1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
/* stringlib: fastsearch implementation */
#define STRINGLIB_FASTSEARCH_H
/* fast search/count implementation, based on a mix between boyer-
moore and horspool, with a few more bells and whistles on the top.
for some more background, see:
https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
/* note: fastsearch may access s[n], which isn't a problem when using
Python's ordinary string types, but may cause problems if you're
using this code in other contexts. also, the count mode returns -1
if there cannot possibly be a match in the target string, and 0 if
it has actually checked for matches, but didn't find any. callers
beware! */
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
algorithm, which has worst-case O(n) runtime and best-case O(n/k).
Also compute a table of shifts to achieve O(n/k) in more cases,
and often (data dependent) deduce larger shifts than pure C&P can
deduce. See stringlib_find_two_way_notes.txt in this folder for a
detailed explanation. */
#define FAST_COUNT 0
#define FAST_SEARCH 1
#define FAST_RSEARCH 2
#if LONG_BIT >= 128
#define STRINGLIB_BLOOM_WIDTH 128
#elif LONG_BIT >= 64
#define STRINGLIB_BLOOM_WIDTH 64
#elif LONG_BIT >= 32
#define STRINGLIB_BLOOM_WIDTH 32
#else
#error "LONG_BIT is smaller than 32"
#endif
#define STRINGLIB_BLOOM_ADD(mask, ch) \
((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
#define STRINGLIB_BLOOM(mask, ch) \
((mask & (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
#ifdef STRINGLIB_FAST_MEMCHR
# define MEMCHR_CUT_OFF 15
#else
# define MEMCHR_CUT_OFF 40
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
{
const STRINGLIB_CHAR *p, *e;
p = s;
e = s + n;
if (n > MEMCHR_CUT_OFF) {
#ifdef STRINGLIB_FAST_MEMCHR
p = STRINGLIB_FAST_MEMCHR(s, ch, n);
if (p != NULL)
return (p - s);
return -1;
#else
/* use memchr if we can choose a needle without too many likely
false positives */
const STRINGLIB_CHAR *s1, *e1;
unsigned char needle = ch & 0xff;
/* If looking for a multiple of 256, we'd have too
many false positives looking for the '\0' byte in UCS2
and UCS4 representations. */
if (needle != 0) {
do {
void *candidate = memchr(p, needle,
(e - p) * sizeof(STRINGLIB_CHAR));
if (candidate == NULL)
return -1;
s1 = p;
p = (const STRINGLIB_CHAR *)
_Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
if (*p == ch)
return (p - s);
/* False positive */
p++;
if (p - s1 > MEMCHR_CUT_OFF)
continue;
if (e - p <= MEMCHR_CUT_OFF)
break;
e1 = p + MEMCHR_CUT_OFF;
while (p != e1) {
if (*p == ch)
return (p - s);
p++;
}
}
while (e - p > MEMCHR_CUT_OFF);
}
#endif
}
while (p < e) {
if (*p == ch)
return (p - s);
p++;
}
return -1;
}
#undef MEMCHR_CUT_OFF
#if STRINGLIB_SIZEOF_CHAR == 1
# define MEMRCHR_CUT_OFF 15
#else
# define MEMRCHR_CUT_OFF 40
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
{
const STRINGLIB_CHAR *p;
#ifdef HAVE_MEMRCHR
/* memrchr() is a GNU extension, available since glibc 2.1.91. it
doesn't seem as optimized as memchr(), but is still quite
faster than our hand-written loop below. There is no wmemrchr
for 4-byte chars. */
if (n > MEMRCHR_CUT_OFF) {
#if STRINGLIB_SIZEOF_CHAR == 1
p = memrchr(s, ch, n);
if (p != NULL)
return (p - s);
return -1;
#else
/* use memrchr if we can choose a needle without too many likely
false positives */
const STRINGLIB_CHAR *s1;
Py_ssize_t n1;
unsigned char needle = ch & 0xff;
/* If looking for a multiple of 256, we'd have too
many false positives looking for the '\0' byte in UCS2
and UCS4 representations. */
if (needle != 0) {
do {
void *candidate = memrchr(s, needle,
n * sizeof(STRINGLIB_CHAR));
if (candidate == NULL)
return -1;
n1 = n;
p = (const STRINGLIB_CHAR *)
_Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
n = p - s;
if (*p == ch)
return n;
/* False positive */
if (n1 - n > MEMRCHR_CUT_OFF)
continue;
if (n <= MEMRCHR_CUT_OFF)
break;
s1 = p - MEMRCHR_CUT_OFF;
while (p > s1) {
p--;
if (*p == ch)
return (p - s);
}
n = p - s;
}
while (n > MEMRCHR_CUT_OFF);
}
#endif
}
#endif /* HAVE_MEMRCHR */
p = s + n;
while (p > s) {
p--;
if (*p == ch)
return (p - s);
}
return -1;
}
#undef MEMRCHR_CUT_OFF
/* Change to a 1 to see logging comments walk through the algorithm. */
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
# define LOG(...) printf(__VA_ARGS__)
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
# define LOG_LINEUP() do { \
LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> "); \
LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
LOG_STRING(needle, len_needle); LOG("\n"); \
} while(0)
#else
# define LOG(...)
# define LOG_STRING(s, n)
# define LOG_LINEUP()
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
Py_ssize_t *return_period, int invert_alphabet)
{
/* Do a lexicographic search. Essentially this:
>>> max(needle[i:] for i in range(len(needle)+1))
Also find the period of the right half. */
Py_ssize_t max_suffix = 0;
Py_ssize_t candidate = 1;
Py_ssize_t k = 0;
// The period of the right half.
Py_ssize_t period = 1;
while (candidate + k < len_needle) {
// each loop increases candidate + k + max_suffix
STRINGLIB_CHAR a = needle[candidate + k];
STRINGLIB_CHAR b = needle[max_suffix + k];
// check if the suffix at candidate is better than max_suffix
if (invert_alphabet ? (b < a) : (a < b)) {
// Fell short of max_suffix.
// The next k + 1 characters are non-increasing
// from candidate, so they won't start a maximal suffix.
candidate += k + 1;
k = 0;
// We've ruled out any period smaller than what's
// been scanned since max_suffix.
period = candidate - max_suffix;
}
else if (a == b) {
if (k + 1 != period) {
// Keep scanning the equal strings
k++;
}
else {
// Matched a whole period.
// Start matching the next period.
candidate += period;
k = 0;
}
}
else {
// Did better than max_suffix, so replace it.
max_suffix = candidate;
candidate++;
k = 0;
period = 1;
}
}
*return_period = period;
return max_suffix;
}
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle,
Py_ssize_t *return_period)
{
/* Do a "critical factorization", making it so that:
>>> needle = (left := needle[:cut]) + (right := needle[cut:])
where the "local period" of the cut is maximal.
The local period of the cut is the minimal length of a string w
such that (left endswith w or w endswith left)
and (right startswith w or w startswith left).
The Critical Factorization Theorem says that this maximal local
period is the global period of the string.
Crochemore and Perrin (1991) show that this cut can be computed
as the later of two cuts: one that gives a lexicographically
maximal right half, and one that gives the same with the
with respect to a reversed alphabet-ordering.
This is what we want to happen:
>>> x = "GCAGAGAG"
>>> cut, period = factorize(x)
>>> x[:cut], (right := x[cut:])
('GC', 'AGAGAG')
>>> period # right half period
2
>>> right[period:] == right[:-period]
True
This is how the local period lines up in the above example:
GC | AGAGAG
AGAGAGC = AGAGAGC
The length of this minimal repetition is 7, which is indeed the
period of the original string. */
Py_ssize_t cut1, period1, cut2, period2, cut, period;
cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
// Take the later cut.
if (cut1 > cut2) {
period = period1;
cut = cut1;
}
else {
period = period2;
cut = cut2;
}
LOG("split: "); LOG_STRING(needle, cut);
LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
LOG("\n");
*return_period = period;
return cut;
}
#define SHIFT_TYPE uint8_t
#define MAX_SHIFT UINT8_MAX
#define TABLE_SIZE_BITS 6u
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
#define TABLE_MASK (TABLE_SIZE - 1U)
typedef struct STRINGLIB(_pre) {
const STRINGLIB_CHAR *needle;
Py_ssize_t len_needle;
Py_ssize_t cut;
Py_ssize_t period;
Py_ssize_t gap;
int is_periodic;
SHIFT_TYPE table[TABLE_SIZE];
} STRINGLIB(prework);
static void
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
STRINGLIB(prework) *p)
{
p->needle = needle;
p->len_needle = len_needle;
p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
assert(p->period + p->cut <= len_needle);
p->is_periodic = (0 == memcmp(needle,
needle + p->period,
p->cut * STRINGLIB_SIZEOF_CHAR));
if (p->is_periodic) {
assert(p->cut <= len_needle/2);
assert(p->cut < p->period);
p->gap = 0; // unused
}
else {
// A lower bound on the period
p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
// The gap between the last character and the previous
// occurrence of an equivalent character (modulo TABLE_SIZE)
p->gap = len_needle;
STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
if (x == last) {
p->gap = len_needle - 1 - i;
break;
}
}
}
// Fill up a compressed Boyer-Moore "Bad Character" table
Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
Py_ssize_t, SHIFT_TYPE);
}
for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
Py_ssize_t, SHIFT_TYPE);
p->table[needle[i] & TABLE_MASK] = shift;
}
}
static Py_ssize_t
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
STRINGLIB(prework) *p)
{
// Crochemore and Perrin's (1991) Two-Way algorithm.
// See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
const Py_ssize_t len_needle = p->len_needle;
const Py_ssize_t cut = p->cut;
Py_ssize_t period = p->period;
const STRINGLIB_CHAR *const needle = p->needle;
const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
SHIFT_TYPE *table = p->table;
const STRINGLIB_CHAR *window;
LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
if (p->is_periodic) {
LOG("Needle is periodic.\n");
Py_ssize_t memory = 0;
periodicwindowloop:
while (window_last < haystack_end) {
assert(memory == 0);
for (;;) {
LOG_LINEUP();
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
window_last += shift;
if (shift == 0) {
break;
}
if (window_last >= haystack_end) {
return -1;
}
LOG("Horspool skip\n");
}
no_shift:
window = window_last - len_needle + 1;
assert((window[len_needle - 1] & TABLE_MASK) ==
(needle[len_needle - 1] & TABLE_MASK));
Py_ssize_t i = Py_MAX(cut, memory);
for (; i < len_needle; i++) {
if (needle[i] != window[i]) {
LOG("Right half does not match.\n");
window_last += i - cut + 1;
memory = 0;
goto periodicwindowloop;
}
}
for (i = memory; i < cut; i++) {
if (needle[i] != window[i]) {
LOG("Left half does not match.\n");
window_last += period;
memory = len_needle - period;
if (window_last >= haystack_end) {
return -1;
}
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
if (shift) {
// A mismatch has been identified to the right
// of where i will next start, so we can jump
// at least as far as if the mismatch occurred
// on the first comparison.
Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
LOG("Skip with Memory.\n");
memory = 0;
window_last += Py_MAX(shift, mem_jump);
goto periodicwindowloop;
}
goto no_shift;
}
}
LOG("Found a match!\n");
return window - haystack;
}
}
else {
Py_ssize_t gap = p->gap;
period = Py_MAX(gap, period);
LOG("Needle is not periodic.\n");
Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
windowloop:
while (window_last < haystack_end) {
for (;;) {
LOG_LINEUP();
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
window_last += shift;
if (shift == 0) {
break;
}
if (window_last >= haystack_end) {
return -1;
}
LOG("Horspool skip\n");
}
window = window_last - len_needle + 1;
assert((window[len_needle - 1] & TABLE_MASK) ==
(needle[len_needle - 1] & TABLE_MASK));
for (Py_ssize_t i = cut; i < gap_jump_end; i++) {
if (needle[i] != window[i]) {
LOG("Early right half mismatch: jump by gap.\n");
assert(gap >= i - cut + 1);
window_last += gap;
goto windowloop;
}
}
for (Py_ssize_t i = gap_jump_end; i < len_needle; i++) {
if (needle[i] != window[i]) {
LOG("Late right half mismatch.\n");
assert(i - cut + 1 > gap);
window_last += i - cut + 1;
goto windowloop;
}
}
for (Py_ssize_t i = 0; i < cut; i++) {
if (needle[i] != window[i]) {
LOG("Left half does not match.\n");
window_last += period;
goto windowloop;
}
}
LOG("Found a match!\n");
return window - haystack;
}
}
LOG("Not found. Returning -1.\n");
return -1;
}
static Py_ssize_t
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
Py_ssize_t len_haystack,
const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle)
{
LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
STRINGLIB(prework) p;
STRINGLIB(_preprocess)(needle, len_needle, &p);
return STRINGLIB(_two_way)(haystack, len_haystack, &p);
}
static Py_ssize_t
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
Py_ssize_t len_haystack,
const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle,
Py_ssize_t maxcount)
{
LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
STRINGLIB(prework) p;
STRINGLIB(_preprocess)(needle, len_needle, &p);
Py_ssize_t index = 0, count = 0;
while (1) {
Py_ssize_t result;
result = STRINGLIB(_two_way)(haystack + index,
len_haystack - index, &p);
if (result == -1) {
return count;
}
count++;
if (count == maxcount) {
return maxcount;
}
index += result + len_needle;
}
return count;
}
#undef SHIFT_TYPE
#undef NOT_FOUND
#undef SHIFT_OVERFLOW
#undef TABLE_SIZE_BITS
#undef TABLE_SIZE
#undef TABLE_MASK
#undef LOG
#undef LOG_STRING
#undef LOG_LINEUP
static inline Py_ssize_t
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
const Py_ssize_t w = n - m;
Py_ssize_t mlast = m - 1, count = 0;
Py_ssize_t gap = mlast;
const STRINGLIB_CHAR last = p[mlast];
const STRINGLIB_CHAR *const ss = &s[mlast];
unsigned long mask = 0;
for (Py_ssize_t i = 0; i < mlast; i++) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == last) {
gap = mlast - i - 1;
}
}
STRINGLIB_BLOOM_ADD(mask, last);
for (Py_ssize_t i = 0; i <= w; i++) {
if (ss[i] == last) {
/* candidate match */
Py_ssize_t j;
for (j = 0; j < mlast; j++) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == mlast) {
/* got a match! */
if (mode != FAST_COUNT) {
return i;
}
count++;
if (count == maxcount) {
return maxcount;
}
i = i + mlast;
continue;
}
/* miss: check if next character is part of pattern */
if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
else {
i = i + gap;
}
}
else {
/* skip: check if next character is part of pattern */
if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
}
}
return mode == FAST_COUNT ? count : -1;
}
static Py_ssize_t
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
const Py_ssize_t w = n - m;
Py_ssize_t mlast = m - 1, count = 0;
Py_ssize_t gap = mlast;
Py_ssize_t hits = 0, res;
const STRINGLIB_CHAR last = p[mlast];
const STRINGLIB_CHAR *const ss = &s[mlast];
unsigned long mask = 0;
for (Py_ssize_t i = 0; i < mlast; i++) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == last) {
gap = mlast - i - 1;
}
}
STRINGLIB_BLOOM_ADD(mask, last);
for (Py_ssize_t i = 0; i <= w; i++) {
if (ss[i] == last) {
/* candidate match */
Py_ssize_t j;
for (j = 0; j < mlast; j++) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == mlast) {
/* got a match! */
if (mode != FAST_COUNT) {
return i;
}
count++;
if (count == maxcount) {
return maxcount;
}
i = i + mlast;
continue;
}
hits += j + 1;
if (hits > m / 4 && w - i > 2000) {
if (mode == FAST_SEARCH) {
res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
return res == -1 ? -1 : res + i;
}
else {
res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
maxcount - count);
return res + count;
}
}
/* miss: check if next character is part of pattern */
if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
else {
i = i + gap;
}
}
else {
/* skip: check if next character is part of pattern */
if (i + 1 <= w && !STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
}
}
return mode == FAST_COUNT ? count : -1;
}
static Py_ssize_t
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
/* create compressed boyer-moore delta 1 table */
unsigned long mask = 0;
Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
/* process pattern[0] outside the loop */
STRINGLIB_BLOOM_ADD(mask, p[0]);
/* process pattern[:0:-1] */
for (i = mlast; i > 0; i--) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == p[0]) {
skip = i - 1;
}
}
for (i = w; i >= 0; i--) {
if (s[i] == p[0]) {
/* candidate match */
for (j = mlast; j > 0; j--) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == 0) {
/* got a match! */
return i;
}
/* miss: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
i = i - m;
}
else {
i = i - skip;
}
}
else {
/* skip: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
i = i - m;
}
}
}
return -1;
}
static inline Py_ssize_t
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
{
Py_ssize_t i, count = 0;
for (i = 0; i < n; i++) {
if (s[i] == p0) {
count++;
if (count == maxcount) {
return maxcount;
}
}
}
return count;
}
Py_LOCAL_INLINE(Py_ssize_t)
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
return -1;
}
/* look for special cases */
if (m <= 1) {
if (m <= 0) {
return -1;
}
/* use special case for 1-character strings */
if (mode == FAST_SEARCH)
return STRINGLIB(find_char)(s, n, p[0]);
else if (mode == FAST_RSEARCH)
return STRINGLIB(rfind_char)(s, n, p[0]);
else {
return STRINGLIB(count_char)(s, n, p[0], maxcount);
}
}
if (mode != FAST_RSEARCH) {
if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
}
else if ((m >> 2) * 3 < (n >> 2)) {
/* 33% threshold, but don't overflow. */
/* For larger problems where the needle isn't a huge
percentage of the size of the haystack, the relatively
expensive O(m) startup cost of the two-way algorithm
will surely pay off. */
if (mode == FAST_SEARCH) {
return STRINGLIB(_two_way_find)(s, n, p, m);
}
else {
return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
}
}
else {
/* To ensure that we have good worst-case behavior,
here's an adaptive version of the algorithm, where if
we match O(m) characters without any matches of the
entire needle, then we predict that the startup cost of
the two-way algorithm will probably be worth it. */
return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
}
}
else {
/* FAST_RSEARCH */
return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
}
}
|