1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
"""
Define names for built-in types that aren't directly accessible as a builtin.
"""
import sys
# Iterators in Python aren't a matter of type but of protocol. A large
# and changing number of builtin types implement *some* flavor of
# iterator. Don't check the type! Use hasattr to check for both
# "__iter__" and "__next__" attributes instead.
def _f(): pass
FunctionType = type(_f)
LambdaType = type(lambda: None) # Same as FunctionType
CodeType = type(_f.__code__)
MappingProxyType = type(type.__dict__)
SimpleNamespace = type(sys.implementation)
def _cell_factory():
a = 1
def f():
nonlocal a
return f.__closure__[0]
CellType = type(_cell_factory())
def _g():
yield 1
GeneratorType = type(_g())
async def _c(): pass
_c = _c()
CoroutineType = type(_c)
_c.close() # Prevent ResourceWarning
async def _ag():
yield
_ag = _ag()
AsyncGeneratorType = type(_ag)
class _C:
def _m(self): pass
MethodType = type(_C()._m)
BuiltinFunctionType = type(len)
BuiltinMethodType = type([].append) # Same as BuiltinFunctionType
WrapperDescriptorType = type(object.__init__)
MethodWrapperType = type(object().__str__)
MethodDescriptorType = type(str.join)
ClassMethodDescriptorType = type(dict.__dict__['fromkeys'])
ModuleType = type(sys)
try:
raise TypeError
except TypeError as exc:
TracebackType = type(exc.__traceback__)
FrameType = type(exc.__traceback__.tb_frame)
GetSetDescriptorType = type(FunctionType.__code__)
MemberDescriptorType = type(FunctionType.__globals__)
del sys, _f, _g, _C, _c, _ag, _cell_factory # Not for export
# Provide a PEP 3115 compliant mechanism for class creation
def new_class(name, bases=(), kwds=None, exec_body=None):
"""Create a class object dynamically using the appropriate metaclass."""
resolved_bases = resolve_bases(bases)
meta, ns, kwds = prepare_class(name, resolved_bases, kwds)
if exec_body is not None:
exec_body(ns)
if resolved_bases is not bases:
ns['__orig_bases__'] = bases
return meta(name, resolved_bases, ns, **kwds)
def resolve_bases(bases):
"""Resolve MRO entries dynamically as specified by PEP 560."""
new_bases = list(bases)
updated = False
shift = 0
for i, base in enumerate(bases):
if isinstance(base, type):
continue
if not hasattr(base, "__mro_entries__"):
continue
new_base = base.__mro_entries__(bases)
updated = True
if not isinstance(new_base, tuple):
raise TypeError("__mro_entries__ must return a tuple")
else:
new_bases[i+shift:i+shift+1] = new_base
shift += len(new_base) - 1
if not updated:
return bases
return tuple(new_bases)
def prepare_class(name, bases=(), kwds=None):
"""Call the __prepare__ method of the appropriate metaclass.
Returns (metaclass, namespace, kwds) as a 3-tuple
*metaclass* is the appropriate metaclass
*namespace* is the prepared class namespace
*kwds* is an updated copy of the passed in kwds argument with any
'metaclass' entry removed. If no kwds argument is passed in, this will
be an empty dict.
"""
if kwds is None:
kwds = {}
else:
kwds = dict(kwds) # Don't alter the provided mapping
if 'metaclass' in kwds:
meta = kwds.pop('metaclass')
else:
if bases:
meta = type(bases[0])
else:
meta = type
if isinstance(meta, type):
# when meta is a type, we first determine the most-derived metaclass
# instead of invoking the initial candidate directly
meta = _calculate_meta(meta, bases)
if hasattr(meta, '__prepare__'):
ns = meta.__prepare__(name, bases, **kwds)
else:
ns = {}
return meta, ns, kwds
def _calculate_meta(meta, bases):
"""Calculate the most derived metaclass."""
winner = meta
for base in bases:
base_meta = type(base)
if issubclass(winner, base_meta):
continue
if issubclass(base_meta, winner):
winner = base_meta
continue
# else:
raise TypeError("metaclass conflict: "
"the metaclass of a derived class "
"must be a (non-strict) subclass "
"of the metaclasses of all its bases")
return winner
def get_original_bases(cls, /):
"""Return the class's "original" bases prior to modification by `__mro_entries__`.
Examples::
from typing import TypeVar, Generic, NamedTuple, TypedDict
T = TypeVar("T")
class Foo(Generic[T]): ...
class Bar(Foo[int], float): ...
class Baz(list[str]): ...
Eggs = NamedTuple("Eggs", [("a", int), ("b", str)])
Spam = TypedDict("Spam", {"a": int, "b": str})
assert get_original_bases(Bar) == (Foo[int], float)
assert get_original_bases(Baz) == (list[str],)
assert get_original_bases(Eggs) == (NamedTuple,)
assert get_original_bases(Spam) == (TypedDict,)
assert get_original_bases(int) == (object,)
"""
try:
return cls.__dict__.get("__orig_bases__", cls.__bases__)
except AttributeError:
raise TypeError(
f"Expected an instance of type, not {type(cls).__name__!r}"
) from None
class DynamicClassAttribute:
"""Route attribute access on a class to __getattr__.
This is a descriptor, used to define attributes that act differently when
accessed through an instance and through a class. Instance access remains
normal, but access to an attribute through a class will be routed to the
class's __getattr__ method; this is done by raising AttributeError.
This allows one to have properties active on an instance, and have virtual
attributes on the class with the same name. (Enum used this between Python
versions 3.4 - 3.9 .)
Subclass from this to use a different method of accessing virtual attributes
and still be treated properly by the inspect module. (Enum uses this since
Python 3.10 .)
"""
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
# next two lines make DynamicClassAttribute act the same as property
self.__doc__ = doc or fget.__doc__
self.overwrite_doc = doc is None
# support for abstract methods
self.__isabstractmethod__ = bool(getattr(fget, '__isabstractmethod__', False))
def __get__(self, instance, ownerclass=None):
if instance is None:
if self.__isabstractmethod__:
return self
raise AttributeError()
elif self.fget is None:
raise AttributeError("unreadable attribute")
return self.fget(instance)
def __set__(self, instance, value):
if self.fset is None:
raise AttributeError("can't set attribute")
self.fset(instance, value)
def __delete__(self, instance):
if self.fdel is None:
raise AttributeError("can't delete attribute")
self.fdel(instance)
def getter(self, fget):
fdoc = fget.__doc__ if self.overwrite_doc else None
result = type(self)(fget, self.fset, self.fdel, fdoc or self.__doc__)
result.overwrite_doc = self.overwrite_doc
return result
def setter(self, fset):
result = type(self)(self.fget, fset, self.fdel, self.__doc__)
result.overwrite_doc = self.overwrite_doc
return result
def deleter(self, fdel):
result = type(self)(self.fget, self.fset, fdel, self.__doc__)
result.overwrite_doc = self.overwrite_doc
return result
class _GeneratorWrapper:
# TODO: Implement this in C.
def __init__(self, gen):
self.__wrapped = gen
self.__isgen = gen.__class__ is GeneratorType
self.__name__ = getattr(gen, '__name__', None)
self.__qualname__ = getattr(gen, '__qualname__', None)
def send(self, val):
return self.__wrapped.send(val)
def throw(self, tp, *rest):
return self.__wrapped.throw(tp, *rest)
def close(self):
return self.__wrapped.close()
@property
def gi_code(self):
return self.__wrapped.gi_code
@property
def gi_frame(self):
return self.__wrapped.gi_frame
@property
def gi_running(self):
return self.__wrapped.gi_running
@property
def gi_yieldfrom(self):
return self.__wrapped.gi_yieldfrom
cr_code = gi_code
cr_frame = gi_frame
cr_running = gi_running
cr_await = gi_yieldfrom
def __next__(self):
return next(self.__wrapped)
def __iter__(self):
if self.__isgen:
return self.__wrapped
return self
__await__ = __iter__
def coroutine(func):
"""Convert regular generator function to a coroutine."""
if not callable(func):
raise TypeError('types.coroutine() expects a callable')
if (func.__class__ is FunctionType and
getattr(func, '__code__', None).__class__ is CodeType):
co_flags = func.__code__.co_flags
# Check if 'func' is a coroutine function.
# (0x180 == CO_COROUTINE | CO_ITERABLE_COROUTINE)
if co_flags & 0x180:
return func
# Check if 'func' is a generator function.
# (0x20 == CO_GENERATOR)
if co_flags & 0x20:
# TODO: Implement this in C.
co = func.__code__
# 0x100 == CO_ITERABLE_COROUTINE
func.__code__ = co.replace(co_flags=co.co_flags | 0x100)
return func
# The following code is primarily to support functions that
# return generator-like objects (for instance generators
# compiled with Cython).
# Delay functools and _collections_abc import for speeding up types import.
import functools
import _collections_abc
@functools.wraps(func)
def wrapped(*args, **kwargs):
coro = func(*args, **kwargs)
if (coro.__class__ is CoroutineType or
coro.__class__ is GeneratorType and coro.gi_code.co_flags & 0x100):
# 'coro' is a native coroutine object or an iterable coroutine
return coro
if (isinstance(coro, _collections_abc.Generator) and
not isinstance(coro, _collections_abc.Coroutine)):
# 'coro' is either a pure Python generator iterator, or it
# implements collections.abc.Generator (and does not implement
# collections.abc.Coroutine).
return _GeneratorWrapper(coro)
# 'coro' is either an instance of collections.abc.Coroutine or
# some other object -- pass it through.
return coro
return wrapped
GenericAlias = type(list[int])
UnionType = type(int | str)
EllipsisType = type(Ellipsis)
NoneType = type(None)
NotImplementedType = type(NotImplemented)
def __getattr__(name):
if name == 'CapsuleType':
import _socket
return type(_socket.CAPI)
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
__all__ = [n for n in globals() if n[:1] != '_']
__all__ += ['CapsuleType']
|