1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
/*----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h" // mi_prim_get_default_heap
#include <string.h> // memset, memcpy
#if defined(_MSC_VER) && (_MSC_VER < 1920)
#pragma warning(disable:4204) // non-constant aggregate initializer
#endif
/* -----------------------------------------------------------
Helpers
----------------------------------------------------------- */
// return `true` if ok, `false` to break
typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2);
// Visit all pages in a heap; returns `false` if break was called.
static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2)
{
if (heap==NULL || heap->page_count==0) return true;
// visit all pages
#if MI_DEBUG>1
size_t total = heap->page_count;
size_t count = 0;
#endif
for (size_t i = 0; i <= MI_BIN_FULL; i++) {
mi_page_queue_t* pq = &heap->pages[i];
mi_page_t* page = pq->first;
while(page != NULL) {
mi_page_t* next = page->next; // save next in case the page gets removed from the queue
mi_assert_internal(mi_page_heap(page) == heap);
#if MI_DEBUG>1
count++;
#endif
if (!fn(heap, pq, page, arg1, arg2)) return false;
page = next; // and continue
}
}
mi_assert_internal(count == total);
return true;
}
#if MI_DEBUG>=2
static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(pq);
mi_assert_internal(mi_page_heap(page) == heap);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_internal(segment->thread_id == heap->thread_id);
mi_assert_expensive(_mi_page_is_valid(page));
return true;
}
#endif
#if MI_DEBUG>=3
static bool mi_heap_is_valid(mi_heap_t* heap) {
mi_assert_internal(heap!=NULL);
mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL);
return true;
}
#endif
/* -----------------------------------------------------------
"Collect" pages by migrating `local_free` and `thread_free`
lists and freeing empty pages. This is done when a thread
stops (and in that case abandons pages if there are still
blocks alive)
----------------------------------------------------------- */
typedef enum mi_collect_e {
MI_NORMAL,
MI_FORCE,
MI_ABANDON
} mi_collect_t;
static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) {
MI_UNUSED(arg2);
MI_UNUSED(heap);
mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL));
mi_collect_t collect = *((mi_collect_t*)arg_collect);
_mi_page_free_collect(page, collect >= MI_FORCE);
if (mi_page_all_free(page)) {
// no more used blocks, free the page.
// note: this will free retired pages as well.
bool freed = _PyMem_mi_page_maybe_free(page, pq, collect >= MI_FORCE);
if (!freed && collect == MI_ABANDON) {
_mi_page_abandon(page, pq);
}
}
else if (collect == MI_ABANDON) {
// still used blocks but the thread is done; abandon the page
_mi_page_abandon(page, pq);
}
return true; // don't break
}
static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(heap);
MI_UNUSED(pq);
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
return true; // don't break
}
static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
{
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
const bool force = collect >= MI_FORCE;
_mi_deferred_free(heap, force);
// gh-112532: we may be called from a thread that is not the owner of the heap
bool is_main_thread = _mi_is_main_thread() && heap->thread_id == _mi_thread_id();
// note: never reclaim on collect but leave it to threads that need storage to reclaim
const bool force_main =
#ifdef NDEBUG
collect == MI_FORCE
#else
collect >= MI_FORCE
#endif
&& is_main_thread && mi_heap_is_backing(heap) && !heap->no_reclaim;
if (force_main) {
// the main thread is abandoned (end-of-program), try to reclaim all abandoned segments.
// if all memory is freed by now, all segments should be freed.
_mi_abandoned_reclaim_all(heap, &heap->tld->segments);
}
// if abandoning, mark all pages to no longer add to delayed_free
if (collect == MI_ABANDON) {
mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL);
}
// free all current thread delayed blocks.
// (if abandoning, after this there are no more thread-delayed references into the pages.)
_mi_heap_delayed_free_all(heap);
// collect retired pages
_mi_heap_collect_retired(heap, force);
// free pages that were delayed with QSBR
_PyMem_mi_heap_collect_qsbr(heap);
// collect all pages owned by this thread
mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL);
mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL );
// collect abandoned segments (in particular, purge expired parts of segments in the abandoned segment list)
// note: forced purge can be quite expensive if many threads are created/destroyed so we do not force on abandonment
_mi_abandoned_collect(heap, collect == MI_FORCE /* force? */, &heap->tld->segments);
// collect segment local caches
if (force) {
_mi_segment_thread_collect(&heap->tld->segments);
}
// collect regions on program-exit (or shared library unload)
if (force && is_main_thread && mi_heap_is_backing(heap)) {
_mi_thread_data_collect(); // collect thread data cache
_mi_arena_collect(true /* force purge */, &heap->tld->stats);
}
}
void _mi_heap_collect_abandon(mi_heap_t* heap) {
mi_heap_collect_ex(heap, MI_ABANDON);
}
void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept {
mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL));
}
void mi_collect(bool force) mi_attr_noexcept {
mi_heap_collect(mi_prim_get_default_heap(), force);
}
/* -----------------------------------------------------------
Heap new
----------------------------------------------------------- */
mi_heap_t* mi_heap_get_default(void) {
mi_thread_init();
return mi_prim_get_default_heap();
}
static bool mi_heap_is_default(const mi_heap_t* heap) {
return (heap == mi_prim_get_default_heap());
}
mi_heap_t* mi_heap_get_backing(void) {
mi_heap_t* heap = mi_heap_get_default();
mi_assert_internal(heap!=NULL);
mi_heap_t* bheap = heap->tld->heap_backing;
mi_assert_internal(bheap!=NULL);
mi_assert_internal(bheap->thread_id == _mi_thread_id());
return bheap;
}
void _mi_heap_init_ex(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool no_reclaim, uint8_t tag)
{
_mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t));
heap->tld = tld;
heap->thread_id = _mi_thread_id();
heap->arena_id = arena_id;
if (heap == tld->heap_backing) {
_mi_random_init(&heap->random);
}
else {
_mi_random_split(&tld->heap_backing->random, &heap->random);
}
heap->cookie = _mi_heap_random_next(heap) | 1;
heap->keys[0] = _mi_heap_random_next(heap);
heap->keys[1] = _mi_heap_random_next(heap);
heap->no_reclaim = no_reclaim;
heap->tag = tag;
// push on the thread local heaps list
heap->next = heap->tld->heaps;
heap->tld->heaps = heap;
}
mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) {
mi_heap_t* bheap = mi_heap_get_backing();
mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode?
if (heap == NULL) return NULL;
// don't reclaim abandoned pages or otherwise destroy is unsafe
_mi_heap_init_ex(heap, bheap->tld, arena_id, true, 0);
return heap;
}
mi_decl_nodiscard mi_heap_t* mi_heap_new(void) {
return mi_heap_new_in_arena(_mi_arena_id_none());
}
bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) {
return _mi_arena_memid_is_suitable(memid, heap->arena_id);
}
uintptr_t _mi_heap_random_next(mi_heap_t* heap) {
return _mi_random_next(&heap->random);
}
// zero out the page queues
static void mi_heap_reset_pages(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
mi_assert_internal(mi_heap_is_initialized(heap));
// TODO: copy full empty heap instead?
memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct));
_mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages));
heap->thread_delayed_free = NULL;
heap->page_count = 0;
}
// called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources.
static void mi_heap_free(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert_internal(mi_heap_is_initialized(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (mi_heap_is_backing(heap)) return; // dont free the backing heap
// reset default
if (mi_heap_is_default(heap)) {
_mi_heap_set_default_direct(heap->tld->heap_backing);
}
// remove ourselves from the thread local heaps list
// linear search but we expect the number of heaps to be relatively small
mi_heap_t* prev = NULL;
mi_heap_t* curr = heap->tld->heaps;
while (curr != heap && curr != NULL) {
prev = curr;
curr = curr->next;
}
mi_assert_internal(curr == heap);
if (curr == heap) {
if (prev != NULL) { prev->next = heap->next; }
else { heap->tld->heaps = heap->next; }
}
mi_assert_internal(heap->tld->heaps != NULL);
// and free the used memory
mi_free(heap);
}
/* -----------------------------------------------------------
Heap destroy
----------------------------------------------------------- */
static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(heap);
MI_UNUSED(pq);
// ensure no more thread_delayed_free will be added
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
// stats
const size_t bsize = mi_page_block_size(page);
if (bsize > MI_MEDIUM_OBJ_SIZE_MAX) {
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#if (MI_STAT)
_mi_page_free_collect(page, false); // update used count
const size_t inuse = page->used;
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal, bsize * inuse);
#if (MI_STAT>1)
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse);
#endif
}
mi_heap_stat_decrease(heap, malloc, bsize * inuse); // todo: off for aligned blocks...
#endif
/// pretend it is all free now
mi_assert_internal(mi_page_thread_free(page) == NULL);
page->used = 0;
// and free the page
// mi_page_free(page,false);
page->next = NULL;
page->prev = NULL;
_mi_segment_page_free(page,false /* no force? */, &heap->tld->segments);
return true; // keep going
}
void _mi_heap_destroy_pages(mi_heap_t* heap) {
mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL);
mi_heap_reset_pages(heap);
}
#if MI_TRACK_HEAP_DESTROY
static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) {
MI_UNUSED(heap); MI_UNUSED(area); MI_UNUSED(arg); MI_UNUSED(block_size);
mi_track_free_size(block,mi_usable_size(block));
return true;
}
#endif
void mi_heap_destroy(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
mi_assert(heap->no_reclaim);
mi_assert_expensive(mi_heap_is_valid(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (!heap->no_reclaim) {
// don't free in case it may contain reclaimed pages
mi_heap_delete(heap);
}
else {
// track all blocks as freed
#if MI_TRACK_HEAP_DESTROY
mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL);
#endif
// free all pages
_mi_heap_destroy_pages(heap);
mi_heap_free(heap);
}
}
// forcefully destroy all heaps in the current thread
void _mi_heap_unsafe_destroy_all(void) {
mi_heap_t* bheap = mi_heap_get_backing();
mi_heap_t* curr = bheap->tld->heaps;
while (curr != NULL) {
mi_heap_t* next = curr->next;
if (curr->no_reclaim) {
mi_heap_destroy(curr);
}
else {
_mi_heap_destroy_pages(curr);
}
curr = next;
}
}
/* -----------------------------------------------------------
Safe Heap delete
----------------------------------------------------------- */
// Transfer the pages from one heap to the other
static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) {
mi_assert_internal(heap!=NULL);
if (from==NULL || from->page_count == 0) return;
// reduce the size of the delayed frees
_mi_heap_delayed_free_partial(from);
// transfer all pages by appending the queues; this will set a new heap field
// so threads may do delayed frees in either heap for a while.
// note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state
// so after this only the new heap will get delayed frees
for (size_t i = 0; i <= MI_BIN_FULL; i++) {
mi_page_queue_t* pq = &heap->pages[i];
mi_page_queue_t* append = &from->pages[i];
size_t pcount = _mi_page_queue_append(heap, pq, append);
heap->page_count += pcount;
from->page_count -= pcount;
}
mi_assert_internal(from->page_count == 0);
// and do outstanding delayed frees in the `from` heap
// note: be careful here as the `heap` field in all those pages no longer point to `from`,
// turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a
// the regular `_mi_free_delayed_block` which is safe.
_mi_heap_delayed_free_all(from);
#if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353
mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL);
#endif
// and reset the `from` heap
mi_heap_reset_pages(from);
}
// Safe delete a heap without freeing any still allocated blocks in that heap.
void mi_heap_delete(mi_heap_t* heap)
{
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
mi_assert_expensive(mi_heap_is_valid(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (!mi_heap_is_backing(heap)) {
// tranfer still used pages to the backing heap
mi_heap_absorb(heap->tld->heap_backing, heap);
}
else {
// the backing heap abandons its pages
_mi_heap_collect_abandon(heap);
}
mi_assert_internal(heap->page_count==0);
mi_heap_free(heap);
}
mi_heap_t* mi_heap_set_default(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL;
mi_assert_expensive(mi_heap_is_valid(heap));
mi_heap_t* old = mi_prim_get_default_heap();
_mi_heap_set_default_direct(heap);
return old;
}
/* -----------------------------------------------------------
Analysis
----------------------------------------------------------- */
// static since it is not thread safe to access heaps from other threads.
static mi_heap_t* mi_heap_of_block(const void* p) {
if (p == NULL) return NULL;
mi_segment_t* segment = _mi_ptr_segment(p);
bool valid = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(valid);
if mi_unlikely(!valid) return NULL;
return mi_page_heap(_mi_segment_page_of(segment,p));
}
bool mi_heap_contains_block(mi_heap_t* heap, const void* p) {
mi_assert(heap != NULL);
if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
return (heap == mi_heap_of_block(p));
}
static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) {
MI_UNUSED(heap);
MI_UNUSED(pq);
bool* found = (bool*)vfound;
mi_segment_t* segment = _mi_page_segment(page);
void* start = _mi_page_start(segment, page, NULL);
void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page));
*found = (p >= start && p < end);
return (!*found); // continue if not found
}
bool mi_heap_check_owned(mi_heap_t* heap, const void* p) {
mi_assert(heap != NULL);
if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false; // only aligned pointers
bool found = false;
mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found);
return found;
}
bool mi_check_owned(const void* p) {
return mi_heap_check_owned(mi_prim_get_default_heap(), p);
}
/* -----------------------------------------------------------
Visit all heap blocks and areas
Todo: enable visiting abandoned pages, and
enable visiting all blocks of all heaps across threads
----------------------------------------------------------- */
// Separate struct to keep `mi_page_t` out of the public interface
typedef struct mi_heap_area_ex_s {
mi_heap_area_t area;
mi_page_t* page;
} mi_heap_area_ex_t;
static void mi_fast_divisor(size_t divisor, size_t* magic, size_t* shift) {
mi_assert_internal(divisor > 0 && divisor <= UINT32_MAX);
*shift = MI_INTPTR_BITS - mi_clz(divisor - 1);
*magic = (size_t)(((1ULL << 32) * ((1ULL << *shift) - divisor)) / divisor + 1);
}
static size_t mi_fast_divide(size_t n, size_t magic, size_t shift) {
mi_assert_internal(n <= UINT32_MAX);
return ((((uint64_t) n * magic) >> 32) + n) >> shift;
}
bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t *page, mi_block_visit_fun* visitor, void* arg) {
mi_assert(area != NULL);
if (area==NULL) return true;
mi_assert(page != NULL);
if (page == NULL) return true;
mi_assert_internal(page->local_free == NULL);
if (page->used == 0) return true;
const size_t bsize = mi_page_block_size(page);
const size_t ubsize = mi_page_usable_block_size(page); // without padding
size_t psize;
uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);
mi_heap_t* heap = mi_page_heap(page);
if (page->capacity == 1) {
// optimize page with one block
mi_assert_internal(page->used == 1 && page->free == NULL);
return visitor(heap, area, pstart, ubsize, arg);
}
if (page->used == page->capacity) {
// optimize full pages
uint8_t* block = pstart;
for (size_t i = 0; i < page->capacity; i++) {
if (!visitor(heap, area, block, ubsize, arg)) return false;
block += bsize;
}
return true;
}
// create a bitmap of free blocks.
#define MI_MAX_BLOCKS (MI_SMALL_PAGE_SIZE / sizeof(void*))
uintptr_t free_map[MI_MAX_BLOCKS / MI_INTPTR_BITS];
size_t bmapsize = (page->capacity + MI_INTPTR_BITS - 1) / MI_INTPTR_BITS;
memset(free_map, 0, bmapsize * sizeof(uintptr_t));
if (page->capacity % MI_INTPTR_BITS != 0) {
size_t shift = (page->capacity % MI_INTPTR_BITS);
uintptr_t mask = (UINTPTR_MAX << shift);
free_map[bmapsize-1] = mask;
}
// fast repeated division by the block size
size_t magic, shift;
mi_fast_divisor(bsize, &magic, &shift);
#if MI_DEBUG>1
size_t free_count = 0;
#endif
for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
#if MI_DEBUG>1
free_count++;
#endif
mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize));
size_t offset = (uint8_t*)block - pstart;
mi_assert_internal(offset % bsize == 0);
size_t blockidx = mi_fast_divide(offset, magic, shift);
mi_assert_internal(blockidx == offset / bsize);
mi_assert_internal(blockidx < MI_MAX_BLOCKS);
size_t bitidx = (blockidx / MI_INTPTR_BITS);
size_t bit = blockidx - (bitidx * MI_INTPTR_BITS);
free_map[bitidx] |= ((uintptr_t)1 << bit);
}
mi_assert_internal(page->capacity == (free_count + page->used));
// walk through all blocks skipping the free ones
#if MI_DEBUG>1
size_t used_count = 0;
#endif
uint8_t* block = pstart;
for (size_t i = 0; i < bmapsize; i++) {
if (free_map[i] == 0) {
// every block is in use
for (size_t j = 0; j < MI_INTPTR_BITS; j++) {
#if MI_DEBUG>1
used_count++;
#endif
if (!visitor(heap, area, block, ubsize, arg)) return false;
block += bsize;
}
}
else {
uintptr_t m = ~free_map[i];
while (m) {
#if MI_DEBUG>1
used_count++;
#endif
size_t bitidx = mi_ctz(m);
if (!visitor(heap, area, block + (bitidx * bsize), ubsize, arg)) return false;
m &= m - 1;
}
block += bsize * MI_INTPTR_BITS;
}
}
mi_assert_internal(page->used == used_count);
return true;
}
typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg);
void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page) {
_mi_page_free_collect(page,true);
const size_t bsize = mi_page_block_size(page);
const size_t ubsize = mi_page_usable_block_size(page);
area->reserved = page->reserved * bsize;
area->committed = page->capacity * bsize;
area->blocks = _mi_page_start(_mi_page_segment(page), page, NULL);
area->used = page->used; // number of blocks in use (#553)
area->block_size = ubsize;
area->full_block_size = bsize;
}
static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) {
MI_UNUSED(heap);
MI_UNUSED(pq);
mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun;
mi_heap_area_ex_t xarea;
xarea.page = page;
_mi_heap_area_init(&xarea.area, page);
return fun(heap, &xarea, arg);
}
// Visit all heap pages as areas
static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) {
if (visitor == NULL) return false;
return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{
}
// Just to pass arguments
typedef struct mi_visit_blocks_args_s {
bool visit_blocks;
mi_block_visit_fun* visitor;
void* arg;
} mi_visit_blocks_args_t;
static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) {
mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg;
if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false;
if (args->visit_blocks) {
return _mi_heap_area_visit_blocks(&xarea->area, xarea->page, args->visitor, args->arg);
}
else {
return true;
}
}
// Visit all blocks in a heap
bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) {
mi_visit_blocks_args_t args = { visit_blocks, visitor, arg };
_mi_heap_delayed_free_partial((mi_heap_t *)heap);
return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args);
}
|