1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <stdio.h> // fputs, stderr
//---------------------------------------------
// Dynamically bind Windows API points for portability
//---------------------------------------------
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
// We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's.
typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E {
MiMemExtendedParameterInvalidType = 0,
MiMemExtendedParameterAddressRequirements,
MiMemExtendedParameterNumaNode,
MiMemExtendedParameterPartitionHandle,
MiMemExtendedParameterUserPhysicalHandle,
MiMemExtendedParameterAttributeFlags,
MiMemExtendedParameterMax
} MI_MEM_EXTENDED_PARAMETER_TYPE;
typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S {
struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type;
union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg;
} MI_MEM_EXTENDED_PARAMETER;
typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S {
PVOID LowestStartingAddress;
PVOID HighestEndingAddress;
SIZE_T Alignment;
} MI_MEM_ADDRESS_REQUIREMENTS;
#define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010
#include <winternl.h>
typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
static PVirtualAlloc2 pVirtualAlloc2 = NULL;
static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER;
typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber);
typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber);
typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber);
static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL;
static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL;
static PGetNumaProcessorNode pGetNumaProcessorNode = NULL;
//---------------------------------------------
// Enable large page support dynamically (if possible)
//---------------------------------------------
static bool win_enable_large_os_pages(size_t* large_page_size)
{
static bool large_initialized = false;
if (large_initialized) return (_mi_os_large_page_size() > 0);
large_initialized = true;
// Try to see if large OS pages are supported
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
unsigned long err = 0;
HANDLE token = NULL;
BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok && large_page_size != NULL) {
*large_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err == 0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
return (ok!=0);
}
//---------------------------------------------
// Initialize
//---------------------------------------------
void _mi_prim_mem_init( mi_os_mem_config_t* config )
{
config->has_overcommit = false;
config->must_free_whole = true;
config->has_virtual_reserve = true;
// get the page size
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; }
if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; }
// get the VirtualAlloc2 function
HINSTANCE hDll;
hDll = LoadLibrary(TEXT("kernelbase.dll"));
if (hDll != NULL) {
// use VirtualAlloc2FromApp if possible as it is available to Windows store apps
pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
FreeLibrary(hDll);
}
// NtAllocateVirtualMemoryEx is used for huge page allocation
hDll = LoadLibrary(TEXT("ntdll.dll"));
if (hDll != NULL) {
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
FreeLibrary(hDll);
}
// Try to use Win7+ numa API
hDll = LoadLibrary(TEXT("kernel32.dll"));
if (hDll != NULL) {
pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode");
FreeLibrary(hDll);
}
if (mi_option_is_enabled(mi_option_allow_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
win_enable_large_os_pages(&config->large_page_size);
}
}
//---------------------------------------------
// Free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
MI_UNUSED(size);
DWORD errcode = 0;
bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
if (errcode == ERROR_INVALID_ADDRESS) {
// In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside
// the memory region returned by VirtualAlloc; in that case we need to free using
// the start of the region.
MEMORY_BASIC_INFORMATION info = { 0 };
VirtualQuery(addr, &info, sizeof(info));
if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) {
errcode = 0;
err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
}
}
return (int)errcode;
}
//---------------------------------------------
// VirtualAlloc
//---------------------------------------------
static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) {
#if (MI_INTPTR_SIZE >= 8)
// on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations
if (addr == NULL) {
void* hint = _mi_os_get_aligned_hint(try_alignment,size);
if (hint != NULL) {
void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
if (p != NULL) return p;
_mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags);
// fall through on error
}
}
#endif
// on modern Windows try use VirtualAlloc2 for aligned allocation
if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
reqs.Alignment = try_alignment;
MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
param.Type.Type = MiMemExtendedParameterAddressRequirements;
param.Arg.Pointer = &reqs;
void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1);
if (p != NULL) return p;
_mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags);
// fall through on error
}
// last resort
return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
mi_assert_internal(!(large_only && !allow_large));
static _Atomic(size_t) large_page_try_ok; // = 0;
void* p = NULL;
// Try to allocate large OS pages (2MiB) if allowed or required.
if ((large_only || _mi_os_use_large_page(size, try_alignment))
&& allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
// therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
}
else {
// large OS pages must always reserve and commit.
*is_large = true;
p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
if (large_only) return p;
// fall back to non-large page allocation on error (`p == NULL`).
if (p == NULL) {
mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations
}
}
}
// Fall back to regular page allocation
if (p == NULL) {
*is_large = ((flags&MEM_LARGE_PAGES) != 0);
p = win_virtual_alloc_prim(addr, size, try_alignment, flags);
}
//if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); }
return p;
}
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0);
*is_zero = true;
int flags = MEM_RESERVE;
if (commit) { flags |= MEM_COMMIT; }
*addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Commit/Reset/Protect
//---------------------------------------------
#ifdef _MSC_VER
#pragma warning(disable:6250) // suppress warning calling VirtualFree without MEM_RELEASE (for decommit)
#endif
int _mi_prim_commit(void* addr, size_t size, bool* is_zero) {
*is_zero = false;
/*
// zero'ing only happens on an initial commit... but checking upfront seems expensive..
_MEMORY_BASIC_INFORMATION meminfo; _mi_memzero_var(meminfo);
if (VirtualQuery(addr, &meminfo, size) > 0) {
if ((meminfo.State & MEM_COMMIT) == 0) {
*is_zero = true;
}
}
*/
// commit
void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
if (p == NULL) return (int)GetLastError();
return 0;
}
int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) {
BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT);
*needs_recommit = true; // for safety, assume always decommitted even in the case of an error.
return (ok ? 0 : (int)GetLastError());
}
int _mi_prim_reset(void* addr, size_t size) {
void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE);
mi_assert_internal(p == addr);
#if 0
if (p != NULL) {
VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory directly from the working set
}
#endif
return (p != NULL ? 0 : (int)GetLastError());
}
int _mi_prim_protect(void* addr, size_t size, bool protect) {
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
return (ok ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Huge page allocation
//---------------------------------------------
static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node)
{
const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;
win_enable_large_os_pages(NULL);
MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
// on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
static bool mi_huge_pages_available = true;
if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
params[0].Type.Type = MiMemExtendedParameterAttributeFlags;
params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
ULONG param_count = 1;
if (numa_node >= 0) {
param_count++;
params[1].Type.Type = MiMemExtendedParameterNumaNode;
params[1].Arg.ULong = (unsigned)numa_node;
}
SIZE_T psize = size;
void* base = hint_addr;
NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
if (err == 0 && base != NULL) {
return base;
}
else {
// fall back to regular large pages
mi_huge_pages_available = false; // don't try further huge pages
_mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err);
}
}
// on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
if (pVirtualAlloc2 != NULL && numa_node >= 0) {
params[0].Type.Type = MiMemExtendedParameterNumaNode;
params[0].Arg.ULong = (unsigned)numa_node;
return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1);
}
// otherwise use regular virtual alloc on older windows
return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE);
}
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
*is_zero = true;
*addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Numa nodes
//---------------------------------------------
size_t _mi_prim_numa_node(void) {
USHORT numa_node = 0;
if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
// Extended API is supported
MI_PROCESSOR_NUMBER pnum;
(*pGetCurrentProcessorNumberEx)(&pnum);
USHORT nnode = 0;
BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
if (ok) { numa_node = nnode; }
}
else if (pGetNumaProcessorNode != NULL) {
// Vista or earlier, use older API that is limited to 64 processors. Issue #277
DWORD pnum = GetCurrentProcessorNumber();
UCHAR nnode = 0;
BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode);
if (ok) { numa_node = nnode; }
}
return numa_node;
}
size_t _mi_prim_numa_node_count(void) {
ULONG numa_max = 0;
GetNumaHighestNodeNumber(&numa_max);
// find the highest node number that has actual processors assigned to it. Issue #282
while(numa_max > 0) {
if (pGetNumaNodeProcessorMaskEx != NULL) {
// Extended API is supported
GROUP_AFFINITY affinity;
if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
if (affinity.Mask != 0) break; // found the maximum non-empty node
}
}
else {
// Vista or earlier, use older API that is limited to 64 processors.
ULONGLONG mask;
if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
if (mask != 0) break; // found the maximum non-empty node
};
}
// max node was invalid or had no processor assigned, try again
numa_max--;
}
return ((size_t)numa_max + 1);
}
//----------------------------------------------------------------
// Clock
//----------------------------------------------------------------
static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) {
static LARGE_INTEGER mfreq; // = 0
if (mfreq.QuadPart == 0LL) {
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
mfreq.QuadPart = f.QuadPart/1000LL;
if (mfreq.QuadPart == 0) mfreq.QuadPart = 1;
}
return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart);
}
mi_msecs_t _mi_prim_clock_now(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return mi_to_msecs(t);
}
//----------------------------------------------------------------
// Process Info
//----------------------------------------------------------------
#include <windows.h>
#include <psapi.h>
static mi_msecs_t filetime_msecs(const FILETIME* ftime) {
ULARGE_INTEGER i;
i.LowPart = ftime->dwLowDateTime;
i.HighPart = ftime->dwHighDateTime;
mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds
return msecs;
}
typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD);
static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL;
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
FILETIME ct;
FILETIME ut;
FILETIME st;
FILETIME et;
GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut);
pinfo->utime = filetime_msecs(&ut);
pinfo->stime = filetime_msecs(&st);
// load psapi on demand
if (pGetProcessMemoryInfo == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll"));
if (hDll != NULL) {
pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo");
}
}
// get process info
PROCESS_MEMORY_COUNTERS info;
memset(&info, 0, sizeof(info));
if (pGetProcessMemoryInfo != NULL) {
pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
}
pinfo->current_rss = (size_t)info.WorkingSetSize;
pinfo->peak_rss = (size_t)info.PeakWorkingSetSize;
pinfo->current_commit = (size_t)info.PagefileUsage;
pinfo->peak_commit = (size_t)info.PeakPagefileUsage;
pinfo->page_faults = (size_t)info.PageFaultCount;
}
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg )
{
// on windows with redirection, the C runtime cannot handle locale dependent output
// after the main thread closes so we use direct console output.
if (!_mi_preloading()) {
// _cputs(msg); // _cputs cannot be used at is aborts if it fails to lock the console
static HANDLE hcon = INVALID_HANDLE_VALUE;
static bool hconIsConsole;
if (hcon == INVALID_HANDLE_VALUE) {
CONSOLE_SCREEN_BUFFER_INFO sbi;
hcon = GetStdHandle(STD_ERROR_HANDLE);
hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi));
}
const size_t len = _mi_strlen(msg);
if (len > 0 && len < UINT32_MAX) {
DWORD written = 0;
if (hconIsConsole) {
WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL);
}
else if (hcon != INVALID_HANDLE_VALUE) {
// use direct write if stderr was redirected
WriteFile(hcon, msg, (DWORD)len, &written, NULL);
}
else {
// finally fall back to fputs after all
fputs(msg, stderr);
}
}
}
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
// On Windows use GetEnvironmentVariable instead of getenv to work
// reliably even when this is invoked before the C runtime is initialized.
// i.e. when `_mi_preloading() == true`.
// Note: on windows, environment names are not case sensitive.
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
result[0] = 0;
size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
return (len > 0 && len < result_size);
}
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
#if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus)
// We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using
// dynamic overriding, we observed it can raise an exception when compiled with C++, and
// sometimes deadlocks when also running under the VS debugger.
// In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom.
// To be continued..
#pragma comment (lib,"advapi32.lib")
#define RtlGenRandom SystemFunction036
mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return (RtlGenRandom(buf, (ULONG)buf_len) != 0);
}
#else
#ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG
#define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002
#endif
typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG);
static PBCryptGenRandom pBCryptGenRandom = NULL;
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
if (pBCryptGenRandom == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll"));
if (hDll != NULL) {
pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom");
}
if (pBCryptGenRandom == NULL) return false;
}
return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0);
}
#endif // MI_USE_RTLGENRANDOM
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
#if !defined(MI_SHARED_LIB)
// use thread local storage keys to detect thread ending
#include <fibersapi.h>
#if (_WIN32_WINNT < 0x600) // before Windows Vista
WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback );
WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex );
WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData );
WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex);
#endif
static DWORD mi_fls_key = (DWORD)(-1);
static void NTAPI mi_fls_done(PVOID value) {
mi_heap_t* heap = (mi_heap_t*)value;
if (heap != NULL) {
_mi_thread_done(heap);
FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_fls_key = FlsAlloc(&mi_fls_done);
}
void _mi_prim_thread_done_auto_done(void) {
// call thread-done on all threads (except the main thread) to prevent
// dangling callback pointer if statically linked with a DLL; Issue #208
FlsFree(mi_fls_key);
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
mi_assert_internal(mi_fls_key != (DWORD)(-1));
FlsSetValue(mi_fls_key, heap);
}
#else
// Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event.
void _mi_prim_thread_init_auto_done(void) {
}
void _mi_prim_thread_done_auto_done(void) {
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif
|