1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
from test import support
import random
import unittest
from functools import cmp_to_key
verbose = support.verbose
nerrors = 0
def check(tag, expected, raw, compare=None):
global nerrors
if verbose:
print(" checking", tag)
orig = raw[:] # save input in case of error
if compare:
raw.sort(key=cmp_to_key(compare))
else:
raw.sort()
if len(expected) != len(raw):
print("error in", tag)
print("length mismatch;", len(expected), len(raw))
print(expected)
print(orig)
print(raw)
nerrors += 1
return
for i, good in enumerate(expected):
maybe = raw[i]
if good is not maybe:
print("error in", tag)
print("out of order at index", i, good, maybe)
print(expected)
print(orig)
print(raw)
nerrors += 1
return
class TestBase(unittest.TestCase):
def testStressfully(self):
# Try a variety of sizes at and around powers of 2, and at powers of 10.
sizes = [0]
for power in range(1, 10):
n = 2 ** power
sizes.extend(range(n-1, n+2))
sizes.extend([10, 100, 1000])
class Complains(object):
maybe_complain = True
def __init__(self, i):
self.i = i
def __lt__(self, other):
if Complains.maybe_complain and random.random() < 0.001:
if verbose:
print(" complaining at", self, other)
raise RuntimeError
return self.i < other.i
def __repr__(self):
return "Complains(%d)" % self.i
class Stable(object):
def __init__(self, key, i):
self.key = key
self.index = i
def __lt__(self, other):
return self.key < other.key
def __repr__(self):
return "Stable(%d, %d)" % (self.key, self.index)
for n in sizes:
x = list(range(n))
if verbose:
print("Testing size", n)
s = x[:]
check("identity", x, s)
s = x[:]
s.reverse()
check("reversed", x, s)
s = x[:]
random.shuffle(s)
check("random permutation", x, s)
y = x[:]
y.reverse()
s = x[:]
check("reversed via function", y, s, lambda a, b: (b>a)-(b<a))
if verbose:
print(" Checking against an insane comparison function.")
print(" If the implementation isn't careful, this may segfault.")
s = x[:]
s.sort(key=cmp_to_key(lambda a, b: int(random.random() * 3) - 1))
check("an insane function left some permutation", x, s)
if len(x) >= 2:
def bad_key(x):
raise RuntimeError
s = x[:]
self.assertRaises(RuntimeError, s.sort, key=bad_key)
x = [Complains(i) for i in x]
s = x[:]
random.shuffle(s)
Complains.maybe_complain = True
it_complained = False
try:
s.sort()
except RuntimeError:
it_complained = True
if it_complained:
Complains.maybe_complain = False
check("exception during sort left some permutation", x, s)
s = [Stable(random.randrange(10), i) for i in range(n)]
augmented = [(e, e.index) for e in s]
augmented.sort() # forced stable because ties broken by index
x = [e for e, i in augmented] # a stable sort of s
check("stability", x, s)
def test_small_stability(self):
from itertools import product
from operator import itemgetter
# Exhaustively test stability across all lists of small lengths
# and only a few distinct elements.
# This can provoke edge cases that randomization is unlikely to find.
# But it can grow very expensive quickly, so don't overdo it.
NELTS = 3
MAXSIZE = 9
pick0 = itemgetter(0)
for length in range(MAXSIZE + 1):
# There are NELTS ** length distinct lists.
for t in product(range(NELTS), repeat=length):
xs = list(zip(t, range(length)))
# Stability forced by index in each element.
forced = sorted(xs)
# Use key= to hide the index from compares.
native = sorted(xs, key=pick0)
self.assertEqual(forced, native)
#==============================================================================
class TestBugs(unittest.TestCase):
def test_bug453523(self):
# bug 453523 -- list.sort() crasher.
# If this fails, the most likely outcome is a core dump.
# Mutations during a list sort should raise a ValueError.
class C:
def __lt__(self, other):
if L and random.random() < 0.75:
L.pop()
else:
L.append(3)
return random.random() < 0.5
L = [C() for i in range(50)]
self.assertRaises(ValueError, L.sort)
def test_undetected_mutation(self):
# Python 2.4a1 did not always detect mutation
memorywaster = []
for i in range(20):
def mutating_cmp(x, y):
L.append(3)
L.pop()
return (x > y) - (x < y)
L = [1,2]
self.assertRaises(ValueError, L.sort, key=cmp_to_key(mutating_cmp))
def mutating_cmp(x, y):
L.append(3)
del L[:]
return (x > y) - (x < y)
self.assertRaises(ValueError, L.sort, key=cmp_to_key(mutating_cmp))
memorywaster = [memorywaster]
#==============================================================================
class TestDecorateSortUndecorate(unittest.TestCase):
def test_decorated(self):
data = 'The quick Brown fox Jumped over The lazy Dog'.split()
copy = data[:]
random.shuffle(data)
data.sort(key=str.lower)
def my_cmp(x, y):
xlower, ylower = x.lower(), y.lower()
return (xlower > ylower) - (xlower < ylower)
copy.sort(key=cmp_to_key(my_cmp))
def test_baddecorator(self):
data = 'The quick Brown fox Jumped over The lazy Dog'.split()
self.assertRaises(TypeError, data.sort, key=lambda x,y: 0)
def test_stability(self):
data = [(random.randrange(100), i) for i in range(200)]
copy = data[:]
data.sort(key=lambda t: t[0]) # sort on the random first field
copy.sort() # sort using both fields
self.assertEqual(data, copy) # should get the same result
def test_key_with_exception(self):
# Verify that the wrapper has been removed
data = list(range(-2, 2))
dup = data[:]
self.assertRaises(ZeroDivisionError, data.sort, key=lambda x: 1/x)
self.assertEqual(data, dup)
def test_key_with_mutation(self):
data = list(range(10))
def k(x):
del data[:]
data[:] = range(20)
return x
self.assertRaises(ValueError, data.sort, key=k)
def test_key_with_mutating_del(self):
data = list(range(10))
class SortKiller(object):
def __init__(self, x):
pass
def __del__(self):
del data[:]
data[:] = range(20)
def __lt__(self, other):
return id(self) < id(other)
self.assertRaises(ValueError, data.sort, key=SortKiller)
def test_key_with_mutating_del_and_exception(self):
data = list(range(10))
## dup = data[:]
class SortKiller(object):
def __init__(self, x):
if x > 2:
raise RuntimeError
def __del__(self):
del data[:]
data[:] = list(range(20))
self.assertRaises(RuntimeError, data.sort, key=SortKiller)
## major honking subtlety: we *can't* do:
##
## self.assertEqual(data, dup)
##
## because there is a reference to a SortKiller in the
## traceback and by the time it dies we're outside the call to
## .sort() and so the list protection gimmicks are out of
## date (this cost some brain cells to figure out...).
def test_reverse(self):
data = list(range(100))
random.shuffle(data)
data.sort(reverse=True)
self.assertEqual(data, list(range(99,-1,-1)))
def test_reverse_stability(self):
data = [(random.randrange(100), i) for i in range(200)]
copy1 = data[:]
copy2 = data[:]
def my_cmp(x, y):
x0, y0 = x[0], y[0]
return (x0 > y0) - (x0 < y0)
def my_cmp_reversed(x, y):
x0, y0 = x[0], y[0]
return (y0 > x0) - (y0 < x0)
data.sort(key=cmp_to_key(my_cmp), reverse=True)
copy1.sort(key=cmp_to_key(my_cmp_reversed))
self.assertEqual(data, copy1)
copy2.sort(key=lambda x: x[0], reverse=True)
self.assertEqual(data, copy2)
#==============================================================================
def check_against_PyObject_RichCompareBool(self, L):
## The idea here is to exploit the fact that unsafe_tuple_compare uses
## PyObject_RichCompareBool for the second elements of tuples. So we have,
## for (most) L, sorted(L) == [y[1] for y in sorted([(0,x) for x in L])]
## This will work as long as __eq__ => not __lt__ for all the objects in L,
## which holds for all the types used below.
##
## Testing this way ensures that the optimized implementation remains consistent
## with the naive implementation, even if changes are made to any of the
## richcompares.
##
## This function tests sorting for three lists (it randomly shuffles each one):
## 1. L
## 2. [(x,) for x in L]
## 3. [((x,),) for x in L]
random.seed(0)
random.shuffle(L)
L_1 = L[:]
L_2 = [(x,) for x in L]
L_3 = [((x,),) for x in L]
for L in [L_1, L_2, L_3]:
optimized = sorted(L)
reference = [y[1] for y in sorted([(0,x) for x in L])]
for (opt, ref) in zip(optimized, reference):
self.assertIs(opt, ref)
#note: not assertEqual! We want to ensure *identical* behavior.
class TestOptimizedCompares(unittest.TestCase):
def test_safe_object_compare(self):
heterogeneous_lists = [[0, 'foo'],
[0.0, 'foo'],
[('foo',), 'foo']]
for L in heterogeneous_lists:
self.assertRaises(TypeError, L.sort)
self.assertRaises(TypeError, [(x,) for x in L].sort)
self.assertRaises(TypeError, [((x,),) for x in L].sort)
float_int_lists = [[1,1.1],
[1<<70,1.1],
[1.1,1],
[1.1,1<<70]]
for L in float_int_lists:
check_against_PyObject_RichCompareBool(self, L)
def test_unsafe_object_compare(self):
# This test is by ppperry. It ensures that unsafe_object_compare is
# verifying ms->key_richcompare == tp->richcompare before comparing.
class WackyComparator(int):
def __lt__(self, other):
elem.__class__ = WackyList2
return int.__lt__(self, other)
class WackyList1(list):
pass
class WackyList2(list):
def __lt__(self, other):
raise ValueError
L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
elem = L[-1]
with self.assertRaises(ValueError):
L.sort()
L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
elem = L[-1]
with self.assertRaises(ValueError):
[(x,) for x in L].sort()
# The following test is also by ppperry. It ensures that
# unsafe_object_compare handles Py_NotImplemented appropriately.
class PointlessComparator:
def __lt__(self, other):
return NotImplemented
L = [PointlessComparator(), PointlessComparator()]
self.assertRaises(TypeError, L.sort)
self.assertRaises(TypeError, [(x,) for x in L].sort)
# The following tests go through various types that would trigger
# ms->key_compare = unsafe_object_compare
lists = [list(range(100)) + [(1<<70)],
[str(x) for x in range(100)] + ['\uffff'],
[bytes(x) for x in range(100)],
[cmp_to_key(lambda x,y: x<y)(x) for x in range(100)]]
for L in lists:
check_against_PyObject_RichCompareBool(self, L)
def test_unsafe_latin_compare(self):
check_against_PyObject_RichCompareBool(self, [str(x) for
x in range(100)])
def test_unsafe_long_compare(self):
check_against_PyObject_RichCompareBool(self, [x for
x in range(100)])
def test_unsafe_float_compare(self):
check_against_PyObject_RichCompareBool(self, [float(x) for
x in range(100)])
def test_unsafe_tuple_compare(self):
# This test was suggested by Tim Peters. It verifies that the tuple
# comparison respects the current tuple compare semantics, which do not
# guarantee that x < x <=> (x,) < (x,)
#
# Note that we don't have to put anything in tuples here, because
# the check function does a tuple test automatically.
check_against_PyObject_RichCompareBool(self, [float('nan')]*100)
check_against_PyObject_RichCompareBool(self, [float('nan') for
_ in range(100)])
def test_not_all_tuples(self):
self.assertRaises(TypeError, [(1.0, 1.0), (False, "A"), 6].sort)
self.assertRaises(TypeError, [('a', 1), (1, 'a')].sort)
self.assertRaises(TypeError, [(1, 'a'), ('a', 1)].sort)
def test_none_in_tuples(self):
expected = [(None, 1), (None, 2)]
actual = sorted([(None, 2), (None, 1)])
self.assertEqual(actual, expected)
#==============================================================================
if __name__ == "__main__":
unittest.main()
|