1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
Definition of page queues for each block size
----------------------------------------------------------- */
#ifndef MI_IN_PAGE_C
#error "this file should be included from 'page.c'"
#endif
/* -----------------------------------------------------------
Minimal alignment in machine words (i.e. `sizeof(void*)`)
----------------------------------------------------------- */
#if (MI_MAX_ALIGN_SIZE > 4*MI_INTPTR_SIZE)
#error "define alignment for more than 4x word size for this platform"
#elif (MI_MAX_ALIGN_SIZE > 2*MI_INTPTR_SIZE)
#define MI_ALIGN4W // 4 machine words minimal alignment
#elif (MI_MAX_ALIGN_SIZE > MI_INTPTR_SIZE)
#define MI_ALIGN2W // 2 machine words minimal alignment
#else
// ok, default alignment is 1 word
#endif
/* -----------------------------------------------------------
Queue query
----------------------------------------------------------- */
static inline bool mi_page_queue_is_huge(const mi_page_queue_t* pq) {
return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+sizeof(uintptr_t)));
}
static inline bool mi_page_queue_is_full(const mi_page_queue_t* pq) {
return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+(2*sizeof(uintptr_t))));
}
static inline bool mi_page_queue_is_special(const mi_page_queue_t* pq) {
return (pq->block_size > MI_MEDIUM_OBJ_SIZE_MAX);
}
/* -----------------------------------------------------------
Bins
----------------------------------------------------------- */
// Return the bin for a given field size.
// Returns MI_BIN_HUGE if the size is too large.
// We use `wsize` for the size in "machine word sizes",
// i.e. byte size == `wsize*sizeof(void*)`.
static inline uint8_t mi_bin(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_MEDIUM_OBJ_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
#if defined(MI_ALIGN4W)
if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
#endif
wsize--;
// find the highest bit
uint8_t b = (uint8_t)mi_bsr(wsize); // note: wsize != 0
// and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
// - adjust with 3 because we use do not round the first 8 sizes
// which each get an exact bin
bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3;
mi_assert_internal(bin < MI_BIN_HUGE);
}
mi_assert_internal(bin > 0 && bin <= MI_BIN_HUGE);
return bin;
}
/* -----------------------------------------------------------
Queue of pages with free blocks
----------------------------------------------------------- */
uint8_t _mi_bin(size_t size) {
return mi_bin(size);
}
size_t _mi_bin_size(uint8_t bin) {
return _mi_heap_empty.pages[bin].block_size;
}
// Good size for allocation
size_t mi_good_size(size_t size) mi_attr_noexcept {
if (size <= MI_MEDIUM_OBJ_SIZE_MAX) {
return _mi_bin_size(mi_bin(size));
}
else {
return _mi_align_up(size,_mi_os_page_size());
}
}
#if (MI_DEBUG>1)
static bool mi_page_queue_contains(mi_page_queue_t* queue, const mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_page_t* list = queue->first;
while (list != NULL) {
mi_assert_internal(list->next == NULL || list->next->prev == list);
mi_assert_internal(list->prev == NULL || list->prev->next == list);
if (list == page) break;
list = list->next;
}
return (list == page);
}
#endif
#if (MI_DEBUG>1)
static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t* pq) {
return (pq >= &heap->pages[0] && pq <= &heap->pages[MI_BIN_FULL]);
}
#endif
static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) {
uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL);
mi_page_queue_t* pq = &heap->pages[bin];
mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size);
mi_assert_expensive(mi_page_queue_contains(pq, page));
return pq;
}
static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) {
uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
mi_assert_internal(bin <= MI_BIN_FULL);
mi_page_queue_t* pq = &heap->pages[bin];
mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size);
return pq;
}
// The current small page array is for efficiency and for each
// small size (up to 256) it points directly to the page for that
// size without having to compute the bin. This means when the
// current free page queue is updated for a small bin, we need to update a
// range of entries in `_mi_page_small_free`.
static inline void mi_heap_queue_first_update(mi_heap_t* heap, const mi_page_queue_t* pq) {
mi_assert_internal(mi_heap_contains_queue(heap,pq));
size_t size = pq->block_size;
if (size > MI_SMALL_SIZE_MAX) return;
mi_page_t* page = pq->first;
if (pq->first == NULL) page = (mi_page_t*)&_mi_page_empty;
// find index in the right direct page array
size_t start;
size_t idx = _mi_wsize_from_size(size);
mi_page_t** pages_free = heap->pages_free_direct;
if (pages_free[idx] == page) return; // already set
// find start slot
if (idx<=1) {
start = 0;
}
else {
// find previous size; due to minimal alignment upto 3 previous bins may need to be skipped
uint8_t bin = mi_bin(size);
const mi_page_queue_t* prev = pq - 1;
while( bin == mi_bin(prev->block_size) && prev > &heap->pages[0]) {
prev--;
}
start = 1 + _mi_wsize_from_size(prev->block_size);
if (start > idx) start = idx;
}
// set size range to the right page
mi_assert(start <= idx);
for (size_t sz = start; sz <= idx; sz++) {
pages_free[sz] = page;
}
}
/*
static bool mi_page_queue_is_empty(mi_page_queue_t* queue) {
return (queue->first == NULL);
}
*/
static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(queue, page));
mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
if (page->next != NULL) page->next->prev = page->prev;
if (page == queue->last) queue->last = page->prev;
if (page == queue->first) {
queue->first = page->next;
// update first
mi_assert_internal(mi_heap_contains_queue(heap, queue));
mi_heap_queue_first_update(heap,queue);
}
heap->page_count--;
page->next = NULL;
page->prev = NULL;
// mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), NULL);
mi_page_set_in_full(page,false);
}
static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(mi_page_heap(page) == heap);
mi_assert_internal(!mi_page_queue_contains(queue, page));
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif
mi_assert_internal(page->xblock_size == queue->block_size ||
(page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX) ||
(mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_page_set_in_full(page, mi_page_queue_is_full(queue));
// mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), heap);
page->next = queue->first;
page->prev = NULL;
if (queue->first != NULL) {
mi_assert_internal(queue->first->prev == NULL);
queue->first->prev = page;
queue->first = page;
}
else {
queue->first = queue->last = page;
}
// update direct
mi_heap_queue_first_update(heap, queue);
heap->page_count++;
}
static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(from, page));
mi_assert_expensive(!mi_page_queue_contains(to, page));
mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) ||
(page->xblock_size == to->block_size && mi_page_queue_is_full(from)) ||
(page->xblock_size == from->block_size && mi_page_queue_is_full(to)) ||
(page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) ||
(page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
if (page->next != NULL) page->next->prev = page->prev;
if (page == from->last) from->last = page->prev;
if (page == from->first) {
from->first = page->next;
// update first
mi_assert_internal(mi_heap_contains_queue(heap, from));
mi_heap_queue_first_update(heap, from);
}
page->prev = to->last;
page->next = NULL;
if (to->last != NULL) {
mi_assert_internal(heap == mi_page_heap(to->last));
to->last->next = page;
to->last = page;
}
else {
to->first = page;
to->last = page;
mi_heap_queue_first_update(heap, to);
}
mi_page_set_in_full(page, mi_page_queue_is_full(to));
}
// Only called from `mi_heap_absorb`.
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append) {
mi_assert_internal(mi_heap_contains_queue(heap,pq));
mi_assert_internal(pq->block_size == append->block_size);
if (append->first==NULL) return 0;
// set append pages to new heap and count
size_t count = 0;
for (mi_page_t* page = append->first; page != NULL; page = page->next) {
// inline `mi_page_set_heap` to avoid wrong assertion during absorption;
// in this case it is ok to be delayed freeing since both "to" and "from" heap are still alive.
mi_atomic_store_release(&page->xheap, (uintptr_t)heap);
// set the flag to delayed free (not overriding NEVER_DELAYED_FREE) which has as a
// side effect that it spins until any DELAYED_FREEING is finished. This ensures
// that after appending only the new heap will be used for delayed free operations.
_mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false);
count++;
}
if (pq->last==NULL) {
// take over afresh
mi_assert_internal(pq->first==NULL);
pq->first = append->first;
pq->last = append->last;
mi_heap_queue_first_update(heap, pq);
}
else {
// append to end
mi_assert_internal(pq->last!=NULL);
mi_assert_internal(append->first!=NULL);
pq->last->next = append->first;
append->first->prev = pq->last;
pq->last = append->last;
}
return count;
}
|