1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
import unittest
from test.support import import_helper, threading_helper
from test.support.threading_helper import run_concurrently
import os
import string
import tempfile
import threading
from collections import Counter
mmap = import_helper.import_module("mmap")
NTHREADS = 10
ANONYMOUS_MEM = -1
@threading_helper.requires_working_threading()
class MmapTests(unittest.TestCase):
def test_read_and_read_byte(self):
ascii_uppercase = string.ascii_uppercase.encode()
# Choose a total mmap size that evenly divides across threads and the
# read pattern (3 bytes per loop).
mmap_size = 3 * NTHREADS * len(ascii_uppercase)
num_bytes_to_read_per_thread = mmap_size // NTHREADS
bytes_read_from_mmap = []
def read(mm_obj):
nread = 0
while nread < num_bytes_to_read_per_thread:
b = mm_obj.read_byte()
bytes_read_from_mmap.append(b)
b = mm_obj.read(2)
bytes_read_from_mmap.extend(b)
nread += 3
with mmap.mmap(ANONYMOUS_MEM, mmap_size) as mm_obj:
for i in range(mmap_size // len(ascii_uppercase)):
mm_obj.write(ascii_uppercase)
mm_obj.seek(0)
run_concurrently(
worker_func=read,
args=(mm_obj,),
nthreads=NTHREADS,
)
self.assertEqual(len(bytes_read_from_mmap), mmap_size)
# Count each letter/byte to verify read correctness
counter = Counter(bytes_read_from_mmap)
self.assertEqual(len(counter), len(ascii_uppercase))
# Each letter/byte should be read (3 * NTHREADS) times
for letter in ascii_uppercase:
self.assertEqual(counter[letter], 3 * NTHREADS)
def test_readline(self):
num_lines = 1000
lines_read_from_mmap = []
expected_lines = []
def readline(mm_obj):
for i in range(num_lines // NTHREADS):
line = mm_obj.readline()
lines_read_from_mmap.append(line)
# Allocate mmap enough for num_lines (max line 5 bytes including NL)
with mmap.mmap(ANONYMOUS_MEM, num_lines * 5) as mm_obj:
for i in range(num_lines):
line = b"%d\n" % i
mm_obj.write(line)
expected_lines.append(line)
mm_obj.seek(0)
run_concurrently(
worker_func=readline,
args=(mm_obj,),
nthreads=NTHREADS,
)
self.assertEqual(len(lines_read_from_mmap), num_lines)
# Every line should be read once by threads; order is non-deterministic
# Sort numerically by integer value
lines_read_from_mmap.sort(key=lambda x: int(x))
self.assertEqual(lines_read_from_mmap, expected_lines)
def test_write_and_write_byte(self):
thread_letters = list(string.ascii_uppercase)
self.assertLessEqual(NTHREADS, len(thread_letters))
per_thread_write_loop = 100
def write(mm_obj):
# Each thread picks a unique letter to write
thread_letter = thread_letters.pop(0)
thread_bytes = (thread_letter * 2).encode()
for _ in range(per_thread_write_loop):
mm_obj.write_byte(thread_bytes[0])
mm_obj.write(thread_bytes)
with mmap.mmap(
ANONYMOUS_MEM, per_thread_write_loop * 3 * NTHREADS
) as mm_obj:
run_concurrently(
worker_func=write,
args=(mm_obj,),
nthreads=NTHREADS,
)
mm_obj.seek(0)
data = mm_obj.read()
self.assertEqual(len(data), NTHREADS * per_thread_write_loop * 3)
counter = Counter(data)
self.assertEqual(len(counter), NTHREADS)
# Each thread letter should be written `per_thread_write_loop` * 3
for letter in counter:
self.assertEqual(counter[letter], per_thread_write_loop * 3)
def test_move(self):
ascii_uppercase = string.ascii_uppercase.encode()
num_letters = len(ascii_uppercase)
def move(mm_obj):
for i in range(num_letters):
# Move 1 byte from the first half to the second half
mm_obj.move(0 + i, num_letters + i, 1)
with mmap.mmap(ANONYMOUS_MEM, 2 * num_letters) as mm_obj:
mm_obj.write(ascii_uppercase)
run_concurrently(
worker_func=move,
args=(mm_obj,),
nthreads=NTHREADS,
)
def test_seek_and_tell(self):
seek_per_thread = 10
def seek(mm_obj):
self.assertTrue(mm_obj.seekable())
for _ in range(seek_per_thread):
before_seek = mm_obj.tell()
mm_obj.seek(1, os.SEEK_CUR)
self.assertLess(before_seek, mm_obj.tell())
with mmap.mmap(ANONYMOUS_MEM, 1024) as mm_obj:
run_concurrently(
worker_func=seek,
args=(mm_obj,),
nthreads=NTHREADS,
)
# Each thread seeks from current position, the end position should
# be the sum of all seeks from all threads.
self.assertEqual(mm_obj.tell(), NTHREADS * seek_per_thread)
def test_slice_update_and_slice_read(self):
thread_letters = list(string.ascii_uppercase)
self.assertLessEqual(NTHREADS, len(thread_letters))
def slice_update_and_slice_read(mm_obj):
# Each thread picks a unique letter to write
thread_letter = thread_letters.pop(0)
thread_bytes = (thread_letter * 1024).encode()
for _ in range(100):
mm_obj[:] = thread_bytes
read_bytes = mm_obj[:]
# Read bytes should be all the same letter, showing no
# interleaving
self.assertTrue(all_same(read_bytes))
with mmap.mmap(ANONYMOUS_MEM, 1024) as mm_obj:
run_concurrently(
worker_func=slice_update_and_slice_read,
args=(mm_obj,),
nthreads=NTHREADS,
)
def test_item_update_and_item_read(self):
thread_indexes = [i for i in range(NTHREADS)]
def item_update_and_item_read(mm_obj):
# Each thread picks a unique index to write
thread_index = thread_indexes.pop()
for i in range(100):
mm_obj[thread_index] = i
self.assertEqual(mm_obj[thread_index], i)
# Read values set by other threads, all values
# should be less than '100'
for val in mm_obj:
self.assertLess(int.from_bytes(val), 100)
with mmap.mmap(ANONYMOUS_MEM, NTHREADS + 1) as mm_obj:
run_concurrently(
worker_func=item_update_and_item_read,
args=(mm_obj,),
nthreads=NTHREADS,
)
def test_close_and_closed(self):
def close_mmap(mm_obj):
mm_obj.close()
self.assertTrue(mm_obj.closed)
with mmap.mmap(ANONYMOUS_MEM, 1) as mm_obj:
run_concurrently(
worker_func=close_mmap,
args=(mm_obj,),
nthreads=NTHREADS,
)
def test_find_and_rfind(self):
per_thread_loop = 10
def find_and_rfind(mm_obj):
pattern = b'Thread-Ident:"%d"' % threading.get_ident()
mm_obj.write(pattern)
for _ in range(per_thread_loop):
found_at = mm_obj.find(pattern, 0)
self.assertNotEqual(found_at, -1)
# Should not find it after the `found_at`
self.assertEqual(mm_obj.find(pattern, found_at + 1), -1)
found_at_rev = mm_obj.rfind(pattern, 0)
self.assertEqual(found_at, found_at_rev)
# Should not find it after the `found_at`
self.assertEqual(mm_obj.rfind(pattern, found_at + 1), -1)
with mmap.mmap(ANONYMOUS_MEM, 1024) as mm_obj:
run_concurrently(
worker_func=find_and_rfind,
args=(mm_obj,),
nthreads=NTHREADS,
)
def test_mmap_export_as_memoryview(self):
"""
Each thread creates a memoryview and updates the internal state of the
mmap object.
"""
buffer_size = 42
def create_memoryview_from_mmap(mm_obj):
memoryviews = []
for _ in range(100):
mv = memoryview(mm_obj)
memoryviews.append(mv)
self.assertEqual(len(mv), buffer_size)
self.assertEqual(mv[:7], b"CPython")
# Cannot close the mmap while it is exported as buffers
with self.assertRaisesRegex(
BufferError, "cannot close exported pointers exist"
):
mm_obj.close()
with mmap.mmap(ANONYMOUS_MEM, 42) as mm_obj:
mm_obj.write(b"CPython")
run_concurrently(
worker_func=create_memoryview_from_mmap,
args=(mm_obj,),
nthreads=NTHREADS,
)
# Implicit mm_obj.close() verifies all exports (memoryviews) are
# properly freed.
def all_same(lst):
return all(item == lst[0] for item in lst)
if __name__ == "__main__":
unittest.main()
|