# For sample data where there is a positive probability for values
# beyond the range of the data, the R6 exclusive method is a
# reasonable choice. Consider a random sample of nine values from a
# population with a uniform distribution from 0.0 to 1.0. The
# distribution of the third ranked sample point is described by
# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
# mean=0.300. Only the latter (which corresponds with R6) gives the
# desired cut point with 30% of the population falling below that
# value, making it comparable to a result from an inv_cdf() function.
# The R6 exclusive method is also idempotent.
# For describing population data where the end points are known to
# be included in the data, the R7 inclusive method is a reasonable
# choice. Instead of the mean, it uses the mode of the beta
# distribution for the interior points. Per Hyndman & Fan, "One nice
# property is that the vertices of Q7(p) divide the range into n - 1
# intervals, and exactly 100p% of the intervals lie to the left of
# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
# If needed, other methods could be added. However, for now, the
# position is that fewer options make for easier choices and that
# external packages can be used for anything more advanced.
def quantiles(data, *, n=4, method='exclusive'):
"""Divide *data* into *n* continuous intervals with equal probability.
Returns a list of (n - 1) cut points separating the intervals.
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
Set *n* to 100 for percentiles which gives the 99 cuts points that
separate *data* in to 100 equal sized groups.
The *data* can be any iterable containing sample.
The cut points are linearly interpolated between data points.
If *method* is set to *inclusive*, *data* is treated as population
data. The minimum value is treated as the 0th percentile and the
maximum value is treated as the 100th percentile.
"""
if n < 1:
raise StatisticsError('n must be at least 1')
data = sorted(data)
ld = len(data)
if ld < 2:
if ld == 1:
return data * (n - 1)
raise StatisticsError('must have at least one data point')
if method == 'inclusive':
m = ld - 1
result = []
for i in range(1, n):
j, delta = divmod(i * m, n)
interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
result.append(interpolated)
return result
if method == 'exclusive':
m = ld + 1
result = []
for i in range(1, n):
j = i * m // n # rescale i to m/n
j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
delta = i*m - j*n # exact integer math
interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
result.append(interpolated)
return result
raise ValueError(f'Unknown method: {method!r}')
# === Measures of spread ===
# See http://mathworld.wolfram.com/Variance.html
# http://mathworld.wolfram.com/SampleVariance.html
def variance(data, xbar=None):
"""Return the sample variance of data.
data should be an iterable of Real-valued numbers, with at least two
values. The optional argument xbar, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.
Use this function when your data is a sample from a population. To
calculate the variance from the entire population, see ``pvariance``.
Examples:
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095
If you have already calculated the mean of your data, you can pass it as
the optional second argument ``xbar`` to avoid recalculating it:
>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095
This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')
>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)
"""
T, ss, c, n = _ss(data, xbar)
if n < 2:
raise StatisticsError('variance requires at least two data points')
return _convert(ss / (n - 1), T)
def pvariance(data, mu=None):
"""Return the population variance of ``data``.
data should be a sequence or iterable of Real-valued numbers, with at least one
value. The optional argument mu, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.
Use this function to calculate the variance from the entire population.
To estimate the variance from a sample, the ``variance`` function is
usually a better choice.
Examples:
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25
If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:
>>> mu = mean(data)
>>> pvariance(data, mu)
1.25
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')
>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)
"""
T, ss, c, n = _ss(data, mu)
if n < 1:
raise StatisticsError('pvariance requires at least one data point')
return _convert(ss / n, T)
def stdev(data, xbar=None):
"""Return the square root of the sample variance.
See ``variance`` for arguments and other details.
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827
"""
T, ss, c, n = _ss(data, xbar)
if n < 2:
raise StatisticsError('stdev requires at least two data points')
mss = ss / (n - 1)
if issubclass(T, Decimal):
return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
return _float_sqrt_of_frac(mss.numerator, mss.denominator)
def pstdev(data, mu=None):
"""Return the square root of the population variance.
See ``pvariance`` for arguments and other details.
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251
"""
T, ss, c, n = _ss(data, mu)
if n < 1:
raise StatisticsError('pstdev requires at least one data point')
mss = ss / n
if issubclass(T, Decimal):
return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
return _float_sqrt_of_frac(mss.numerator, mss.denominator)
def _mean_stdev(data):
"""In one pass, compute the mean and sample standard deviation as floats."""
T, ss, xbar, n = _ss(data)
if n < 2:
raise StatisticsError('stdev requires at least two data points')
mss = ss / (n - 1)
try:
return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator)
except AttributeError:
# Handle Nans and Infs gracefully
return float(xbar), float(xbar) / float(ss)
def _sqrtprod(x: float, y: float) -> float:
"Return sqrt(x * y) computed with improved accuracy and without overflow/underflow."
h = sqrt(x * y)
if not isfinite(h):
if isinf(h) and not isinf(x) and not isinf(y):
# Finite inputs overflowed, so scale down, and recompute.
scale = 2.0 ** -512 # sqrt(1 / sys.float_info.max)
return _sqrtprod(scale * x, scale * y) / scale
return h
if not h:
if x and y:
# Non-zero inputs underflowed, so scale up, and recompute.
# Scale: 1 / sqrt(sys.float_info.min * sys.float_info.epsilon)
scale = 2.0 ** 537
return _sqrtprod(scale * x, scale * y) / scale
return h
# Improve accuracy with a differential correction.
# https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
d = sumprod((x, h), (y, -h))
return h + d / (2.0 * h)
# === Statistics for relations between two inputs ===
# See https://en.wikipedia.org/wiki/Covariance
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
# https://en.wikipedia.org/wiki/Simple_linear_regression
def covariance(x, y, /):
"""Covariance
Return the sample covariance of two inputs *x* and *y*. Covariance
is a measure of the joint variability of two inputs.
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> covariance(x, y)
0.75
>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> covariance(x, z)
-7.5
>>> covariance(z, x)
-7.5
"""
n = len(x)
if len(y) != n:
raise StatisticsError('covariance requires that both inputs have same number of data points')
if n < 2:
raise StatisticsError('covariance requires at least two data points')
xbar = fsum(x) / n
ybar = fsum(y) / n
sxy = sumprod((xi - xbar for xi in x), (yi - ybar for yi in y))
return sxy / (n - 1)
def correlation(x, y, /, *, method='linear'):
"""Pearson's correlation coefficient
Return the Pearson's correlation coefficient for two inputs. Pearson's
correlation coefficient *r* takes values between -1 and +1. It measures
the strength and direction of a linear relationship.
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> correlation(x, x)
1.0
>>> correlation(x, y)
-1.0
If *method* is "ranked", computes Spearman's rank correlation coefficient
for two inputs. The data is replaced by ranks. Ties are averaged
so that equal values receive the same rank. The resulting coefficient
measures the strength of a monotonic relationship.
Spearman's rank correlation coefficient is appropriate for ordinal
data or for continuous data that doesn't meet the linear proportion
requirement for Pearson's correlation coefficient.
"""
n = len(x)
if len(y) != n:
raise StatisticsError('correlation requires that both inputs have same number of data points')
if n < 2:
raise StatisticsError('correlation requires at least two data points')
if method not in {'linear', 'ranked'}:
raise ValueError(f'Unknown method: {method!r}')
if method == 'ranked':
start = (n - 1) / -2 # Center rankings around zero
x = _rank(x, start=start)
y = _rank(y, start=start)
else:
xbar = fsum(x) / n
ybar = fsum(y) / n
x = [xi - xbar for xi in x]
y = [yi - ybar for yi in y]
sxy = sumprod(x, y)
sxx = sumprod(x, x)
syy = sumprod(y, y)
try:
return sxy / _sqrtprod(sxx, syy)
except ZeroDivisionError:
raise StatisticsError('at least one of the inputs is constant')
LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
def linear_regression(x, y, /, *, proportional=False):
"""Slope and intercept for simple linear regression.
Return the slope and intercept of simple linear regression
parameters estimated using ordinary least squares. Simple linear
regression describes relationship between an independent variable
*x* and a dependent variable *y* in terms of a linear function:
y = slope * x + intercept + noise
where *slope* and *intercept* are the regression parameters that are
estimated, and noise represents the variability of the data that was
not explained by the linear regression (it is equal to the
difference between predicted and actual values of the dependent
variable).
The parameters are returned as a named tuple.
>>> x = [1, 2, 3, 4, 5]
>>> noise = NormalDist().samples(5, seed=42)
>>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
>>> linear_regression(x, y) #doctest: +ELLIPSIS
LinearRegression(slope=3.17495..., intercept=1.00925...)
If *proportional* is true, the independent variable *x* and the
dependent variable *y* are assumed to be directly proportional.
The data is fit to a line passing through the origin.
Since the *intercept* will always be 0.0, the underlying linear
function simplifies to:
y = slope * x + noise
>>> y = [3 * x[i] + noise[i] for i in range(5)]
>>> linear_regression(x, y, proportional=True) #doctest: +ELLIPSIS
LinearRegression(slope=2.90475..., intercept=0.0)
"""
n = len(x)
if len(y) != n:
raise StatisticsError('linear regression requires that both inputs have same number of data points')
if n < 2:
raise StatisticsError('linear regression requires at least two data points')
if not proportional:
xbar = fsum(x) / n
ybar = fsum(y) / n
x = [xi - xbar for xi in x] # List because used three times below
y = (yi - ybar for yi in y) # Generator because only used once below
sxy = sumprod(x, y) + 0.0 # Add zero to coerce result to a float
sxx = sumprod(x, x)
try:
slope = sxy / sxx # equivalent to: covariance(x, y) / variance(x)
except ZeroDivisionError:
raise StatisticsError('x is constant')
intercept = 0.0 if proportional else ybar - slope * xbar
return LinearRegression(slope=slope, intercept=intercept)
## Normal Distribution #####################################################
def _normal_dist_inv_cdf(p, mu, sigma):
# There is no closed-form solution to the inverse CDF for the normal
# distribution, so we use a rational approximation instead:
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
q = p - 0.5
if fabs(q) <= 0.425:
r = 0.180625 - q * q
# Hash sum: 55.88319_28806_14901_4439
num = (((((((2.50908_09287_30122_6727e+3 * r +
3.34305_75583_58812_8105e+4) * r +
6.72657_70927_00870_0853e+4) * r +
4.59219_53931_54987_1457e+4) * r +
1.37316_93765_50946_1125e+4) * r +
1.97159_09503_06551_4427e+3) * r +
1.33141_66789_17843_7745e+2) * r +
3.38713_28727_96366_6080e+0) * q
den = (((((((5.22649_52788_52854_5610e+3 * r +
2.87290_85735_72194_2674e+4) * r +
3.93078_95800_09271_0610e+4) * r +
2.12137_94301_58659_5867e+4) * r +
5.39419_60214_24751_1077e+3) * r +
6.87187_00749_20579_0830e+2) * r +
4.23133_30701_60091_1252e+1) * r +
1.0)
x = num / den
return mu + (x * sigma)
r = p if q <= 0.0 else 1.0 - p
r = sqrt(-log(r))
if r <= 5.0:
r = r - 1.6
# Hash sum: 49.33206_50330_16102_89036
num = (((((((7.74545_01427_83414_07640e-4 * r +
2.27238_44989_26918_45833e-2) * r +
2.41780_72517_74506_11770e-1) * r +
1.27045_82524_52368_38258e+0) * r +
3.64784_83247_63204_60504e+0) * r +
5.76949_72214_60691_40550e+0) * r +
4.63033_78461_56545_29590e+0) * r +
1.42343_71107_49683_57734e+0)
den = (((((((1.05075_00716_44416_84324e-9 * r +
5.47593_80849_95344_94600e-4) * r +
1.51986_66563_61645_71966e-2) * r +
1.48103_97642_74800_74590e-1) * r +
6.89767_33498_51000_04550e-1) * r +
1.67638_48301_83803_84940e+0) * r +
2.05319_16266_37758_82187e+0) * r +
1.0)
else:
r = r - 5.0
# Hash sum: 47.52583_31754_92896_71629
num = (((((((2.01033_43992_92288_13265e-7 * r +
2.71155_55687_43487_57815e-5) * r +
1.24266_09473_88078_43860e-3) * r +
2.65321_89526_57612_30930e-2) * r +
2.96560_57182_85048_91230e-1) * r +
1.78482_65399_17291_33580e+0) * r +
5.46378_49111_64114_36990e+0) * r +
6.65790_46435_01103_77720e+0)
den = (((((((2.04426_31033_89939_78564e-15 * r +
1.42151_17583_16445_88870e-7) * r +
1.84631_83175_10054_68180e-5) * r +
7.86869_13114_56132_59100e-4) * r +
1.48753_61290_85061_48525e-2) * r +
1.36929_88092_27358_05310e-1) * r +
5.99832_20655_58879_37690e-1) * r +
1.0)
x = num / den
if q < 0.0:
x = -x
return mu + (x * sigma)
# If available, use C implementation
try:
from _statistics import _normal_dist_inv_cdf
except ImportError:
pass
class NormalDist:
"Normal distribution of a random variable"
# https://en.wikipedia.org/wiki/Normal_distribution
# https://en.wikipedia.org/wiki/Variance#Properties
__slots__ = {
'_mu': 'Arithmetic mean of a normal distribution',
'_sigma': 'Standard deviation of a normal distribution',
}
def __init__(self, mu=0.0, sigma=1.0):
"NormalDist where mu is the mean and sigma is the standard deviation."
if sigma < 0.0:
raise StatisticsError('sigma must be non-negative')
self._mu = float(mu)
self._sigma = float(sigma)
@classmethod
def from_samples(cls, data):
"Make a normal distribution instance from sample data."
return cls(*_mean_stdev(data))
def samples(self, n, *, seed=None):
"Generate *n* samples for a given mean and standard deviation."
rnd = random.random if seed is None else random.Random(seed).random
inv_cdf = _normal_dist_inv_cdf
mu = self._mu
sigma = self._sigma
return [inv_cdf(rnd(), mu, sigma) for _ in repeat(None, n)]
def pdf(self, x):
"Probability density function. P(x <= X < x+dx) / dx"
variance = self._sigma * self._sigma
if not variance:
raise StatisticsError('pdf() not defined when sigma is zero')
diff = x - self._mu
return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
def cdf(self, x):
"Cumulative distribution function. P(X <= x)"
if not self._sigma:
raise StatisticsError('cdf() not defined when sigma is zero')
return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2)))
def inv_cdf(self, p):
"""Inverse cumulative distribution function. x : P(X <= x) = p
Finds the value of the random variable such that the probability of
the variable being less than or equal to that value equals the given
probability.
This function is also called the percent point function or quantile
function.
"""
if p <= 0.0 or p >= 1.0:
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
return _normal_dist_inv_cdf(p, self._mu, self._sigma)
def quantiles(self, n=4):
"""Divide into *n* continuous intervals with equal probability.
Returns a list of (n - 1) cut points separating the intervals.
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
Set *n* to 100 for percentiles which gives the 99 cuts points that
separate the normal distribution in to 100 equal sized groups.
"""
return [self.inv_cdf(i / n) for i in range(1, n)]
def overlap(self, other):
"""Compute the overlapping coefficient (OVL) between two normal distributions.
Measures the agreement between two normal probability distributions.
Returns a value between 0.0 and 1.0 giving the overlapping area in
the two underlying probability density functions.
>>> N1 = NormalDist(2.4, 1.6)
>>> N2 = NormalDist(3.2, 2.0)
>>> N1.overlap(N2)
0.8035050657330205
"""
# See: "The overlapping coefficient as a measure of agreement between
# probability distributions and point estimation of the overlap of two
# normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
# http://dx.doi.org/10.1080/03610928908830127
if not isinstance(other, NormalDist):
raise TypeError('Expected another NormalDist instance')
X, Y = self, other
if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
X, Y = Y, X
X_var, Y_var = X.variance, Y.variance
if not X_var or not Y_var:
raise StatisticsError('overlap() not defined when sigma is zero')
dv = Y_var - X_var
dm = fabs(Y._mu - X._mu)
if not dv:
return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2))
a = X._mu * Y_var - Y._mu * X_var
b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
x1 = (a + b) / dv
x2 = (a - b) / dv
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
def zscore(self, x):
"""Compute the Standard Score. (x - mean) / stdev
Describes *x* in terms of the number of standard deviations
above or below the mean of the normal distribution.
"""
# https://www.statisticshowto.com/probability-and-statistics/z-score/
if not self._sigma:
raise StatisticsError('zscore() not defined when sigma is zero')
return (x - self._mu) / self._sigma
@property
def mean(self):
"Arithmetic mean of the normal distribution."
return self._mu
@property
def median(self):
"Return the median of the normal distribution"
return self._mu
@property
def mode(self):
"""Return the mode of the normal distribution
The mode is the value x where which the probability density
function (pdf) takes its maximum value.
"""
return self._mu
@property
def stdev(self):
"Standard deviation of the normal distribution."
return self._sigma
@property
def variance(self):
"Square of the standard deviation."
return self._sigma * self._sigma
def __add__(x1, x2):
"""Add a constant or another NormalDist instance.
If *other* is a constant, translate mu by the constant,
leaving sigma unchanged.
If *other* is a NormalDist, add both the means and the variances.
Mathematically, this works only if the two distributions are
independent or if they are jointly normally distributed.
"""
if isinstance(x2, NormalDist):
return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
return NormalDist(x1._mu + x2, x1._sigma)
def __sub__(x1, x2):
"""Subtract a constant or another NormalDist instance.
If *other* is a constant, translate by the constant mu,
leaving sigma unchanged.
If *other* is a NormalDist, subtract the means and add the variances.
Mathematically, this works only if the two distributions are
independent or if they are jointly normally distributed.
"""
if isinstance(x2, NormalDist):
return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
return NormalDist(x1._mu - x2, x1._sigma)
def __mul__(x1, x2):
"""Multiply both mu and sigma by a constant.
Used for rescaling, perhaps to change measurement units.
Sigma is scaled with the absolute value of the constant.
"""
return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
def __truediv__(x1, x2):
"""Divide both mu and sigma by a constant.
Used for rescaling, perhaps to change measurement units.
Sigma is scaled with the absolute value of the constant.
"""
return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
def __pos__(x1):
"Return a copy of the instance."
return NormalDist(x1._mu, x1._sigma)
def __neg__(x1):
"Negates mu while keeping sigma the same."
return NormalDist(-x1._mu, x1._sigma)
__radd__ = __add__
def __rsub__(x1, x2):
"Subtract a NormalDist from a constant or another NormalDist."
return -(x1 - x2)
__rmul__ = __mul__
def __eq__(x1, x2):
"Two NormalDist objects are equal if their mu and sigma are both equal."
if not isinstance(x2, NormalDist):
return NotImplemented
return x1._mu == x2._mu and x1._sigma == x2._sigma
def __hash__(self):
"NormalDist objects hash equal if their mu and sigma are both equal."
return hash((self._mu, self._sigma))
def __repr__(self):
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
def __getstate__(self):
return self._mu, self._sigma
def __setstate__(self, state):
self._mu, self._sigma = state
## kde_random() ##############################################################
def _newton_raphson(f_inv_estimate, f, f_prime, tolerance=1e-12):
def f_inv(y):
"Return x such that f(x) ≈ y within the specified tolerance."
x = f_inv_estimate(y)
while abs(diff := f(x) - y) > tolerance:
x -= diff / f_prime(x)
return x
return f_inv
def _quartic_invcdf_estimate(p):
sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
x = (2.0 * p) ** 0.4258865685331 - 1.0
if p >= 0.004 < 0.499:
x += 0.026818732 * sin(7.101753784 * p + 2.73230839482953)
return x * sign
_quartic_invcdf = _newton_raphson(
f_inv_estimate = _quartic_invcdf_estimate,
f = lambda t: 3/16 * t**5 - 5/8 * t**3 + 15/16 * t + 1/2,
f_prime = lambda t: 15/16 * (1.0 - t * t) ** 2)
def _triweight_invcdf_estimate(p):
sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
x = (2.0 * p) ** 0.3400218741872791 - 1.0
return x * sign
_triweight_invcdf = _newton_raphson(
f_inv_estimate = _triweight_invcdf_estimate,
f = lambda t: 35/32 * (-1/7*t**7 + 3/5*t**5 - t**3 + t) + 1/2,
f_prime = lambda t: 35/32 * (1.0 - t * t) ** 3)
_kernel_invcdfs = {
'normal': NormalDist().inv_cdf,
'logistic': lambda p: log(p / (1 - p)),
'sigmoid': lambda p: log(tan(p * pi/2)),
'rectangular': lambda p: 2*p - 1,
'parabolic': lambda p: 2 * cos((acos(2*p-1) + pi) / 3),
'quartic': _quartic_invcdf,
'triweight': _triweight_invcdf,
'triangular': lambda p: sqrt(2*p) - 1 if p < 1/2 else 1 - sqrt(2 - 2*p),
'cosine': lambda p: 2 * asin(2*p - 1) / pi,
}
_kernel_invcdfs['gauss'] = _kernel_invcdfs['normal']
_kernel_invcdfs['uniform'] = _kernel_invcdfs['rectangular']
_kernel_invcdfs['epanechnikov'] = _kernel_invcdfs['parabolic']
_kernel_invcdfs['biweight'] = _kernel_invcdfs['quartic']
def kde_random(data, h, kernel='normal', *, seed=None):
"""Return a function that makes a random selection from the estimated
probability density function created by kde(data, h, kernel).
Providing a *seed* allows reproducible selections within a single
thread. The seed may be an integer, float, str, or bytes.
A StatisticsError will be raised if the *data* sequence is empty.
Example:
>>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
>>> rand = kde_random(data, h=1.5, seed=8675309)
>>> new_selections = [rand() for i in range(10)]
>>> [round(x, 1) for x in new_selections]
[0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]
"""
n = len(data)
if not n:
raise StatisticsError('Empty data sequence')
if not isinstance(data[0], (int, float)):
raise TypeError('Data sequence must contain ints or floats')
if h <= 0.0:
raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
kernel_invcdf = _kernel_invcdfs.get(kernel)
if kernel_invcdf is None:
raise StatisticsError(f'Unknown kernel name: {kernel!r}')
prng = _random.Random(seed)
random = prng.random
choice = prng.choice
def rand():
return choice(data) + h * kernel_invcdf(random())
rand.__doc__ = f'Random KDE selection with {h=!r} and {kernel=!r}'
return rand
|