1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
|
import unittest
import unittest.mock
import random
import os
import time
import pickle
import shlex
import warnings
import test.support
from functools import partial
from math import log, exp, pi, fsum, sin, factorial
from test import support
from fractions import Fraction
from collections import abc, Counter
class MyIndex:
def __init__(self, value):
self.value = value
def __index__(self):
return self.value
class TestBasicOps:
# Superclass with tests common to all generators.
# Subclasses must arrange for self.gen to retrieve the Random instance
# to be tested.
def randomlist(self, n):
"""Helper function to make a list of random numbers"""
return [self.gen.random() for i in range(n)]
def test_autoseed(self):
self.gen.seed()
state1 = self.gen.getstate()
time.sleep(0.1)
self.gen.seed() # different seeds at different times
state2 = self.gen.getstate()
self.assertNotEqual(state1, state2)
def test_saverestore(self):
N = 1000
self.gen.seed()
state = self.gen.getstate()
randseq = self.randomlist(N)
self.gen.setstate(state) # should regenerate the same sequence
self.assertEqual(randseq, self.randomlist(N))
def test_seedargs(self):
# Seed value with a negative hash.
class MySeed(object):
def __hash__(self):
return -1729
for arg in [None, 0, 1, -1, 10**20, -(10**20),
False, True, 3.14, 'a']:
self.gen.seed(arg)
for arg in [1+2j, tuple('abc'), MySeed()]:
with self.assertRaises(TypeError):
self.gen.seed(arg)
for arg in [list(range(3)), dict(one=1)]:
self.assertRaises(TypeError, self.gen.seed, arg)
self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
self.assertRaises(TypeError, type(self.gen), [])
def test_seed_no_mutate_bug_44018(self):
a = bytearray(b'1234')
self.gen.seed(a)
self.assertEqual(a, bytearray(b'1234'))
@unittest.mock.patch('random._urandom') # os.urandom
def test_seed_when_randomness_source_not_found(self, urandom_mock):
# Random.seed() uses time.time() when an operating system specific
# randomness source is not found. To test this on machines where it
# exists, run the above test, test_seedargs(), again after mocking
# os.urandom() so that it raises the exception expected when the
# randomness source is not available.
urandom_mock.side_effect = NotImplementedError
self.test_seedargs()
def test_shuffle(self):
shuffle = self.gen.shuffle
lst = []
shuffle(lst)
self.assertEqual(lst, [])
lst = [37]
shuffle(lst)
self.assertEqual(lst, [37])
seqs = [list(range(n)) for n in range(10)]
shuffled_seqs = [list(range(n)) for n in range(10)]
for shuffled_seq in shuffled_seqs:
shuffle(shuffled_seq)
for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
self.assertEqual(len(seq), len(shuffled_seq))
self.assertEqual(set(seq), set(shuffled_seq))
# The above tests all would pass if the shuffle was a
# no-op. The following non-deterministic test covers that. It
# asserts that the shuffled sequence of 1000 distinct elements
# must be different from the original one. Although there is
# mathematically a non-zero probability that this could
# actually happen in a genuinely random shuffle, it is
# completely negligible, given that the number of possible
# permutations of 1000 objects is 1000! (factorial of 1000),
# which is considerably larger than the number of atoms in the
# universe...
lst = list(range(1000))
shuffled_lst = list(range(1000))
shuffle(shuffled_lst)
self.assertTrue(lst != shuffled_lst)
shuffle(lst)
self.assertTrue(lst != shuffled_lst)
self.assertRaises(TypeError, shuffle, (1, 2, 3))
def test_choice(self):
choice = self.gen.choice
with self.assertRaises(IndexError):
choice([])
self.assertEqual(choice([50]), 50)
self.assertIn(choice([25, 75]), [25, 75])
def test_choice_with_numpy(self):
# Accommodation for NumPy arrays which have disabled __bool__().
# See: https://github.com/python/cpython/issues/100805
choice = self.gen.choice
class NA(list):
"Simulate numpy.array() behavior"
def __bool__(self):
raise RuntimeError
with self.assertRaises(IndexError):
choice(NA([]))
self.assertEqual(choice(NA([50])), 50)
self.assertIn(choice(NA([25, 75])), [25, 75])
def test_sample(self):
# For the entire allowable range of 0 <= k <= N, validate that
# the sample is of the correct length and contains only unique items
N = 100
population = range(N)
for k in range(N+1):
s = self.gen.sample(population, k)
self.assertEqual(len(s), k)
uniq = set(s)
self.assertEqual(len(uniq), k)
self.assertTrue(uniq <= set(population))
self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
# Exception raised if size of sample exceeds that of population
self.assertRaises(ValueError, self.gen.sample, population, N+1)
self.assertRaises(ValueError, self.gen.sample, [], -1)
def test_sample_distribution(self):
# For the entire allowable range of 0 <= k <= N, validate that
# sample generates all possible permutations
n = 5
pop = range(n)
trials = 10000 # large num prevents false negatives without slowing normal case
for k in range(n):
expected = factorial(n) // factorial(n-k)
perms = {}
for i in range(trials):
perms[tuple(self.gen.sample(pop, k))] = None
if len(perms) == expected:
break
else:
self.fail()
def test_sample_inputs(self):
# SF bug #801342 -- population can be any iterable defining __len__()
self.gen.sample(range(20), 2)
self.gen.sample(range(20), 2)
self.gen.sample(str('abcdefghijklmnopqrst'), 2)
self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
def test_sample_on_dicts(self):
self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
def test_sample_on_sets(self):
with self.assertRaises(TypeError):
population = {10, 20, 30, 40, 50, 60, 70}
self.gen.sample(population, k=5)
def test_sample_on_seqsets(self):
class SeqSet(abc.Sequence, abc.Set):
def __init__(self, items):
self._items = items
def __len__(self):
return len(self._items)
def __getitem__(self, index):
return self._items[index]
population = SeqSet([2, 4, 1, 3])
with warnings.catch_warnings():
warnings.simplefilter("error", DeprecationWarning)
self.gen.sample(population, k=2)
def test_sample_with_counts(self):
sample = self.gen.sample
# General case
colors = ['red', 'green', 'blue', 'orange', 'black', 'brown', 'amber']
counts = [500, 200, 20, 10, 5, 0, 1 ]
k = 700
summary = Counter(sample(colors, counts=counts, k=k))
self.assertEqual(sum(summary.values()), k)
for color, weight in zip(colors, counts):
self.assertLessEqual(summary[color], weight)
self.assertNotIn('brown', summary)
# Case that exhausts the population
k = sum(counts)
summary = Counter(sample(colors, counts=counts, k=k))
self.assertEqual(sum(summary.values()), k)
for color, weight in zip(colors, counts):
self.assertLessEqual(summary[color], weight)
self.assertNotIn('brown', summary)
# Case with population size of 1
summary = Counter(sample(['x'], counts=[10], k=8))
self.assertEqual(summary, Counter(x=8))
# Case with all counts equal.
nc = len(colors)
summary = Counter(sample(colors, counts=[10]*nc, k=10*nc))
self.assertEqual(summary, Counter(10*colors))
# Test error handling
with self.assertRaises(TypeError):
sample(['red', 'green', 'blue'], counts=10, k=10) # counts not iterable
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[-3, -7, -8], k=2) # counts are negative
with self.assertRaises(ValueError):
sample(['red', 'green'], counts=[10, 10], k=21) # population too small
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[1, 2], k=2) # too few counts
with self.assertRaises(ValueError):
sample(['red', 'green', 'blue'], counts=[1, 2, 3, 4], k=2) # too many counts
# Cases with zero counts match equivalents without counts (see gh-130285)
self.assertEqual(
sample('abc', k=0, counts=[0, 0, 0]),
sample([], k=0),
)
self.assertEqual(
sample([], 0, counts=[]),
sample([], 0),
)
with self.assertRaises(ValueError):
sample([], 1, counts=[])
with self.assertRaises(ValueError):
sample('x', 1, counts=[0])
def test_choices(self):
choices = self.gen.choices
data = ['red', 'green', 'blue', 'yellow']
str_data = 'abcd'
range_data = range(4)
set_data = set(range(4))
# basic functionality
for sample in [
choices(data, k=5),
choices(data, range(4), k=5),
choices(k=5, population=data, weights=range(4)),
choices(k=5, population=data, cum_weights=range(4)),
]:
self.assertEqual(len(sample), 5)
self.assertEqual(type(sample), list)
self.assertTrue(set(sample) <= set(data))
# test argument handling
with self.assertRaises(TypeError): # missing arguments
choices(2)
self.assertEqual(choices(data, k=0), []) # k == 0
self.assertEqual(choices(data, k=-1), []) # negative k behaves like ``[0] * -1``
with self.assertRaises(TypeError):
choices(data, k=2.5) # k is a float
self.assertTrue(set(choices(str_data, k=5)) <= set(str_data)) # population is a string sequence
self.assertTrue(set(choices(range_data, k=5)) <= set(range_data)) # population is a range
with self.assertRaises(TypeError):
choices(set_data, k=2) # population is not a sequence
self.assertTrue(set(choices(data, None, k=5)) <= set(data)) # weights is None
self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data))
with self.assertRaises(ValueError):
choices(data, [1,2], k=5) # len(weights) != len(population)
with self.assertRaises(TypeError):
choices(data, 10, k=5) # non-iterable weights
with self.assertRaises(TypeError):
choices(data, [None]*4, k=5) # non-numeric weights
for weights in [
[15, 10, 25, 30], # integer weights
[15.1, 10.2, 25.2, 30.3], # float weights
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
[True, False, True, False] # booleans (include / exclude)
]:
self.assertTrue(set(choices(data, weights, k=5)) <= set(data))
with self.assertRaises(ValueError):
choices(data, cum_weights=[1,2], k=5) # len(weights) != len(population)
with self.assertRaises(TypeError):
choices(data, cum_weights=10, k=5) # non-iterable cum_weights
with self.assertRaises(TypeError):
choices(data, cum_weights=[None]*4, k=5) # non-numeric cum_weights
with self.assertRaises(TypeError):
choices(data, range(4), cum_weights=range(4), k=5) # both weights and cum_weights
for weights in [
[15, 10, 25, 30], # integer cum_weights
[15.1, 10.2, 25.2, 30.3], # float cum_weights
[Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
]:
self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data))
# Test weight focused on a single element of the population
self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a'])
self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b'])
self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c'])
self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d'])
# Test consistency with random.choice() for empty population
with self.assertRaises(IndexError):
choices([], k=1)
with self.assertRaises(IndexError):
choices([], weights=[], k=1)
with self.assertRaises(IndexError):
choices([], cum_weights=[], k=5)
def test_choices_subnormal(self):
# Subnormal weights would occasionally trigger an IndexError
# in choices() when the value returned by random() was large
# enough to make `random() * total` round up to the total.
# See https://bugs.python.org/msg275594 for more detail.
choices = self.gen.choices
choices(population=[1, 2], weights=[1e-323, 1e-323], k=5000)
def test_choices_with_all_zero_weights(self):
# See issue #38881
with self.assertRaises(ValueError):
self.gen.choices('AB', [0.0, 0.0])
def test_choices_negative_total(self):
with self.assertRaises(ValueError):
self.gen.choices('ABC', [3, -5, 1])
def test_choices_infinite_total(self):
with self.assertRaises(ValueError):
self.gen.choices('A', [float('inf')])
with self.assertRaises(ValueError):
self.gen.choices('AB', [0.0, float('inf')])
with self.assertRaises(ValueError):
self.gen.choices('AB', [-float('inf'), 123])
with self.assertRaises(ValueError):
self.gen.choices('AB', [0.0, float('nan')])
with self.assertRaises(ValueError):
self.gen.choices('AB', [float('-inf'), float('inf')])
def test_gauss(self):
# Ensure that the seed() method initializes all the hidden state. In
# particular, through 2.2.1 it failed to reset a piece of state used
# by (and only by) the .gauss() method.
for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
self.gen.seed(seed)
x1 = self.gen.random()
y1 = self.gen.gauss(0, 1)
self.gen.seed(seed)
x2 = self.gen.random()
y2 = self.gen.gauss(0, 1)
self.assertEqual(x1, x2)
self.assertEqual(y1, y2)
def test_getrandbits(self):
# Verify ranges
for k in range(1, 1000):
self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
self.assertEqual(self.gen.getrandbits(0), 0)
# Verify all bits active
getbits = self.gen.getrandbits
for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
all_bits = 2**span-1
cum = 0
cpl_cum = 0
for i in range(100):
v = getbits(span)
cum |= v
cpl_cum |= all_bits ^ v
self.assertEqual(cum, all_bits)
self.assertEqual(cpl_cum, all_bits)
# Verify argument checking
self.assertRaises(TypeError, self.gen.getrandbits)
self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
self.assertRaises(ValueError, self.gen.getrandbits, -1)
self.assertRaises(OverflowError, self.gen.getrandbits, 1<<1000)
self.assertRaises((ValueError, OverflowError), self.gen.getrandbits, -1<<1000)
self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
def test_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
state = pickle.dumps(self.gen, proto)
origseq = [self.gen.random() for i in range(10)]
newgen = pickle.loads(state)
restoredseq = [newgen.random() for i in range(10)]
self.assertEqual(origseq, restoredseq)
def test_bug_1727780(self):
# verify that version-2-pickles can be loaded
# fine, whether they are created on 32-bit or 64-bit
# platforms, and that version-3-pickles load fine.
files = [("randv2_32.pck", 780),
("randv2_64.pck", 866),
("randv3.pck", 343)]
for file, value in files:
with open(support.findfile(file),"rb") as f:
r = pickle.load(f)
self.assertEqual(int(r.random()*1000), value)
def test_bug_9025(self):
# Had problem with an uneven distribution in int(n*random())
# Verify the fix by checking that distributions fall within expectations.
n = 100000
randrange = self.gen.randrange
k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
self.assertTrue(0.30 < k/n < .37, (k/n))
def test_randbytes(self):
# Verify ranges
for n in range(1, 10):
data = self.gen.randbytes(n)
self.assertEqual(type(data), bytes)
self.assertEqual(len(data), n)
self.assertEqual(self.gen.randbytes(0), b'')
# Verify argument checking
self.assertRaises(TypeError, self.gen.randbytes)
self.assertRaises(TypeError, self.gen.randbytes, 1, 2)
self.assertRaises(ValueError, self.gen.randbytes, -1)
self.assertRaises(OverflowError, self.gen.randbytes, 1<<1000)
self.assertRaises((ValueError, OverflowError), self.gen.randbytes, -1<<1000)
self.assertRaises(TypeError, self.gen.randbytes, 1.0)
def test_mu_sigma_default_args(self):
self.assertIsInstance(self.gen.normalvariate(), float)
self.assertIsInstance(self.gen.gauss(), float)
try:
random.SystemRandom().random()
except NotImplementedError:
SystemRandom_available = False
else:
SystemRandom_available = True
@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
gen = random.SystemRandom()
def test_autoseed(self):
# Doesn't need to do anything except not fail
self.gen.seed()
def test_saverestore(self):
self.assertRaises(NotImplementedError, self.gen.getstate)
self.assertRaises(NotImplementedError, self.gen.setstate, None)
def test_seedargs(self):
# Doesn't need to do anything except not fail
self.gen.seed(100)
def test_gauss(self):
self.gen.gauss_next = None
self.gen.seed(100)
self.assertEqual(self.gen.gauss_next, None)
def test_pickling(self):
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
def test_53_bits_per_float(self):
# This should pass whenever a C double has 53 bit precision.
span = 2 ** 53
cum = 0
for i in range(100):
cum |= int(self.gen.random() * span)
self.assertEqual(cum, span-1)
def test_bigrand(self):
# The randrange routine should build-up the required number of bits
# in stages so that all bit positions are active.
span = 2 ** 500
cum = 0
for i in range(100):
r = self.gen.randrange(span)
self.assertTrue(0 <= r < span)
cum |= r
self.assertEqual(cum, span-1)
def test_bigrand_ranges(self):
for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
start = self.gen.randrange(2 ** (i-2))
stop = self.gen.randrange(2 ** i)
if stop <= start:
continue
self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
def test_rangelimits(self):
for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
self.assertEqual(set(range(start,stop)),
set([self.gen.randrange(start,stop) for i in range(100)]))
def test_randrange_nonunit_step(self):
rint = self.gen.randrange(0, 10, 2)
self.assertIn(rint, (0, 2, 4, 6, 8))
rint = self.gen.randrange(0, 2, 2)
self.assertEqual(rint, 0)
def test_randrange_errors(self):
raises_value_error = partial(self.assertRaises, ValueError, self.gen.randrange)
raises_type_error = partial(self.assertRaises, TypeError, self.gen.randrange)
# Empty range
raises_value_error(3, 3)
raises_value_error(-721)
raises_value_error(0, 100, -12)
# Zero step
raises_value_error(0, 42, 0)
raises_type_error(0, 42, 0.0)
raises_type_error(0, 0, 0.0)
# Non-integer stop
raises_type_error(3.14159)
raises_type_error(3.0)
raises_type_error(Fraction(3, 1))
raises_type_error('3')
raises_type_error(0, 2.71827)
raises_type_error(0, 2.0)
raises_type_error(0, Fraction(2, 1))
raises_type_error(0, '2')
raises_type_error(0, 2.71827, 2)
# Non-integer start
raises_type_error(2.71827, 5)
raises_type_error(2.0, 5)
raises_type_error(Fraction(2, 1), 5)
raises_type_error('2', 5)
raises_type_error(2.71827, 5, 2)
# Non-integer step
raises_type_error(0, 42, 3.14159)
raises_type_error(0, 42, 3.0)
raises_type_error(0, 42, Fraction(3, 1))
raises_type_error(0, 42, '3')
raises_type_error(0, 42, 1.0)
raises_type_error(0, 0, 1.0)
def test_randrange_step(self):
# bpo-42772: When stop is None, the step argument was being ignored.
randrange = self.gen.randrange
with self.assertRaises(TypeError):
randrange(1000, step=100)
with self.assertRaises(TypeError):
randrange(1000, None, step=100)
def test_randbelow_logic(self, _log=log, int=int):
# check bitcount transition points: 2**i and 2**(i+1)-1
# show that: k = int(1.001 + _log(n, 2))
# is equal to or one greater than the number of bits in n
for i in range(1, 1000):
n = 1 << i # check an exact power of two
numbits = i+1
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits)
self.assertEqual(n, 2**(k-1))
n += n - 1 # check 1 below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertIn(k, [numbits, numbits+1])
self.assertTrue(2**k > n > 2**(k-2))
n -= n >> 15 # check a little farther below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits) # note the stronger assertion
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
class TestRawMersenneTwister(unittest.TestCase):
@test.support.cpython_only
def test_bug_41052(self):
# _random.Random should not be allowed to serialization
import _random
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
r = _random.Random()
self.assertRaises(TypeError, pickle.dumps, r, proto)
@test.support.cpython_only
def test_bug_42008(self):
# _random.Random should call seed with first element of arg tuple
import _random
r1 = _random.Random()
r1.seed(8675309)
r2 = _random.Random(8675309)
self.assertEqual(r1.random(), r2.random())
class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
gen = random.Random()
def test_guaranteed_stable(self):
# These sequences are guaranteed to stay the same across versions of python
self.gen.seed(3456147, version=1)
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
'0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
self.gen.seed("the quick brown fox", version=2)
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
'0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
def test_bug_27706(self):
# Verify that version 1 seeds are unaffected by hash randomization
self.gen.seed('nofar', version=1) # hash('nofar') == 5990528763808513177
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
'0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
self.gen.seed('rachel', version=1) # hash('rachel') == -9091735575445484789
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
'0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
self.gen.seed('', version=1) # hash('') == 0
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
'0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
def test_bug_31478(self):
# There shouldn't be an assertion failure in _random.Random.seed() in
# case the argument has a bad __abs__() method.
class BadInt(int):
def __abs__(self):
return None
try:
self.gen.seed(BadInt())
except TypeError:
pass
def test_bug_31482(self):
# Verify that version 1 seeds are unaffected by hash randomization
# when the seeds are expressed as bytes rather than strings.
# The hash(b) values listed are the Python2.7 hash() values
# which were used for seeding.
self.gen.seed(b'nofar', version=1) # hash('nofar') == 5990528763808513177
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
'0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
self.gen.seed(b'rachel', version=1) # hash('rachel') == -9091735575445484789
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
'0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
self.gen.seed(b'', version=1) # hash('') == 0
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
'0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
b = b'\x00\x20\x40\x60\x80\xA0\xC0\xE0\xF0'
self.gen.seed(b, version=1) # hash(b) == 5015594239749365497
self.assertEqual([self.gen.random().hex() for i in range(4)],
['0x1.52c2fde444d23p-1', '0x1.875174f0daea4p-2',
'0x1.9e9b2c50e5cd2p-1', '0x1.fa57768bd321cp-2'])
def test_setstate_first_arg(self):
self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
def test_setstate_middle_arg(self):
start_state = self.gen.getstate()
# Wrong type, s/b tuple
self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
# Wrong length, s/b 625
self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
# Wrong type, s/b tuple of 625 ints
self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
# Last element s/b an int also
self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
# Last element s/b between 0 and 624
with self.assertRaises((ValueError, OverflowError)):
self.gen.setstate((2, (1,)*624+(625,), None))
with self.assertRaises((ValueError, OverflowError)):
self.gen.setstate((2, (1,)*624+(-1,), None))
# Failed calls to setstate() should not have changed the state.
bits100 = self.gen.getrandbits(100)
self.gen.setstate(start_state)
self.assertEqual(self.gen.getrandbits(100), bits100)
# Little trick to make "tuple(x % (2**32) for x in internalstate)"
# raise ValueError. I cannot think of a simple way to achieve this, so
# I am opting for using a generator as the middle argument of setstate
# which attempts to cast a NaN to integer.
state_values = self.gen.getstate()[1]
state_values = list(state_values)
state_values[-1] = float('nan')
state = (int(x) for x in state_values)
self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
def test_referenceImplementation(self):
# Compare the python implementation with results from the original
# code. Create 2000 53-bit precision random floats. Compare only
# the last ten entries to show that the independent implementations
# are tracking. Here is the main() function needed to create the
# list of expected random numbers:
# void main(void){
# int i;
# unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
# init_by_array(init, length);
# for (i=0; i<2000; i++) {
# printf("%.15f ", genrand_res53());
# if (i%5==4) printf("\n");
# }
# }
expected = [0.45839803073713259,
0.86057815201978782,
0.92848331726782152,
0.35932681119782461,
0.081823493762449573,
0.14332226470169329,
0.084297823823520024,
0.53814864671831453,
0.089215024911993401,
0.78486196105372907]
self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertAlmostEqual(a,e,places=14)
def test_strong_reference_implementation(self):
# Like test_referenceImplementation, but checks for exact bit-level
# equality. This should pass on any box where C double contains
# at least 53 bits of precision (the underlying algorithm suffers
# no rounding errors -- all results are exact).
from math import ldexp
expected = [0x0eab3258d2231f,
0x1b89db315277a5,
0x1db622a5518016,
0x0b7f9af0d575bf,
0x029e4c4db82240,
0x04961892f5d673,
0x02b291598e4589,
0x11388382c15694,
0x02dad977c9e1fe,
0x191d96d4d334c6]
self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertEqual(int(ldexp(a, 53)), e)
def test_long_seed(self):
# This is most interesting to run in debug mode, just to make sure
# nothing blows up. Under the covers, a dynamically resized array
# is allocated, consuming space proportional to the number of bits
# in the seed. Unfortunately, that's a quadratic-time algorithm,
# so don't make this horribly big.
seed = (1 << (10000 * 8)) - 1 # about 10K bytes
self.gen.seed(seed)
def test_53_bits_per_float(self):
# This should pass whenever a C double has 53 bit precision.
span = 2 ** 53
cum = 0
for i in range(100):
cum |= int(self.gen.random() * span)
self.assertEqual(cum, span-1)
def test_bigrand(self):
# The randrange routine should build-up the required number of bits
# in stages so that all bit positions are active.
span = 2 ** 500
cum = 0
for i in range(100):
r = self.gen.randrange(span)
self.assertTrue(0 <= r < span)
cum |= r
self.assertEqual(cum, span-1)
def test_bigrand_ranges(self):
for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
start = self.gen.randrange(2 ** (i-2))
stop = self.gen.randrange(2 ** i)
if stop <= start:
continue
self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
def test_rangelimits(self):
for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
self.assertEqual(set(range(start,stop)),
set([self.gen.randrange(start,stop) for i in range(100)]))
def test_getrandbits(self):
super().test_getrandbits()
# Verify cross-platform repeatability
self.gen.seed(1234567)
self.assertEqual(self.gen.getrandbits(100),
97904845777343510404718956115)
self.gen.seed(1234567)
self.assertEqual(self.gen.getrandbits(MyIndex(100)),
97904845777343510404718956115)
def test_getrandbits_2G_bits(self):
size = 2**31
self.gen.seed(1234567)
x = self.gen.getrandbits(size)
self.assertEqual(x.bit_length(), size)
self.assertEqual(x & (2**100-1), 890186470919986886340158459475)
self.assertEqual(x >> (size-100), 1226514312032729439655761284440)
@support.bigmemtest(size=2**32, memuse=1/8+2/15, dry_run=False)
def test_getrandbits_4G_bits(self, size):
self.gen.seed(1234568)
x = self.gen.getrandbits(size)
self.assertEqual(x.bit_length(), size)
self.assertEqual(x & (2**100-1), 287241425661104632871036099814)
self.assertEqual(x >> (size-100), 739728759900339699429794460738)
def test_randrange_uses_getrandbits(self):
# Verify use of getrandbits by randrange
# Use same seed as in the cross-platform repeatability test
# in test_getrandbits above.
self.gen.seed(1234567)
# If randrange uses getrandbits, it should pick getrandbits(100)
# when called with a 100-bits stop argument.
self.assertEqual(self.gen.randrange(2**99),
97904845777343510404718956115)
def test_randbelow_logic(self, _log=log, int=int):
# check bitcount transition points: 2**i and 2**(i+1)-1
# show that: k = int(1.001 + _log(n, 2))
# is equal to or one greater than the number of bits in n
for i in range(1, 1000):
n = 1 << i # check an exact power of two
numbits = i+1
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits)
self.assertEqual(n, 2**(k-1))
n += n - 1 # check 1 below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertIn(k, [numbits, numbits+1])
self.assertTrue(2**k > n > 2**(k-2))
n -= n >> 15 # check a little farther below the next power of two
k = int(1.00001 + _log(n, 2))
self.assertEqual(k, numbits) # note the stronger assertion
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
def test_randbelow_without_getrandbits(self):
# Random._randbelow() can only use random() when the built-in one
# has been overridden but no new getrandbits() method was supplied.
maxsize = 1<<random.BPF
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# Population range too large (n >= maxsize)
self.gen._randbelow_without_getrandbits(
maxsize+1, maxsize=maxsize
)
self.gen._randbelow_without_getrandbits(5640, maxsize=maxsize)
# This might be going too far to test a single line, but because of our
# noble aim of achieving 100% test coverage we need to write a case in
# which the following line in Random._randbelow() gets executed:
#
# rem = maxsize % n
# limit = (maxsize - rem) / maxsize
# r = random()
# while r >= limit:
# r = random() # <== *This line* <==<
#
# Therefore, to guarantee that the while loop is executed at least
# once, we need to mock random() so that it returns a number greater
# than 'limit' the first time it gets called.
n = 42
epsilon = 0.01
limit = (maxsize - (maxsize % n)) / maxsize
with unittest.mock.patch.object(random.Random, 'random') as random_mock:
random_mock.side_effect = [limit + epsilon, limit - epsilon]
self.gen._randbelow_without_getrandbits(n, maxsize=maxsize)
self.assertEqual(random_mock.call_count, 2)
def test_randrange_bug_1590891(self):
start = 1000000000000
stop = -100000000000000000000
step = -200
x = self.gen.randrange(start, stop, step)
self.assertTrue(stop < x <= start)
self.assertEqual((x+stop)%step, 0)
def test_choices_algorithms(self):
# The various ways of specifying weights should produce the same results
choices = self.gen.choices
n = 104729
self.gen.seed(8675309)
a = self.gen.choices(range(n), k=10000)
self.gen.seed(8675309)
b = self.gen.choices(range(n), [1]*n, k=10000)
self.assertEqual(a, b)
self.gen.seed(8675309)
c = self.gen.choices(range(n), cum_weights=range(1, n+1), k=10000)
self.assertEqual(a, c)
# American Roulette
population = ['Red', 'Black', 'Green']
weights = [18, 18, 2]
cum_weights = [18, 36, 38]
expanded_population = ['Red'] * 18 + ['Black'] * 18 + ['Green'] * 2
self.gen.seed(9035768)
a = self.gen.choices(expanded_population, k=10000)
self.gen.seed(9035768)
b = self.gen.choices(population, weights, k=10000)
self.assertEqual(a, b)
self.gen.seed(9035768)
c = self.gen.choices(population, cum_weights=cum_weights, k=10000)
self.assertEqual(a, c)
def test_randbytes(self):
super().test_randbytes()
# Mersenne Twister randbytes() is deterministic
# and does not depend on the endian and bitness.
seed = 8675309
expected = b'3\xa8\xf9f\xf4\xa4\xd06\x19\x8f\x9f\x82\x02oe\xf0'
self.gen.seed(seed)
self.assertEqual(self.gen.randbytes(16), expected)
# randbytes(0) must not consume any entropy
self.gen.seed(seed)
self.assertEqual(self.gen.randbytes(0), b'')
self.assertEqual(self.gen.randbytes(16), expected)
# Four randbytes(4) calls give the same output than randbytes(16)
self.gen.seed(seed)
self.assertEqual(b''.join([self.gen.randbytes(4) for _ in range(4)]),
expected)
# Each randbytes(1), randbytes(2) or randbytes(3) call consumes
# 4 bytes of entropy
self.gen.seed(seed)
expected1 = expected[3::4]
self.assertEqual(b''.join(self.gen.randbytes(1) for _ in range(4)),
expected1)
self.gen.seed(seed)
expected2 = b''.join(expected[i + 2: i + 4]
for i in range(0, len(expected), 4))
self.assertEqual(b''.join(self.gen.randbytes(2) for _ in range(4)),
expected2)
self.gen.seed(seed)
expected3 = b''.join(expected[i + 1: i + 4]
for i in range(0, len(expected), 4))
self.assertEqual(b''.join(self.gen.randbytes(3) for _ in range(4)),
expected3)
def test_randbytes_getrandbits(self):
# There is a simple relation between randbytes() and getrandbits()
seed = 2849427419
gen2 = random.Random()
self.gen.seed(seed)
gen2.seed(seed)
for n in range(9):
self.assertEqual(self.gen.randbytes(n),
gen2.getrandbits(n * 8).to_bytes(n, 'little'))
@support.bigmemtest(size=2**29, memuse=1+16/15, dry_run=False)
def test_randbytes_256M(self, size):
self.gen.seed(2849427419)
x = self.gen.randbytes(size)
self.assertEqual(len(x), size)
self.assertEqual(x[:12].hex(), 'f6fd9ae63855ab91ea238b4f')
self.assertEqual(x[-12:].hex(), '0e7af69a84ee99bf4a11becc')
def test_sample_counts_equivalence(self):
# Test the documented strong equivalence to a sample with repeated elements.
# We run this test on random.Random() which makes deterministic selections
# for a given seed value.
sample = self.gen.sample
seed = self.gen.seed
colors = ['red', 'green', 'blue', 'orange', 'black', 'amber']
counts = [500, 200, 20, 10, 5, 1 ]
k = 700
seed(8675309)
s1 = sample(colors, counts=counts, k=k)
seed(8675309)
expanded = [color for (color, count) in zip(colors, counts) for i in range(count)]
self.assertEqual(len(expanded), sum(counts))
s2 = sample(expanded, k=k)
self.assertEqual(s1, s2)
pop = 'abcdefghi'
counts = [10, 9, 8, 7, 6, 5, 4, 3, 2]
seed(8675309)
s1 = ''.join(sample(pop, counts=counts, k=30))
expanded = ''.join([letter for (letter, count) in zip(pop, counts) for i in range(count)])
seed(8675309)
s2 = ''.join(sample(expanded, k=30))
self.assertEqual(s1, s2)
def gamma(z, sqrt2pi=(2.0*pi)**0.5):
# Reflection to right half of complex plane
if z < 0.5:
return pi / sin(pi*z) / gamma(1.0-z)
# Lanczos approximation with g=7
az = z + (7.0 - 0.5)
return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
0.9999999999995183,
676.5203681218835 / z,
-1259.139216722289 / (z+1.0),
771.3234287757674 / (z+2.0),
-176.6150291498386 / (z+3.0),
12.50734324009056 / (z+4.0),
-0.1385710331296526 / (z+5.0),
0.9934937113930748e-05 / (z+6.0),
0.1659470187408462e-06 / (z+7.0),
])
class TestDistributions(unittest.TestCase):
def test_zeroinputs(self):
# Verify that distributions can handle a series of zero inputs'
g = random.Random()
x = [g.random() for i in range(50)] + [0.0]*5
g.random = x[:].pop; g.uniform(1,10)
g.random = x[:].pop; g.paretovariate(1.0)
g.random = x[:].pop; g.expovariate(1.0)
g.random = x[:].pop; g.expovariate()
g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
g.random = x[:].pop; g.normalvariate(0.0, 1.0)
g.random = x[:].pop; g.gauss(0.0, 1.0)
g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
g.random = x[:].pop; g.gammavariate(0.01, 1.0)
g.random = x[:].pop; g.gammavariate(1.0, 1.0)
g.random = x[:].pop; g.gammavariate(200.0, 1.0)
g.random = x[:].pop; g.betavariate(3.0, 3.0)
g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
def test_avg_std(self):
# Use integration to test distribution average and standard deviation.
# Only works for distributions which do not consume variates in pairs
g = random.Random()
N = 5000
x = [i/float(N) for i in range(1,N)]
for variate, args, mu, sigmasqrd in [
(g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
(g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
(g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
(g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
(g.paretovariate, (5.0,), 5.0/(5.0-1),
5.0/((5.0-1)**2*(5.0-2))),
(g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
g.random = x[:].pop
y = []
for i in range(len(x)):
try:
y.append(variate(*args))
except IndexError:
pass
s1 = s2 = 0
for e in y:
s1 += e
s2 += (e - mu) ** 2
N = len(y)
self.assertAlmostEqual(s1/N, mu, places=2,
msg='%s%r' % (variate.__name__, args))
self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
msg='%s%r' % (variate.__name__, args))
def test_constant(self):
g = random.Random()
N = 100
for variate, args, expected in [
(g.uniform, (10.0, 10.0), 10.0),
(g.triangular, (10.0, 10.0), 10.0),
(g.triangular, (10.0, 10.0, 10.0), 10.0),
(g.expovariate, (float('inf'),), 0.0),
(g.vonmisesvariate, (3.0, float('inf')), 3.0),
(g.gauss, (10.0, 0.0), 10.0),
(g.lognormvariate, (0.0, 0.0), 1.0),
(g.lognormvariate, (-float('inf'), 0.0), 0.0),
(g.normalvariate, (10.0, 0.0), 10.0),
(g.binomialvariate, (0, 0.5), 0),
(g.binomialvariate, (10, 0.0), 0),
(g.binomialvariate, (10, 1.0), 10),
(g.paretovariate, (float('inf'),), 1.0),
(g.weibullvariate, (10.0, float('inf')), 10.0),
(g.weibullvariate, (0.0, 10.0), 0.0),
]:
for i in range(N):
self.assertEqual(variate(*args), expected)
def test_binomialvariate(self):
B = random.binomialvariate
# Cover all the code paths
with self.assertRaises(ValueError):
B(n=-1) # Negative n
with self.assertRaises(ValueError):
B(n=1, p=-0.5) # Negative p
with self.assertRaises(ValueError):
B(n=1, p=1.5) # p > 1.0
self.assertEqual(B(0, 0.5), 0) # n == 0
self.assertEqual(B(10, 0.0), 0) # p == 0.0
self.assertEqual(B(10, 1.0), 10) # p == 1.0
self.assertTrue(B(1, 0.3) in {0, 1}) # n == 1 fast path
self.assertTrue(B(1, 0.9) in {0, 1}) # n == 1 fast path
self.assertTrue(B(1, 0.0) in {0}) # n == 1 fast path
self.assertTrue(B(1, 1.0) in {1}) # n == 1 fast path
# BG method very small p
self.assertEqual(B(5, 1e-18), 0)
# BG method p <= 0.5 and n*p=1.25
self.assertTrue(B(5, 0.25) in set(range(6)))
# BG method p >= 0.5 and n*(1-p)=1.25
self.assertTrue(B(5, 0.75) in set(range(6)))
# BTRS method p <= 0.5 and n*p=25
self.assertTrue(B(100, 0.25) in set(range(101)))
# BTRS method p > 0.5 and n*(1-p)=25
self.assertTrue(B(100, 0.75) in set(range(101)))
# Statistical tests chosen such that they are
# exceedingly unlikely to ever fail for correct code.
# BG code path
# Expected dist: [31641, 42188, 21094, 4688, 391]
c = Counter(B(4, 0.25) for i in range(100_000))
self.assertTrue(29_641 <= c[0] <= 33_641, c)
self.assertTrue(40_188 <= c[1] <= 44_188)
self.assertTrue(19_094 <= c[2] <= 23_094)
self.assertTrue(2_688 <= c[3] <= 6_688)
self.assertEqual(set(c), {0, 1, 2, 3, 4})
# BTRS code path
# Sum of c[20], c[21], c[22], c[23], c[24] expected to be 36,214
c = Counter(B(100, 0.25) for i in range(100_000))
self.assertTrue(34_214 <= c[20]+c[21]+c[22]+c[23]+c[24] <= 38_214)
self.assertTrue(set(c) <= set(range(101)))
self.assertEqual(c.total(), 100_000)
# Demonstrate the BTRS works for huge values of n
self.assertTrue(19_000_000 <= B(100_000_000, 0.2) <= 21_000_000)
self.assertTrue(89_000_000 <= B(100_000_000, 0.9) <= 91_000_000)
def test_von_mises_range(self):
# Issue 17149: von mises variates were not consistently in the
# range [0, 2*PI].
g = random.Random()
N = 100
for mu in 0.0, 0.1, 3.1, 6.2:
for kappa in 0.0, 2.3, 500.0:
for _ in range(N):
sample = g.vonmisesvariate(mu, kappa)
self.assertTrue(
0 <= sample <= random.TWOPI,
msg=("vonmisesvariate({}, {}) produced a result {} out"
" of range [0, 2*pi]").format(mu, kappa, sample))
def test_von_mises_large_kappa(self):
# Issue #17141: vonmisesvariate() was hang for large kappas
random.vonmisesvariate(0, 1e15)
random.vonmisesvariate(0, 1e100)
def test_gammavariate_errors(self):
# Both alpha and beta must be > 0.0
self.assertRaises(ValueError, random.gammavariate, -1, 3)
self.assertRaises(ValueError, random.gammavariate, 0, 2)
self.assertRaises(ValueError, random.gammavariate, 2, 0)
self.assertRaises(ValueError, random.gammavariate, 1, -3)
# There are three different possibilities in the current implementation
# of random.gammavariate(), depending on the value of 'alpha'. What we
# are going to do here is to fix the values returned by random() to
# generate test cases that provide 100% line coverage of the method.
@unittest.mock.patch('random.Random.random')
def test_gammavariate_alpha_greater_one(self, random_mock):
# #1: alpha > 1.0.
# We want the first random number to be outside the
# [1e-7, .9999999] range, so that the continue statement executes
# once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
random_mock.side_effect = [1e-8, 0.5, 0.3]
returned_value = random.gammavariate(1.1, 2.3)
self.assertAlmostEqual(returned_value, 2.53)
@unittest.mock.patch('random.Random.random')
def test_gammavariate_alpha_equal_one(self, random_mock):
# #2.a: alpha == 1.
# The execution body of the while loop executes once.
# Then random.random() returns 0.45,
# which causes while to stop looping and the algorithm to terminate.
random_mock.side_effect = [0.45]
returned_value = random.gammavariate(1.0, 3.14)
self.assertAlmostEqual(returned_value, 1.877208182372648)
@unittest.mock.patch('random.Random.random')
def test_gammavariate_alpha_equal_one_equals_expovariate(self, random_mock):
# #2.b: alpha == 1.
# It must be equivalent of calling expovariate(1.0 / beta).
beta = 3.14
random_mock.side_effect = [1e-8, 1e-8]
gammavariate_returned_value = random.gammavariate(1.0, beta)
expovariate_returned_value = random.expovariate(1.0 / beta)
self.assertAlmostEqual(gammavariate_returned_value, expovariate_returned_value)
@unittest.mock.patch('random.Random.random')
def test_gammavariate_alpha_between_zero_and_one(self, random_mock):
# #3: 0 < alpha < 1.
# This is the most complex region of code to cover,
# as there are multiple if-else statements. Let's take a look at the
# source code, and determine the values that we need accordingly:
#
# while 1:
# u = random()
# b = (_e + alpha)/_e
# p = b*u
# if p <= 1.0: # <=== (A)
# x = p ** (1.0/alpha)
# else: # <=== (B)
# x = -_log((b-p)/alpha)
# u1 = random()
# if p > 1.0: # <=== (C)
# if u1 <= x ** (alpha - 1.0): # <=== (D)
# break
# elif u1 <= _exp(-x): # <=== (E)
# break
# return x * beta
#
# First, we want (A) to be True. For that we need that:
# b*random() <= 1.0
# r1 = random() <= 1.0 / b
#
# We now get to the second if-else branch, and here, since p <= 1.0,
# (C) is False and we take the elif branch, (E). For it to be True,
# so that the break is executed, we need that:
# r2 = random() <= _exp(-x)
# r2 <= _exp(-(p ** (1.0/alpha)))
# r2 <= _exp(-((b*r1) ** (1.0/alpha)))
_e = random._e
_exp = random._exp
_log = random._log
alpha = 0.35
beta = 1.45
b = (_e + alpha)/_e
epsilon = 0.01
r1 = 0.8859296441566 # 1.0 / b
r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
# These four "random" values result in the following trace:
# (A) True, (E) False --> [next iteration of while]
# (A) True, (E) True --> [while loop breaks]
random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
returned_value = random.gammavariate(alpha, beta)
self.assertAlmostEqual(returned_value, 1.4499999999997544)
# Let's now make (A) be False. If this is the case, when we get to the
# second if-else 'p' is greater than 1, so (C) evaluates to True. We
# now encounter a second if statement, (D), which in order to execute
# must satisfy the following condition:
# r2 <= x ** (alpha - 1.0)
# r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
# r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
r2 = 0.9445400408898141
# And these four values result in the following trace:
# (B) and (C) True, (D) False --> [next iteration of while]
# (B) and (C) True, (D) True [while loop breaks]
random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
returned_value = random.gammavariate(alpha, beta)
self.assertAlmostEqual(returned_value, 1.5830349561760781)
@unittest.mock.patch('random.Random.gammavariate')
def test_betavariate_return_zero(self, gammavariate_mock):
# betavariate() returns zero when the Gamma distribution
# that it uses internally returns this same value.
gammavariate_mock.return_value = 0.0
self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
class TestRandomSubclassing(unittest.TestCase):
def test_random_subclass_with_kwargs(self):
# SF bug #1486663 -- this used to erroneously raise a TypeError
class Subclass(random.Random):
def __init__(self, newarg=None):
random.Random.__init__(self)
Subclass(newarg=1)
def test_subclasses_overriding_methods(self):
# Subclasses with an overridden random, but only the original
# getrandbits method should not rely on getrandbits in for randrange,
# but should use a getrandbits-independent implementation instead.
# subclass providing its own random **and** getrandbits methods
# like random.SystemRandom does => keep relying on getrandbits for
# randrange
class SubClass1(random.Random):
def random(self):
called.add('SubClass1.random')
return random.Random.random(self)
def getrandbits(self, n):
called.add('SubClass1.getrandbits')
return random.Random.getrandbits(self, n)
called = set()
SubClass1().randrange(42)
self.assertEqual(called, {'SubClass1.getrandbits'})
# subclass providing only random => can only use random for randrange
class SubClass2(random.Random):
def random(self):
called.add('SubClass2.random')
return random.Random.random(self)
called = set()
SubClass2().randrange(42)
self.assertEqual(called, {'SubClass2.random'})
# subclass defining getrandbits to complement its inherited random
# => can now rely on getrandbits for randrange again
class SubClass3(SubClass2):
def getrandbits(self, n):
called.add('SubClass3.getrandbits')
return random.Random.getrandbits(self, n)
called = set()
SubClass3().randrange(42)
self.assertEqual(called, {'SubClass3.getrandbits'})
# subclass providing only random and inherited getrandbits
# => random takes precedence
class SubClass4(SubClass3):
def random(self):
called.add('SubClass4.random')
return random.Random.random(self)
called = set()
SubClass4().randrange(42)
self.assertEqual(called, {'SubClass4.random'})
# Following subclasses don't define random or getrandbits directly,
# but inherit them from classes which are not subclasses of Random
class Mixin1:
def random(self):
called.add('Mixin1.random')
return random.Random.random(self)
class Mixin2:
def getrandbits(self, n):
called.add('Mixin2.getrandbits')
return random.Random.getrandbits(self, n)
class SubClass5(Mixin1, random.Random):
pass
called = set()
SubClass5().randrange(42)
self.assertEqual(called, {'Mixin1.random'})
class SubClass6(Mixin2, random.Random):
pass
called = set()
SubClass6().randrange(42)
self.assertEqual(called, {'Mixin2.getrandbits'})
class SubClass7(Mixin1, Mixin2, random.Random):
pass
called = set()
SubClass7().randrange(42)
self.assertEqual(called, {'Mixin1.random'})
class SubClass8(Mixin2, Mixin1, random.Random):
pass
called = set()
SubClass8().randrange(42)
self.assertEqual(called, {'Mixin2.getrandbits'})
class TestModule(unittest.TestCase):
def testMagicConstants(self):
self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
self.assertAlmostEqual(random.TWOPI, 6.28318530718)
self.assertAlmostEqual(random.LOG4, 1.38629436111989)
self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
def test__all__(self):
# tests validity but not completeness of the __all__ list
self.assertTrue(set(random.__all__) <= set(dir(random)))
@test.support.requires_fork()
def test_after_fork(self):
# Test the global Random instance gets reseeded in child
r, w = os.pipe()
pid = os.fork()
if pid == 0:
# child process
try:
val = random.getrandbits(128)
with open(w, "w") as f:
f.write(str(val))
finally:
os._exit(0)
else:
# parent process
os.close(w)
val = random.getrandbits(128)
with open(r, "r") as f:
child_val = eval(f.read())
self.assertNotEqual(val, child_val)
support.wait_process(pid, exitcode=0)
class CommandLineTest(unittest.TestCase):
def test_parse_args(self):
args, help_text = random._parse_args(shlex.split("--choice a b c"))
self.assertEqual(args.choice, ["a", "b", "c"])
self.assertTrue(help_text.startswith("usage: "))
args, help_text = random._parse_args(shlex.split("--integer 5"))
self.assertEqual(args.integer, 5)
self.assertTrue(help_text.startswith("usage: "))
args, help_text = random._parse_args(shlex.split("--float 2.5"))
self.assertEqual(args.float, 2.5)
self.assertTrue(help_text.startswith("usage: "))
args, help_text = random._parse_args(shlex.split("a b c"))
self.assertEqual(args.input, ["a", "b", "c"])
self.assertTrue(help_text.startswith("usage: "))
args, help_text = random._parse_args(shlex.split("5"))
self.assertEqual(args.input, ["5"])
self.assertTrue(help_text.startswith("usage: "))
args, help_text = random._parse_args(shlex.split("2.5"))
self.assertEqual(args.input, ["2.5"])
self.assertTrue(help_text.startswith("usage: "))
def test_main(self):
for command, expected in [
("--choice a b c", "b"),
('"a b c"', "b"),
("a b c", "b"),
("--choice 'a a' 'b b' 'c c'", "b b"),
("'a a' 'b b' 'c c'", "b b"),
("--integer 5", 4),
("5", 4),
("--float 2.5", 2.1110546288126204),
("2.5", 2.1110546288126204),
]:
random.seed(0)
self.assertEqual(random.main(shlex.split(command)), expected)
if __name__ == "__main__":
unittest.main()
|