1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
* Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "mpdecimal.h"
#include <assert.h>
#include <stdio.h>
#include "bits.h"
#include "constants.h"
#include "difradix2.h"
#include "numbertheory.h"
#include "sixstep.h"
#include "transpose.h"
#include "umodarith.h"
/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
form 2**n (See literature/six-step.txt). */
/* forward transform with sign = -1 */
int
six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
#ifdef PPRO
double dmod;
uint32_t dinvmod[3];
#endif
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
return 0;
}
/* Length R transform on the rows. */
if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
/* Transpose the matrix. */
if (!transpose_pow2(a, C, R)) {
mpd_free(tparams);
return 0;
}
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, -1, modnum);
for (i = 1; i < R; i++) {
w0 = 1; /* r**(i*0): initial value for k=0 */
w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */
wstep = MULMOD(w1, w1); /* r**(2*i) */
for (k = 0; k < C; k += 2) {
mpd_uint_t x0 = a[i*C+k];
mpd_uint_t x1 = a[i*C+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
a[i*C+k] = x0;
a[i*C+k+1] = x1;
}
}
/* Length C transform on the rows. */
if (C != R) {
mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
mpd_free(tparams);
#if 0
/* An unordered transform is sufficient for convolution. */
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
return 0;
}
#endif
return 1;
}
/* reverse transform, sign = 1 */
int
inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
struct fnt_params *tparams;
mpd_size_t log2n, C, R;
mpd_uint_t kernel;
mpd_uint_t umod;
#ifdef PPRO
double dmod;
uint32_t dinvmod[3];
#endif
mpd_uint_t *x, w0, w1, wstep;
mpd_size_t i, k;
assert(ispower2(n));
assert(n >= 16);
assert(n <= MPD_MAXTRANSFORM_2N);
log2n = mpd_bsr(n);
C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
#if 0
/* An unordered transform is sufficient for convolution. */
/* Transpose the matrix, producing an R*C matrix. */
if (!transpose_pow2(a, C, R)) {
return 0;
}
#endif
/* Length C transform on the rows. */
if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
return 0;
}
for (x = a; x < a+n; x += C) {
fnt_dif2(x, C, tparams);
}
/* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
SETMODULUS(modnum);
kernel = _mpd_getkernel(n, 1, modnum);
for (i = 1; i < R; i++) {
w0 = 1;
w1 = POWMOD(kernel, i);
wstep = MULMOD(w1, w1);
for (k = 0; k < C; k += 2) {
mpd_uint_t x0 = a[i*C+k];
mpd_uint_t x1 = a[i*C+k+1];
MULMOD2(&x0, w0, &x1, w1);
MULMOD2C(&w0, &w1, wstep);
a[i*C+k] = x0;
a[i*C+k+1] = x1;
}
}
/* Transpose the matrix. */
if (!transpose_pow2(a, R, C)) {
mpd_free(tparams);
return 0;
}
/* Length R transform on the rows. */
if (R != C) {
mpd_free(tparams);
if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
return 0;
}
}
for (x = a; x < a+n; x += R) {
fnt_dif2(x, R, tparams);
}
mpd_free(tparams);
/* Transpose the matrix. */
if (!transpose_pow2(a, C, R)) {
return 0;
}
return 1;
}
|