1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
|
"""Print a summary of specialization stats for all files in the
default stats folders.
"""
from __future__ import annotations
# NOTE: Bytecode introspection modules (opcode, dis, etc.) should only
# be imported when loading a single dataset. When comparing datasets, it
# could get it wrong, leading to subtle errors.
import argparse
import collections
from collections.abc import KeysView
from dataclasses import dataclass
from datetime import date
import enum
import functools
import itertools
import json
from operator import itemgetter
import os
from pathlib import Path
import re
import sys
import textwrap
from typing import Any, Callable, TextIO, TypeAlias
RawData: TypeAlias = dict[str, Any]
Rows: TypeAlias = list[tuple]
Columns: TypeAlias = tuple[str, ...]
RowCalculator: TypeAlias = Callable[["Stats"], Rows]
# TODO: Check for parity
if os.name == "nt":
DEFAULT_DIR = "c:\\temp\\py_stats\\"
else:
DEFAULT_DIR = "/tmp/py_stats/"
SOURCE_DIR = Path(__file__).parents[2]
TOTAL = "specialization.hit", "specialization.miss", "execution_count"
def pretty(name: str) -> str:
return name.replace("_", " ").lower()
def _load_metadata_from_source():
def get_defines(filepath: Path, prefix: str = "SPEC_FAIL"):
with open(SOURCE_DIR / filepath) as spec_src:
defines = collections.defaultdict(list)
start = "#define " + prefix + "_"
for line in spec_src:
line = line.strip()
if not line.startswith(start):
continue
line = line[len(start) :]
name, val = line.split()
defines[int(val.strip())].append(name.strip())
return defines
import opcode
return {
"_specialized_instructions": [
op for op in opcode._specialized_opmap.keys() if "__" not in op # type: ignore
],
"_stats_defines": get_defines(
Path("Include") / "cpython" / "pystats.h", "EVAL_CALL"
),
"_defines": get_defines(Path("Python") / "specialize.c"),
}
def load_raw_data(input: Path) -> RawData:
if input.is_file():
with open(input, "r") as fd:
data = json.load(fd)
data["_stats_defines"] = {int(k): v for k, v in data["_stats_defines"].items()}
data["_defines"] = {int(k): v for k, v in data["_defines"].items()}
return data
elif input.is_dir():
stats = collections.Counter[str]()
for filename in input.iterdir():
with open(filename) as fd:
for line in fd:
try:
key, value = line.split(":")
except ValueError:
print(
f"Unparsable line: '{line.strip()}' in {filename}",
file=sys.stderr,
)
continue
# Hack to handle older data files where some uops
# are missing an underscore prefix in their name
if key.startswith("uops[") and key[5:6] != "_":
key = "uops[_" + key[5:]
stats[key.strip()] += int(value)
stats["__nfiles__"] += 1
data = dict(stats)
data.update(_load_metadata_from_source())
return data
else:
raise ValueError(f"{input} is not a file or directory path")
def save_raw_data(data: RawData, json_output: TextIO):
json.dump(data, json_output)
@dataclass(frozen=True)
class Doc:
text: str
doc: str
def markdown(self) -> str:
return textwrap.dedent(
f"""
{self.text}
<details>
<summary>ⓘ</summary>
{self.doc}
</details>
"""
)
class Count(int):
def markdown(self) -> str:
return format(self, ",d")
@dataclass(frozen=True)
class Ratio:
num: int
den: int | None = None
percentage: bool = True
def __float__(self):
if self.den == 0:
return 0.0
elif self.den is None:
return self.num
else:
return self.num / self.den
def markdown(self) -> str:
if self.den is None:
return ""
elif self.den == 0:
if self.num != 0:
return f"{self.num:,} / 0 !!"
return ""
elif self.percentage:
return f"{self.num / self.den:,.01%}"
else:
return f"{self.num / self.den:,.02f}"
class DiffRatio(Ratio):
def __init__(self, base: int | str, head: int | str):
if isinstance(base, str) or isinstance(head, str):
super().__init__(0, 0)
else:
super().__init__(head - base, base)
class OpcodeStats:
"""
Manages the data related to specific set of opcodes, e.g. tier1 (with prefix
"opcode") or tier2 (with prefix "uops").
"""
def __init__(self, data: dict[str, Any], defines, specialized_instructions):
self._data = data
self._defines = defines
self._specialized_instructions = specialized_instructions
def get_opcode_names(self) -> KeysView[str]:
return self._data.keys()
def get_pair_counts(self) -> dict[tuple[str, str], int]:
pair_counts = {}
for name_i, opcode_stat in self._data.items():
for key, value in opcode_stat.items():
if value and key.startswith("pair_count"):
name_j, _, _ = key[len("pair_count") + 1 :].partition("]")
pair_counts[(name_i, name_j)] = value
return pair_counts
def get_total_execution_count(self) -> int:
return sum(x.get("execution_count", 0) for x in self._data.values())
def get_execution_counts(self) -> dict[str, tuple[int, int]]:
counts = {}
for name, opcode_stat in self._data.items():
if "execution_count" in opcode_stat:
count = opcode_stat["execution_count"]
miss = 0
if "specializable" not in opcode_stat:
miss = opcode_stat.get("specialization.miss", 0)
counts[name] = (count, miss)
return counts
@functools.cache
def _get_pred_succ(
self,
) -> tuple[dict[str, collections.Counter], dict[str, collections.Counter]]:
pair_counts = self.get_pair_counts()
predecessors: dict[str, collections.Counter] = collections.defaultdict(
collections.Counter
)
successors: dict[str, collections.Counter] = collections.defaultdict(
collections.Counter
)
for (first, second), count in pair_counts.items():
if count:
predecessors[second][first] = count
successors[first][second] = count
return predecessors, successors
def get_predecessors(self, opcode: str) -> collections.Counter[str]:
return self._get_pred_succ()[0][opcode]
def get_successors(self, opcode: str) -> collections.Counter[str]:
return self._get_pred_succ()[1][opcode]
def _get_stats_for_opcode(self, opcode: str) -> dict[str, int]:
return self._data[opcode]
def get_specialization_total(self, opcode: str) -> int:
family_stats = self._get_stats_for_opcode(opcode)
return sum(family_stats.get(kind, 0) for kind in TOTAL)
def get_specialization_counts(self, opcode: str) -> dict[str, int]:
family_stats = self._get_stats_for_opcode(opcode)
result = {}
for key, value in sorted(family_stats.items()):
if key.startswith("specialization."):
label = key[len("specialization.") :]
if label in ("success", "failure") or label.startswith("failure_kinds"):
continue
elif key in (
"execution_count",
"specializable",
) or key.startswith("pair"):
continue
else:
label = key
result[label] = value
return result
def get_specialization_success_failure(self, opcode: str) -> dict[str, int]:
family_stats = self._get_stats_for_opcode(opcode)
result = {}
for key in ("specialization.success", "specialization.failure"):
label = key[len("specialization.") :]
val = family_stats.get(key, 0)
result[label] = val
return result
def get_specialization_failure_total(self, opcode: str) -> int:
return self._get_stats_for_opcode(opcode).get("specialization.failure", 0)
def get_specialization_failure_kinds(self, opcode: str) -> dict[str, int]:
def kind_to_text(kind: int, opcode: str):
if kind <= 8:
return pretty(self._defines[kind][0])
if opcode == "LOAD_SUPER_ATTR":
opcode = "SUPER"
elif opcode.endswith("ATTR"):
opcode = "ATTR"
elif opcode in ("FOR_ITER", "SEND"):
opcode = "ITER"
elif opcode.endswith("SUBSCR"):
opcode = "SUBSCR"
for name in self._defines[kind]:
if name.startswith(opcode):
return pretty(name[len(opcode) + 1 :])
return "kind " + str(kind)
family_stats = self._get_stats_for_opcode(opcode)
failure_kinds = [0] * 40
for key in family_stats:
if not key.startswith("specialization.failure_kind"):
continue
index = int(key[:-1].split("[")[1])
failure_kinds[index] = family_stats[key]
return {
kind_to_text(index, opcode): value
for (index, value) in enumerate(failure_kinds)
if value
}
def is_specializable(self, opcode: str) -> bool:
return "specializable" in self._get_stats_for_opcode(opcode)
def get_specialized_total_counts(self) -> tuple[int, int, int]:
basic = 0
specialized_hits = 0
specialized_misses = 0
not_specialized = 0
for opcode, opcode_stat in self._data.items():
if "execution_count" not in opcode_stat:
continue
count = opcode_stat["execution_count"]
if "specializable" in opcode_stat:
not_specialized += count
elif opcode in self._specialized_instructions:
miss = opcode_stat.get("specialization.miss", 0)
specialized_hits += count - miss
specialized_misses += miss
else:
basic += count
return basic, specialized_hits, specialized_misses, not_specialized
def get_deferred_counts(self) -> dict[str, int]:
return {
opcode: opcode_stat.get("specialization.deferred", 0)
for opcode, opcode_stat in self._data.items()
if opcode != "RESUME"
}
def get_misses_counts(self) -> dict[str, int]:
return {
opcode: opcode_stat.get("specialization.miss", 0)
for opcode, opcode_stat in self._data.items()
if not self.is_specializable(opcode)
}
def get_opcode_counts(self) -> dict[str, int]:
counts = {}
for opcode, entry in self._data.items():
count = entry.get("count", 0)
if count:
counts[opcode] = count
return counts
class Stats:
def __init__(self, data: RawData):
self._data = data
def get(self, key: str) -> int:
return self._data.get(key, 0)
@functools.cache
def get_opcode_stats(self, prefix: str) -> OpcodeStats:
opcode_stats = collections.defaultdict[str, dict](dict)
for key, value in self._data.items():
if not key.startswith(prefix):
continue
name, _, rest = key[len(prefix) + 1 :].partition("]")
opcode_stats[name][rest.strip(".")] = value
return OpcodeStats(
opcode_stats,
self._data["_defines"],
self._data["_specialized_instructions"],
)
def get_call_stats(self) -> dict[str, int]:
defines = self._data["_stats_defines"]
result = {}
for key, value in sorted(self._data.items()):
if "Calls to" in key:
result[key] = value
elif key.startswith("Calls "):
name, index = key[:-1].split("[")
label = f"{name} ({pretty(defines[int(index)][0])})"
result[label] = value
for key, value in sorted(self._data.items()):
if key.startswith("Frame"):
result[key] = value
return result
def get_object_stats(self) -> dict[str, tuple[int, int]]:
total_materializations = self._data.get("Object inline values", 0)
total_allocations = self._data.get("Object allocations", 0) + self._data.get(
"Object allocations from freelist", 0
)
total_increfs = self._data.get(
"Object interpreter increfs", 0
) + self._data.get("Object increfs", 0)
total_decrefs = self._data.get(
"Object interpreter decrefs", 0
) + self._data.get("Object decrefs", 0)
result = {}
for key, value in self._data.items():
if key.startswith("Object"):
if "materialize" in key:
den = total_materializations
elif "allocations" in key:
den = total_allocations
elif "increfs" in key:
den = total_increfs
elif "decrefs" in key:
den = total_decrefs
else:
den = None
label = key[6:].strip()
label = label[0].upper() + label[1:]
result[label] = (value, den)
return result
def get_gc_stats(self) -> list[dict[str, int]]:
gc_stats: list[dict[str, int]] = []
for key, value in self._data.items():
if not key.startswith("GC"):
continue
n, _, rest = key[3:].partition("]")
name = rest.strip()
gen_n = int(n)
while len(gc_stats) <= gen_n:
gc_stats.append({})
gc_stats[gen_n][name] = value
return gc_stats
def get_optimization_stats(self) -> dict[str, tuple[int, int | None]]:
if "Optimization attempts" not in self._data:
return {}
attempts = self._data["Optimization attempts"]
created = self._data["Optimization traces created"]
executed = self._data["Optimization traces executed"]
uops = self._data["Optimization uops executed"]
trace_stack_overflow = self._data["Optimization trace stack overflow"]
trace_stack_underflow = self._data["Optimization trace stack underflow"]
trace_too_long = self._data["Optimization trace too long"]
trace_too_short = self._data["Optimization trace too short"]
inner_loop = self._data["Optimization inner loop"]
recursive_call = self._data["Optimization recursive call"]
low_confidence = self._data["Optimization low confidence"]
executors_invalidated = self._data["Executors invalidated"]
return {
Doc(
"Optimization attempts",
"The number of times a potential trace is identified. Specifically, this "
"occurs in the JUMP BACKWARD instruction when the counter reaches a "
"threshold.",
): (attempts, None),
Doc(
"Traces created", "The number of traces that were successfully created."
): (created, attempts),
Doc(
"Trace stack overflow",
"A trace is truncated because it would require more than 5 stack frames.",
): (trace_stack_overflow, attempts),
Doc(
"Trace stack underflow",
"A potential trace is abandoned because it pops more frames than it pushes.",
): (trace_stack_underflow, attempts),
Doc(
"Trace too long",
"A trace is truncated because it is longer than the instruction buffer.",
): (trace_too_long, attempts),
Doc(
"Trace too short",
"A potential trace is abandoned because it is too short.",
): (trace_too_short, attempts),
Doc(
"Inner loop found", "A trace is truncated because it has an inner loop"
): (inner_loop, attempts),
Doc(
"Recursive call",
"A trace is truncated because it has a recursive call.",
): (recursive_call, attempts),
Doc(
"Low confidence",
"A trace is abandoned because the likelihood of the jump to top being taken "
"is too low.",
): (low_confidence, attempts),
Doc(
"Executors invalidated",
"The number of executors that were invalidated due to watched "
"dictionary changes.",
): (executors_invalidated, created),
Doc("Traces executed", "The number of traces that were executed"): (
executed,
None,
),
Doc(
"Uops executed",
"The total number of uops (micro-operations) that were executed",
): (
uops,
executed,
),
}
def get_optimizer_stats(self) -> dict[str, tuple[int, int | None]]:
attempts = self._data["Optimization optimizer attempts"]
successes = self._data["Optimization optimizer successes"]
no_memory = self._data["Optimization optimizer failure no memory"]
builtins_changed = self._data["Optimizer remove globals builtins changed"]
incorrect_keys = self._data["Optimizer remove globals incorrect keys"]
return {
Doc(
"Optimizer attempts",
"The number of times the trace optimizer (_Py_uop_analyze_and_optimize) was run.",
): (attempts, None),
Doc(
"Optimizer successes",
"The number of traces that were successfully optimized.",
): (successes, attempts),
Doc(
"Optimizer no memory",
"The number of optimizations that failed due to no memory.",
): (no_memory, attempts),
Doc(
"Remove globals builtins changed",
"The builtins changed during optimization",
): (builtins_changed, attempts),
Doc(
"Remove globals incorrect keys",
"The keys in the globals dictionary aren't what was expected",
): (incorrect_keys, attempts),
}
def get_histogram(self, prefix: str) -> list[tuple[int, int]]:
rows = []
for k, v in self._data.items():
match = re.match(f"{prefix}\\[([0-9]+)\\]", k)
if match is not None:
entry = int(match.groups()[0])
rows.append((entry, v))
rows.sort()
return rows
def get_rare_events(self) -> list[tuple[str, int]]:
prefix = "Rare event "
return [
(key[len(prefix) + 1 : -1].replace("_", " "), val)
for key, val in self._data.items()
if key.startswith(prefix)
]
class JoinMode(enum.Enum):
# Join using the first column as a key
SIMPLE = 0
# Join using the first column as a key, and indicate the change in the
# second column of each input table as a new column
CHANGE = 1
# Join using the first column as a key, indicating the change in the second
# column of each input table as a new column, and omit all other columns
CHANGE_ONE_COLUMN = 2
# Join using the first column as a key, and indicate the change as a new
# column, but don't sort by the amount of change.
CHANGE_NO_SORT = 3
class Table:
"""
A Table defines how to convert a set of Stats into a specific set of rows
displaying some aspect of the data.
"""
def __init__(
self,
column_names: Columns,
calc_rows: RowCalculator,
join_mode: JoinMode = JoinMode.SIMPLE,
):
self.columns = column_names
self.calc_rows = calc_rows
self.join_mode = join_mode
def join_row(self, key: str, row_a: tuple, row_b: tuple) -> tuple:
match self.join_mode:
case JoinMode.SIMPLE:
return (key, *row_a, *row_b)
case JoinMode.CHANGE | JoinMode.CHANGE_NO_SORT:
return (key, *row_a, *row_b, DiffRatio(row_a[0], row_b[0]))
case JoinMode.CHANGE_ONE_COLUMN:
return (key, row_a[0], row_b[0], DiffRatio(row_a[0], row_b[0]))
def join_columns(self, columns: Columns) -> Columns:
match self.join_mode:
case JoinMode.SIMPLE:
return (
columns[0],
*("Base " + x for x in columns[1:]),
*("Head " + x for x in columns[1:]),
)
case JoinMode.CHANGE | JoinMode.CHANGE_NO_SORT:
return (
columns[0],
*("Base " + x for x in columns[1:]),
*("Head " + x for x in columns[1:]),
) + ("Change:",)
case JoinMode.CHANGE_ONE_COLUMN:
return (
columns[0],
"Base " + columns[1],
"Head " + columns[1],
"Change:",
)
def join_tables(self, rows_a: Rows, rows_b: Rows) -> tuple[Columns, Rows]:
ncols = len(self.columns)
default = ("",) * (ncols - 1)
data_a = {x[0]: x[1:] for x in rows_a}
data_b = {x[0]: x[1:] for x in rows_b}
if len(data_a) != len(rows_a) or len(data_b) != len(rows_b):
raise ValueError("Duplicate keys")
# To preserve ordering, use A's keys as is and then add any in B that
# aren't in A
keys = list(data_a.keys()) + [k for k in data_b.keys() if k not in data_a]
rows = [
self.join_row(k, data_a.get(k, default), data_b.get(k, default))
for k in keys
]
if self.join_mode in (JoinMode.CHANGE, JoinMode.CHANGE_ONE_COLUMN):
rows.sort(key=lambda row: abs(float(row[-1])), reverse=True)
columns = self.join_columns(self.columns)
return columns, rows
def get_table(
self, base_stats: Stats, head_stats: Stats | None = None
) -> tuple[Columns, Rows]:
if head_stats is None:
rows = self.calc_rows(base_stats)
return self.columns, rows
else:
rows_a = self.calc_rows(base_stats)
rows_b = self.calc_rows(head_stats)
cols, rows = self.join_tables(rows_a, rows_b)
return cols, rows
class Section:
"""
A Section defines a section of the output document.
"""
def __init__(
self,
title: str = "",
summary: str = "",
part_iter=None,
*,
comparative: bool = True,
doc: str = "",
):
self.title = title
if not summary:
self.summary = title.lower()
else:
self.summary = summary
self.doc = textwrap.dedent(doc)
if part_iter is None:
part_iter = []
if isinstance(part_iter, list):
def iter_parts(base_stats: Stats, head_stats: Stats | None):
yield from part_iter
self.part_iter = iter_parts
else:
self.part_iter = part_iter
self.comparative = comparative
def calc_execution_count_table(prefix: str) -> RowCalculator:
def calc(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats(prefix)
counts = opcode_stats.get_execution_counts()
total = opcode_stats.get_total_execution_count()
cumulative = 0
rows: Rows = []
for opcode, (count, miss) in sorted(
counts.items(), key=itemgetter(1), reverse=True
):
cumulative += count
if miss:
miss_val = Ratio(miss, count)
else:
miss_val = None
rows.append(
(
opcode,
Count(count),
Ratio(count, total),
Ratio(cumulative, total),
miss_val,
)
)
return rows
return calc
def execution_count_section() -> Section:
return Section(
"Execution counts",
"Execution counts for Tier 1 instructions.",
[
Table(
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
calc_execution_count_table("opcode"),
join_mode=JoinMode.CHANGE_ONE_COLUMN,
)
],
doc="""
The "miss ratio" column shows the percentage of times the instruction
executed that it deoptimized. When this happens, the base unspecialized
instruction is not counted.
""",
)
def pair_count_section(prefix: str, title=None) -> Section:
def calc_pair_count_table(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats(prefix)
pair_counts = opcode_stats.get_pair_counts()
total = opcode_stats.get_total_execution_count()
cumulative = 0
rows: Rows = []
for (opcode_i, opcode_j), count in itertools.islice(
sorted(pair_counts.items(), key=itemgetter(1), reverse=True), 100
):
cumulative += count
rows.append(
(
f"{opcode_i} {opcode_j}",
Count(count),
Ratio(count, total),
Ratio(cumulative, total),
)
)
return rows
return Section(
"Pair counts",
f"Pair counts for top 100 {title if title else prefix} pairs",
[
Table(
("Pair", "Count:", "Self:", "Cumulative:"),
calc_pair_count_table,
)
],
comparative=False,
doc="""
Pairs of specialized operations that deoptimize and are then followed by
the corresponding unspecialized instruction are not counted as pairs.
""",
)
def pre_succ_pairs_section() -> Section:
def iter_pre_succ_pairs_tables(base_stats: Stats, head_stats: Stats | None = None):
assert head_stats is None
opcode_stats = base_stats.get_opcode_stats("opcode")
for opcode in opcode_stats.get_opcode_names():
predecessors = opcode_stats.get_predecessors(opcode)
successors = opcode_stats.get_successors(opcode)
predecessors_total = predecessors.total()
successors_total = successors.total()
if predecessors_total == 0 and successors_total == 0:
continue
pred_rows = [
(pred, Count(count), Ratio(count, predecessors_total))
for (pred, count) in predecessors.most_common(5)
]
succ_rows = [
(succ, Count(count), Ratio(count, successors_total))
for (succ, count) in successors.most_common(5)
]
yield Section(
opcode,
f"Successors and predecessors for {opcode}",
[
Table(
("Predecessors", "Count:", "Percentage:"),
lambda *_: pred_rows, # type: ignore
),
Table(
("Successors", "Count:", "Percentage:"),
lambda *_: succ_rows, # type: ignore
),
],
)
return Section(
"Predecessor/Successor Pairs",
"Top 5 predecessors and successors of each Tier 1 opcode.",
iter_pre_succ_pairs_tables,
comparative=False,
doc="""
This does not include the unspecialized instructions that occur after a
specialized instruction deoptimizes.
""",
)
def specialization_section() -> Section:
def calc_specialization_table(opcode: str) -> RowCalculator:
def calc(stats: Stats) -> Rows:
DOCS = {
"deferred": 'Lists the number of "deferred" (i.e. not specialized) instructions executed.',
"hit": "Specialized instructions that complete.",
"miss": "Specialized instructions that deopt.",
"deopt": "Specialized instructions that deopt.",
}
opcode_stats = stats.get_opcode_stats("opcode")
total = opcode_stats.get_specialization_total(opcode)
specialization_counts = opcode_stats.get_specialization_counts(opcode)
return [
(
Doc(label, DOCS[label]),
Count(count),
Ratio(count, total),
)
for label, count in specialization_counts.items()
]
return calc
def calc_specialization_success_failure_table(name: str) -> RowCalculator:
def calc(stats: Stats) -> Rows:
values = stats.get_opcode_stats(
"opcode"
).get_specialization_success_failure(name)
total = sum(values.values())
if total:
return [
(label.capitalize(), Count(val), Ratio(val, total))
for label, val in values.items()
]
else:
return []
return calc
def calc_specialization_failure_kind_table(name: str) -> RowCalculator:
def calc(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats("opcode")
failures = opcode_stats.get_specialization_failure_kinds(name)
total = opcode_stats.get_specialization_failure_total(name)
return sorted(
[
(label, Count(value), Ratio(value, total))
for label, value in failures.items()
if value
],
key=itemgetter(1),
reverse=True,
)
return calc
def iter_specialization_tables(base_stats: Stats, head_stats: Stats | None = None):
opcode_base_stats = base_stats.get_opcode_stats("opcode")
names = opcode_base_stats.get_opcode_names()
if head_stats is not None:
opcode_head_stats = head_stats.get_opcode_stats("opcode")
names &= opcode_head_stats.get_opcode_names() # type: ignore
else:
opcode_head_stats = None
for opcode in sorted(names):
if not opcode_base_stats.is_specializable(opcode):
continue
if opcode_base_stats.get_specialization_total(opcode) == 0 and (
opcode_head_stats is None
or opcode_head_stats.get_specialization_total(opcode) == 0
):
continue
yield Section(
opcode,
f"specialization stats for {opcode} family",
[
Table(
("Kind", "Count:", "Ratio:"),
calc_specialization_table(opcode),
JoinMode.CHANGE,
),
Table(
("Success", "Count:", "Ratio:"),
calc_specialization_success_failure_table(opcode),
JoinMode.CHANGE,
),
Table(
("Failure kind", "Count:", "Ratio:"),
calc_specialization_failure_kind_table(opcode),
JoinMode.CHANGE,
),
],
)
return Section(
"Specialization stats",
"Specialization stats by family",
iter_specialization_tables,
)
def specialization_effectiveness_section() -> Section:
def calc_specialization_effectiveness_table(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats("opcode")
total = opcode_stats.get_total_execution_count()
(
basic,
specialized_hits,
specialized_misses,
not_specialized,
) = opcode_stats.get_specialized_total_counts()
return [
(
Doc(
"Basic",
"Instructions that are not and cannot be specialized, e.g. `LOAD_FAST`.",
),
Count(basic),
Ratio(basic, total),
),
(
Doc(
"Not specialized",
"Instructions that could be specialized but aren't, e.g. `LOAD_ATTR`, `BINARY_SLICE`.",
),
Count(not_specialized),
Ratio(not_specialized, total),
),
(
Doc(
"Specialized hits",
"Specialized instructions, e.g. `LOAD_ATTR_MODULE` that complete.",
),
Count(specialized_hits),
Ratio(specialized_hits, total),
),
(
Doc(
"Specialized misses",
"Specialized instructions, e.g. `LOAD_ATTR_MODULE` that deopt.",
),
Count(specialized_misses),
Ratio(specialized_misses, total),
),
]
def calc_deferred_by_table(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats("opcode")
deferred_counts = opcode_stats.get_deferred_counts()
total = sum(deferred_counts.values())
if total == 0:
return []
return [
(name, Count(value), Ratio(value, total))
for name, value in sorted(
deferred_counts.items(), key=itemgetter(1), reverse=True
)[:10]
]
def calc_misses_by_table(stats: Stats) -> Rows:
opcode_stats = stats.get_opcode_stats("opcode")
misses_counts = opcode_stats.get_misses_counts()
total = sum(misses_counts.values())
if total == 0:
return []
return [
(name, Count(value), Ratio(value, total))
for name, value in sorted(
misses_counts.items(), key=itemgetter(1), reverse=True
)[:10]
]
return Section(
"Specialization effectiveness",
"",
[
Table(
("Instructions", "Count:", "Ratio:"),
calc_specialization_effectiveness_table,
JoinMode.CHANGE,
),
Section(
"Deferred by instruction",
"Breakdown of deferred (not specialized) instruction counts by family",
[
Table(
("Name", "Count:", "Ratio:"),
calc_deferred_by_table,
JoinMode.CHANGE,
)
],
),
Section(
"Misses by instruction",
"Breakdown of misses (specialized deopts) instruction counts by family",
[
Table(
("Name", "Count:", "Ratio:"),
calc_misses_by_table,
JoinMode.CHANGE,
)
],
),
],
doc="""
All entries are execution counts. Should add up to the total number of
Tier 1 instructions executed.
""",
)
def call_stats_section() -> Section:
def calc_call_stats_table(stats: Stats) -> Rows:
call_stats = stats.get_call_stats()
total = sum(v for k, v in call_stats.items() if "Calls to" in k)
return [
(key, Count(value), Ratio(value, total))
for key, value in call_stats.items()
]
return Section(
"Call stats",
"Inlined calls and frame stats",
[
Table(
("", "Count:", "Ratio:"),
calc_call_stats_table,
JoinMode.CHANGE,
)
],
doc="""
This shows what fraction of calls to Python functions are inlined (i.e.
not having a call at the C level) and for those that are not, where the
call comes from. The various categories overlap.
Also includes the count of frame objects created.
""",
)
def object_stats_section() -> Section:
def calc_object_stats_table(stats: Stats) -> Rows:
object_stats = stats.get_object_stats()
return [
(label, Count(value), Ratio(value, den))
for label, (value, den) in object_stats.items()
]
return Section(
"Object stats",
"Allocations, frees and dict materializatons",
[
Table(
("", "Count:", "Ratio:"),
calc_object_stats_table,
JoinMode.CHANGE,
)
],
doc="""
Below, "allocations" means "allocations that are not from a freelist".
Total allocations = "Allocations from freelist" + "Allocations".
"Inline values" is the number of values arrays inlined into objects.
The cache hit/miss numbers are for the MRO cache, split into dunder and
other names.
""",
)
def gc_stats_section() -> Section:
def calc_gc_stats(stats: Stats) -> Rows:
gc_stats = stats.get_gc_stats()
return [
(
Count(i),
Count(gen["collections"]),
Count(gen["objects collected"]),
Count(gen["object visits"]),
)
for (i, gen) in enumerate(gc_stats)
]
return Section(
"GC stats",
"GC collections and effectiveness",
[
Table(
("Generation:", "Collections:", "Objects collected:", "Object visits:"),
calc_gc_stats,
)
],
doc="""
Collected/visits gives some measure of efficiency.
""",
)
def optimization_section() -> Section:
def calc_optimization_table(stats: Stats) -> Rows:
optimization_stats = stats.get_optimization_stats()
return [
(
label,
Count(value),
Ratio(value, den, percentage=label != "Uops executed"),
)
for label, (value, den) in optimization_stats.items()
]
def calc_optimizer_table(stats: Stats) -> Rows:
optimizer_stats = stats.get_optimizer_stats()
return [
(label, Count(value), Ratio(value, den))
for label, (value, den) in optimizer_stats.items()
]
def calc_histogram_table(key: str, den: str) -> RowCalculator:
def calc(stats: Stats) -> Rows:
histogram = stats.get_histogram(key)
denominator = stats.get(den)
rows: Rows = []
last_non_zero = 0
for k, v in histogram:
if v != 0:
last_non_zero = len(rows)
rows.append(
(
f"<= {k:,d}",
Count(v),
Ratio(v, denominator),
)
)
# Don't include any zero entries at the end
rows = rows[: last_non_zero + 1]
return rows
return calc
def calc_unsupported_opcodes_table(stats: Stats) -> Rows:
unsupported_opcodes = stats.get_opcode_stats("unsupported_opcode")
return sorted(
[
(opcode, Count(count))
for opcode, count in unsupported_opcodes.get_opcode_counts().items()
],
key=itemgetter(1),
reverse=True,
)
def calc_error_in_opcodes_table(stats: Stats) -> Rows:
error_in_opcodes = stats.get_opcode_stats("error_in_opcode")
return sorted(
[
(opcode, Count(count))
for opcode, count in error_in_opcodes.get_opcode_counts().items()
],
key=itemgetter(1),
reverse=True,
)
def iter_optimization_tables(base_stats: Stats, head_stats: Stats | None = None):
if not base_stats.get_optimization_stats() or (
head_stats is not None and not head_stats.get_optimization_stats()
):
return
yield Table(("", "Count:", "Ratio:"), calc_optimization_table, JoinMode.CHANGE)
yield Table(("", "Count:", "Ratio:"), calc_optimizer_table, JoinMode.CHANGE)
for name, den in [
("Trace length", "Optimization traces created"),
("Optimized trace length", "Optimization traces created"),
("Trace run length", "Optimization traces executed"),
]:
yield Section(
f"{name} histogram",
"",
[
Table(
("Range", "Count:", "Ratio:"),
calc_histogram_table(name, den),
JoinMode.CHANGE_NO_SORT,
)
],
)
yield Section(
"Uop execution stats",
"",
[
Table(
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
calc_execution_count_table("uops"),
JoinMode.CHANGE_ONE_COLUMN,
)
],
)
yield pair_count_section(prefix="uop", title="Non-JIT uop")
yield Section(
"Unsupported opcodes",
"",
[
Table(
("Opcode", "Count:"),
calc_unsupported_opcodes_table,
JoinMode.CHANGE,
)
],
)
yield Section(
"Optimizer errored out with opcode",
"Optimization stopped after encountering this opcode",
[Table(("Opcode", "Count:"), calc_error_in_opcodes_table, JoinMode.CHANGE)],
)
return Section(
"Optimization (Tier 2) stats",
"statistics about the Tier 2 optimizer",
iter_optimization_tables,
)
def rare_event_section() -> Section:
def calc_rare_event_table(stats: Stats) -> Table:
DOCS = {
"set class": "Setting an object's class, `obj.__class__ = ...`",
"set bases": "Setting the bases of a class, `cls.__bases__ = ...`",
"set eval frame func": (
"Setting the PEP 523 frame eval function "
"`_PyInterpreterState_SetFrameEvalFunc()`"
),
"builtin dict": "Modifying the builtins, `__builtins__.__dict__[var] = ...`",
"func modification": "Modifying a function, e.g. `func.__defaults__ = ...`, etc.",
"watched dict modification": "A watched dict has been modified",
"watched globals modification": "A watched `globals()` dict has been modified",
}
return [(Doc(x, DOCS[x]), Count(y)) for x, y in stats.get_rare_events()]
return Section(
"Rare events",
"Counts of rare/unlikely events",
[Table(("Event", "Count:"), calc_rare_event_table, JoinMode.CHANGE)],
)
def meta_stats_section() -> Section:
def calc_rows(stats: Stats) -> Rows:
return [("Number of data files", Count(stats.get("__nfiles__")))]
return Section(
"Meta stats",
"Meta statistics",
[Table(("", "Count:"), calc_rows, JoinMode.CHANGE)],
)
LAYOUT = [
execution_count_section(),
pair_count_section("opcode"),
pre_succ_pairs_section(),
specialization_section(),
specialization_effectiveness_section(),
call_stats_section(),
object_stats_section(),
gc_stats_section(),
optimization_section(),
rare_event_section(),
meta_stats_section(),
]
def output_markdown(
out: TextIO,
obj: Section | Table | list,
base_stats: Stats,
head_stats: Stats | None = None,
level: int = 2,
) -> None:
def to_markdown(x):
if hasattr(x, "markdown"):
return x.markdown()
elif isinstance(x, str):
return x
elif x is None:
return ""
else:
raise TypeError(f"Can't convert {x} to markdown")
match obj:
case Section():
if obj.title:
print("#" * level, obj.title, file=out)
print(file=out)
print("<details>", file=out)
print("<summary>", obj.summary, "</summary>", file=out)
print(file=out)
if obj.doc:
print(obj.doc, file=out)
if head_stats is not None and obj.comparative is False:
print("Not included in comparative output.\n")
else:
for part in obj.part_iter(base_stats, head_stats):
output_markdown(out, part, base_stats, head_stats, level=level + 1)
print(file=out)
if obj.title:
print("</details>", file=out)
print(file=out)
case Table():
header, rows = obj.get_table(base_stats, head_stats)
if len(rows) == 0:
return
alignments = []
for item in header:
if item.endswith(":"):
alignments.append("right")
else:
alignments.append("left")
print("<table>", file=out)
print("<thead>", file=out)
print("<tr>", file=out)
for item, align in zip(header, alignments):
if item.endswith(":"):
item = item[:-1]
print(f'<th align="{align}">{item}</th>', file=out)
print("</tr>", file=out)
print("</thead>", file=out)
print("<tbody>", file=out)
for row in rows:
if len(row) != len(header):
raise ValueError(
"Wrong number of elements in row '" + str(row) + "'"
)
print("<tr>", file=out)
for col, align in zip(row, alignments):
print(f'<td align="{align}">{to_markdown(col)}</td>', file=out)
print("</tr>", file=out)
print("</tbody>", file=out)
print("</table>", file=out)
print(file=out)
case list():
for part in obj:
output_markdown(out, part, base_stats, head_stats, level=level)
print("---", file=out)
print("Stats gathered on:", date.today(), file=out)
def output_stats(inputs: list[Path], json_output=str | None):
match len(inputs):
case 1:
data = load_raw_data(Path(inputs[0]))
if json_output is not None:
with open(json_output, "w", encoding="utf-8") as f:
save_raw_data(data, f) # type: ignore
stats = Stats(data)
output_markdown(sys.stdout, LAYOUT, stats)
case 2:
if json_output is not None:
raise ValueError(
"Can not output to JSON when there are multiple inputs"
)
base_data = load_raw_data(Path(inputs[0]))
head_data = load_raw_data(Path(inputs[1]))
base_stats = Stats(base_data)
head_stats = Stats(head_data)
output_markdown(sys.stdout, LAYOUT, base_stats, head_stats)
def main():
parser = argparse.ArgumentParser(description="Summarize pystats results")
parser.add_argument(
"inputs",
nargs="*",
type=str,
default=[DEFAULT_DIR],
help=f"""
Input source(s).
For each entry, if a .json file, the output provided by --json-output from a previous run;
if a directory, a directory containing raw pystats .txt files.
If one source is provided, its stats are printed.
If two sources are provided, comparative stats are printed.
Default is {DEFAULT_DIR}.
""",
)
parser.add_argument(
"--json-output",
nargs="?",
help="Output complete raw results to the given JSON file.",
)
args = parser.parse_args()
if len(args.inputs) > 2:
raise ValueError("0-2 arguments may be provided.")
output_stats(args.inputs, json_output=args.json_output)
if __name__ == "__main__":
main()
|