1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
(* Copyright (c) 2011-2020 Stefan Krah. All rights reserved. *)
========================================================================
Calculate (a * b) % p using the 80-bit x87 FPU
========================================================================
A description of the algorithm can be found in the apfloat manual by
Tommila [1].
The proof follows an argument made by Granlund/Montgomery in [2].
Definitions and assumptions:
----------------------------
The 80-bit extended precision format uses 64 bits for the significand:
(1) F = 64
The modulus is prime and less than 2**31:
(2) 2 <= p < 2**31
The factors are less than p:
(3) 0 <= a < p
(4) 0 <= b < p
The product a * b is less than 2**62 and is thus exact in 64 bits:
(5) n = a * b
The product can be represented in terms of quotient and remainder:
(6) n = q * p + r
Using (3), (4) and the fact that p is prime, the remainder is always
greater than zero:
(7) 0 <= q < p /\ 1 <= r < p
Strategy:
---------
Precalculate the 80-bit long double inverse of p, with a maximum
relative error of 2**(1-F):
(8) pinv = (long double)1.0 / p
Calculate an estimate for q = floor(n/p). The multiplication has another
maximum relative error of 2**(1-F):
(9) qest = n * pinv
If we can show that q < qest < q+1, then trunc(qest) = q. It is then
easy to recover the remainder r. The complete algorithm is:
a) Set the control word to 64-bit precision and truncation mode.
b) n = a * b # Calculate exact product.
c) qest = n * pinv # Calculate estimate for the quotient.
d) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient.
f) r = n - q * p # Calculate remainder.
Proof for q < qest < q+1:
-------------------------
Using the cumulative error, the error bounds for qest are:
n n * (1 + 2**(1-F))**2
(9) --------------------- <= qest <= ---------------------
p * (1 + 2**(1-F))**2 p
Lemma 1:
--------
n q * p + r
(10) q < --------------------- = ---------------------
p * (1 + 2**(1-F))**2 p * (1 + 2**(1-F))**2
Proof:
~~~~~~
(I) q * p * (1 + 2**(1-F))**2 < q * p + r
(II) q * p * 2**(2-F) + q * p * 2**(2-2*F) < r
Using (1) and (7), it is sufficient to show that:
(III) q * p * 2**(-62) + q * p * 2**(-126) < 1 <= r
(III) can easily be verified by substituting the largest possible
values p = 2**31-1 and q = 2**31-2.
The critical cases occur when r = 1, n = m * p + 1. These cases
can be exhaustively verified with a test program.
Lemma 2:
--------
n * (1 + 2**(1-F))**2 (q * p + r) * (1 + 2**(1-F))**2
(11) --------------------- = ------------------------------- < q + 1
p p
Proof:
~~~~~~
(I) (q * p + r) + (q * p + r) * 2**(2-F) + (q * p + r) * 2**(2-2*F) < q * p + p
(II) (q * p + r) * 2**(2-F) + (q * p + r) * 2**(2-2*F) < p - r
Using (1) and (7), it is sufficient to show that:
(III) (q * p + r) * 2**(-62) + (q * p + r) * 2**(-126) < 1 <= p - r
(III) can easily be verified by substituting the largest possible
values p = 2**31-1, q = 2**31-2 and r = 2**31-2.
The critical cases occur when r = (p - 1), n = m * p - 1. These cases
can be exhaustively verified with a test program.
[1] http://www.apfloat.org/apfloat/2.40/apfloat.pdf
[2] http://gmplib.org/~tege/divcnst-pldi94.pdf
[Section 7: "Use of floating point"]
(* Coq proof for (10) and (11) *)
Require Import ZArith.
Require Import QArith.
Require Import Qpower.
Require Import Qabs.
Require Import Psatz.
Open Scope Q_scope.
Ltac qreduce T :=
rewrite <- (Qred_correct (T)); simpl (Qred (T)).
Theorem Qlt_move_right :
forall x y z:Q, x + z < y <-> x < y - z.
Proof.
intros.
split.
intros.
psatzl Q.
intros.
psatzl Q.
Qed.
Theorem Qlt_mult_by_z :
forall x y z:Q, 0 < z -> (x < y <-> x * z < y * z).
Proof.
intros.
split.
intros.
apply Qmult_lt_compat_r. trivial. trivial.
intros.
rewrite <- (Qdiv_mult_l x z). rewrite <- (Qdiv_mult_l y z).
apply Qmult_lt_compat_r.
apply Qlt_shift_inv_l.
trivial. psatzl Q. trivial. psatzl Q. psatzl Q.
Qed.
Theorem Qle_mult_quad :
forall (a b c d:Q),
0 <= a -> a <= c ->
0 <= b -> b <= d ->
a * b <= c * d.
intros.
psatz Q.
Qed.
Theorem q_lt_qest:
forall (p q r:Q),
(0 < p) -> (p <= (2#1)^31 - 1) ->
(0 <= q) -> (q <= p - 1) ->
(1 <= r) -> (r <= p - 1) ->
q < (q * p + r) / (p * (1 + (2#1)^(-63))^2).
Proof.
intros.
rewrite Qlt_mult_by_z with (z := (p * (1 + (2#1)^(-63))^2)).
unfold Qdiv.
rewrite <- Qmult_assoc.
rewrite (Qmult_comm (/ (p * (1 + (2 # 1) ^ (-63)) ^ 2)) (p * (1 + (2 # 1) ^ (-63)) ^ 2)).
rewrite Qmult_inv_r.
rewrite Qmult_1_r.
assert (q * (p * (1 + (2 # 1) ^ (-63)) ^ 2) == q * p + (q * p) * ((2 # 1) ^ (-62) + (2 # 1) ^ (-126))).
qreduce ((1 + (2 # 1) ^ (-63)) ^ 2).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
ring_simplify.
reflexivity.
rewrite H5.
rewrite Qplus_comm.
rewrite Qlt_move_right.
ring_simplify (q * p + r - q * p).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
apply Qlt_le_trans with (y := 1).
rewrite Qlt_mult_by_z with (z := 85070591730234615865843651857942052864 # 18446744073709551617).
ring_simplify.
apply Qle_lt_trans with (y := ((2 # 1) ^ 31 - (2#1)) * ((2 # 1) ^ 31 - 1)).
apply Qle_mult_quad.
assumption. psatzl Q. psatzl Q. psatzl Q. psatzl Q. psatzl Q. assumption. psatzl Q. psatzl Q.
Qed.
Theorem qest_lt_qplus1:
forall (p q r:Q),
(0 < p) -> (p <= (2#1)^31 - 1) ->
(0 <= q) -> (q <= p - 1) ->
(1 <= r) -> (r <= p - 1) ->
((q * p + r) * (1 + (2#1)^(-63))^2) / p < q + 1.
Proof.
intros.
rewrite Qlt_mult_by_z with (z := p).
unfold Qdiv.
rewrite <- Qmult_assoc.
rewrite (Qmult_comm (/ p) p).
rewrite Qmult_inv_r.
rewrite Qmult_1_r.
assert ((q * p + r) * (1 + (2 # 1) ^ (-63)) ^ 2 == q * p + r + (q * p + r) * ((2 # 1) ^ (-62) + (2 # 1) ^ (-126))).
qreduce ((1 + (2 # 1) ^ (-63)) ^ 2).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
ring_simplify. reflexivity.
rewrite H5.
rewrite <- Qplus_assoc. rewrite <- Qplus_comm. rewrite Qlt_move_right.
ring_simplify ((q + 1) * p - q * p).
rewrite <- Qplus_comm. rewrite Qlt_move_right.
apply Qlt_le_trans with (y := 1).
qreduce ((2 # 1) ^ (-62) + (2 # 1) ^ (-126)).
rewrite Qlt_mult_by_z with (z := 85070591730234615865843651857942052864 # 18446744073709551617).
ring_simplify.
ring_simplify in H0.
apply Qle_lt_trans with (y := (2147483646 # 1) * (2147483647 # 1) + (2147483646 # 1)).
apply Qplus_le_compat.
apply Qle_mult_quad.
assumption. psatzl Q. auto with qarith. assumption. psatzl Q.
auto with qarith. auto with qarith.
psatzl Q. psatzl Q. assumption.
Qed.
|