1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
|
.. currentmodule:: asyncio
====================
Coroutines and Tasks
====================
This section outlines high-level asyncio APIs to work with coroutines
and Tasks.
.. contents::
:depth: 1
:local:
.. _coroutine:
Coroutines
==========
**Source code:** :source:`Lib/asyncio/coroutines.py`
----------------------------------------------------
:term:`Coroutines <coroutine>` declared with the async/await syntax is the
preferred way of writing asyncio applications. For example, the following
snippet of code prints "hello", waits 1 second,
and then prints "world"::
>>> import asyncio
>>> async def main():
... print('hello')
... await asyncio.sleep(1)
... print('world')
>>> asyncio.run(main())
hello
world
Note that simply calling a coroutine will not schedule it to
be executed::
>>> main()
<coroutine object main at 0x1053bb7c8>
To actually run a coroutine, asyncio provides the following mechanisms:
* The :func:`asyncio.run` function to run the top-level
entry point "main()" function (see the above example.)
* Awaiting on a coroutine. The following snippet of code will
print "hello" after waiting for 1 second, and then print "world"
after waiting for *another* 2 seconds::
import asyncio
import time
async def say_after(delay, what):
await asyncio.sleep(delay)
print(what)
async def main():
print(f"started at {time.strftime('%X')}")
await say_after(1, 'hello')
await say_after(2, 'world')
print(f"finished at {time.strftime('%X')}")
asyncio.run(main())
Expected output::
started at 17:13:52
hello
world
finished at 17:13:55
* The :func:`asyncio.create_task` function to run coroutines
concurrently as asyncio :class:`Tasks <Task>`.
Let's modify the above example and run two ``say_after`` coroutines
*concurrently*::
async def main():
task1 = asyncio.create_task(
say_after(1, 'hello'))
task2 = asyncio.create_task(
say_after(2, 'world'))
print(f"started at {time.strftime('%X')}")
# Wait until both tasks are completed (should take
# around 2 seconds.)
await task1
await task2
print(f"finished at {time.strftime('%X')}")
Note that expected output now shows that the snippet runs
1 second faster than before::
started at 17:14:32
hello
world
finished at 17:14:34
* The :class:`asyncio.TaskGroup` class provides a more modern
alternative to :func:`create_task`.
Using this API, the last example becomes::
async def main():
async with asyncio.TaskGroup() as tg:
task1 = tg.create_task(
say_after(1, 'hello'))
task2 = tg.create_task(
say_after(2, 'world'))
print(f"started at {time.strftime('%X')}")
# The await is implicit when the context manager exits.
print(f"finished at {time.strftime('%X')}")
The timing and output should be the same as for the previous version.
.. versionadded:: 3.11
:class:`asyncio.TaskGroup`.
.. _asyncio-awaitables:
Awaitables
==========
We say that an object is an **awaitable** object if it can be used
in an :keyword:`await` expression. Many asyncio APIs are designed to
accept awaitables.
There are three main types of *awaitable* objects:
**coroutines**, **Tasks**, and **Futures**.
.. rubric:: Coroutines
Python coroutines are *awaitables* and therefore can be awaited from
other coroutines::
import asyncio
async def nested():
return 42
async def main():
# Nothing happens if we just call "nested()".
# A coroutine object is created but not awaited,
# so it *won't run at all*.
nested() # will raise a "RuntimeWarning".
# Let's do it differently now and await it:
print(await nested()) # will print "42".
asyncio.run(main())
.. important::
In this documentation the term "coroutine" can be used for
two closely related concepts:
* a *coroutine function*: an :keyword:`async def` function;
* a *coroutine object*: an object returned by calling a
*coroutine function*.
.. rubric:: Tasks
*Tasks* are used to schedule coroutines *concurrently*.
When a coroutine is wrapped into a *Task* with functions like
:func:`asyncio.create_task` the coroutine is automatically
scheduled to run soon::
import asyncio
async def nested():
return 42
async def main():
# Schedule nested() to run soon concurrently
# with "main()".
task = asyncio.create_task(nested())
# "task" can now be used to cancel "nested()", or
# can simply be awaited to wait until it is complete:
await task
asyncio.run(main())
.. rubric:: Futures
A :class:`Future` is a special **low-level** awaitable object that
represents an **eventual result** of an asynchronous operation.
When a Future object is *awaited* it means that the coroutine will
wait until the Future is resolved in some other place.
Future objects in asyncio are needed to allow callback-based code
to be used with async/await.
Normally **there is no need** to create Future objects at the
application level code.
Future objects, sometimes exposed by libraries and some asyncio
APIs, can be awaited::
async def main():
await function_that_returns_a_future_object()
# this is also valid:
await asyncio.gather(
function_that_returns_a_future_object(),
some_python_coroutine()
)
A good example of a low-level function that returns a Future object
is :meth:`loop.run_in_executor`.
Creating Tasks
==============
**Source code:** :source:`Lib/asyncio/tasks.py`
-----------------------------------------------
.. function:: create_task(coro, *, name=None, context=None, eager_start=None, **kwargs)
Wrap the *coro* :ref:`coroutine <coroutine>` into a :class:`Task`
and schedule its execution. Return the Task object.
The full function signature is largely the same as that of the
:class:`Task` constructor (or factory) - all of the keyword arguments to
this function are passed through to that interface.
An optional keyword-only *context* argument allows specifying a
custom :class:`contextvars.Context` for the *coro* to run in.
The current context copy is created when no *context* is provided.
An optional keyword-only *eager_start* argument allows specifying
if the task should execute eagerly during the call to create_task,
or be scheduled later. If *eager_start* is not passed the mode set
by :meth:`loop.set_task_factory` will be used.
The task is executed in the loop returned by :func:`get_running_loop`,
:exc:`RuntimeError` is raised if there is no running loop in
current thread.
.. note::
:meth:`asyncio.TaskGroup.create_task` is a new alternative
leveraging structural concurrency; it allows for waiting
for a group of related tasks with strong safety guarantees.
.. important::
Save a reference to the result of this function, to avoid
a task disappearing mid-execution. The event loop only keeps
weak references to tasks. A task that isn't referenced elsewhere
may get garbage collected at any time, even before it's done.
For reliable "fire-and-forget" background tasks, gather them in
a collection::
background_tasks = set()
for i in range(10):
task = asyncio.create_task(some_coro(param=i))
# Add task to the set. This creates a strong reference.
background_tasks.add(task)
# To prevent keeping references to finished tasks forever,
# make each task remove its own reference from the set after
# completion:
task.add_done_callback(background_tasks.discard)
.. versionadded:: 3.7
.. versionchanged:: 3.8
Added the *name* parameter.
.. versionchanged:: 3.11
Added the *context* parameter.
.. versionchanged:: 3.14
Added the *eager_start* parameter by passing on all *kwargs*.
Task Cancellation
=================
Tasks can easily and safely be cancelled.
When a task is cancelled, :exc:`asyncio.CancelledError` will be raised
in the task at the next opportunity.
It is recommended that coroutines use ``try/finally`` blocks to robustly
perform clean-up logic. In case :exc:`asyncio.CancelledError`
is explicitly caught, it should generally be propagated when
clean-up is complete. :exc:`asyncio.CancelledError` directly subclasses
:exc:`BaseException` so most code will not need to be aware of it.
The asyncio components that enable structured concurrency, like
:class:`asyncio.TaskGroup` and :func:`asyncio.timeout`,
are implemented using cancellation internally and might misbehave if
a coroutine swallows :exc:`asyncio.CancelledError`. Similarly, user code
should not generally call :meth:`uncancel <asyncio.Task.uncancel>`.
However, in cases when suppressing :exc:`asyncio.CancelledError` is
truly desired, it is necessary to also call ``uncancel()`` to completely
remove the cancellation state.
.. _taskgroups:
Task Groups
===========
Task groups combine a task creation API with a convenient
and reliable way to wait for all tasks in the group to finish.
.. class:: TaskGroup()
An :ref:`asynchronous context manager <async-context-managers>`
holding a group of tasks.
Tasks can be added to the group using :meth:`create_task`.
All tasks are awaited when the context manager exits.
.. versionadded:: 3.11
.. method:: create_task(coro, *, name=None, context=None, eager_start=None, **kwargs)
Create a task in this task group.
The signature matches that of :func:`asyncio.create_task`.
If the task group is inactive (e.g. not yet entered,
already finished, or in the process of shutting down),
we will close the given ``coro``.
.. versionchanged:: 3.13
Close the given coroutine if the task group is not active.
.. versionchanged:: 3.14
Passes on all *kwargs* to :meth:`loop.create_task`
Example::
async def main():
async with asyncio.TaskGroup() as tg:
task1 = tg.create_task(some_coro(...))
task2 = tg.create_task(another_coro(...))
print(f"Both tasks have completed now: {task1.result()}, {task2.result()}")
The ``async with`` statement will wait for all tasks in the group to finish.
While waiting, new tasks may still be added to the group
(for example, by passing ``tg`` into one of the coroutines
and calling ``tg.create_task()`` in that coroutine).
Once the last task has finished and the ``async with`` block is exited,
no new tasks may be added to the group.
The first time any of the tasks belonging to the group fails
with an exception other than :exc:`asyncio.CancelledError`,
the remaining tasks in the group are cancelled.
No further tasks can then be added to the group.
At this point, if the body of the ``async with`` statement is still active
(i.e., :meth:`~object.__aexit__` hasn't been called yet),
the task directly containing the ``async with`` statement is also cancelled.
The resulting :exc:`asyncio.CancelledError` will interrupt an ``await``,
but it will not bubble out of the containing ``async with`` statement.
Once all tasks have finished, if any tasks have failed
with an exception other than :exc:`asyncio.CancelledError`,
those exceptions are combined in an
:exc:`ExceptionGroup` or :exc:`BaseExceptionGroup`
(as appropriate; see their documentation)
which is then raised.
Two base exceptions are treated specially:
If any task fails with :exc:`KeyboardInterrupt` or :exc:`SystemExit`,
the task group still cancels the remaining tasks and waits for them,
but then the initial :exc:`KeyboardInterrupt` or :exc:`SystemExit`
is re-raised instead of :exc:`ExceptionGroup` or :exc:`BaseExceptionGroup`.
If the body of the ``async with`` statement exits with an exception
(so :meth:`~object.__aexit__` is called with an exception set),
this is treated the same as if one of the tasks failed:
the remaining tasks are cancelled and then waited for,
and non-cancellation exceptions are grouped into an
exception group and raised.
The exception passed into :meth:`~object.__aexit__`,
unless it is :exc:`asyncio.CancelledError`,
is also included in the exception group.
The same special case is made for
:exc:`KeyboardInterrupt` and :exc:`SystemExit` as in the previous paragraph.
Task groups are careful not to mix up the internal cancellation used to
"wake up" their :meth:`~object.__aexit__` with cancellation requests
for the task in which they are running made by other parties.
In particular, when one task group is syntactically nested in another,
and both experience an exception in one of their child tasks simultaneously,
the inner task group will process its exceptions, and then the outer task group
will receive another cancellation and process its own exceptions.
In the case where a task group is cancelled externally and also must
raise an :exc:`ExceptionGroup`, it will call the parent task's
:meth:`~asyncio.Task.cancel` method. This ensures that a
:exc:`asyncio.CancelledError` will be raised at the next
:keyword:`await`, so the cancellation is not lost.
Task groups preserve the cancellation count
reported by :meth:`asyncio.Task.cancelling`.
.. versionchanged:: 3.13
Improved handling of simultaneous internal and external cancellations
and correct preservation of cancellation counts.
Terminating a Task Group
------------------------
While terminating a task group is not natively supported by the standard
library, termination can be achieved by adding an exception-raising task
to the task group and ignoring the raised exception:
.. code-block:: python
import asyncio
from asyncio import TaskGroup
class TerminateTaskGroup(Exception):
"""Exception raised to terminate a task group."""
async def force_terminate_task_group():
"""Used to force termination of a task group."""
raise TerminateTaskGroup()
async def job(task_id, sleep_time):
print(f'Task {task_id}: start')
await asyncio.sleep(sleep_time)
print(f'Task {task_id}: done')
async def main():
try:
async with TaskGroup() as group:
# spawn some tasks
group.create_task(job(1, 0.5))
group.create_task(job(2, 1.5))
# sleep for 1 second
await asyncio.sleep(1)
# add an exception-raising task to force the group to terminate
group.create_task(force_terminate_task_group())
except* TerminateTaskGroup:
pass
asyncio.run(main())
Expected output:
.. code-block:: text
Task 1: start
Task 2: start
Task 1: done
Sleeping
========
.. function:: sleep(delay, result=None)
:async:
Block for *delay* seconds.
If *result* is provided, it is returned to the caller
when the coroutine completes.
``sleep()`` always suspends the current task, allowing other tasks
to run.
Setting the delay to 0 provides an optimized path to allow other
tasks to run. This can be used by long-running functions to avoid
blocking the event loop for the full duration of the function call.
.. _asyncio_example_sleep:
Example of coroutine displaying the current date every second
for 5 seconds::
import asyncio
import datetime
async def display_date():
loop = asyncio.get_running_loop()
end_time = loop.time() + 5.0
while True:
print(datetime.datetime.now())
if (loop.time() + 1.0) >= end_time:
break
await asyncio.sleep(1)
asyncio.run(display_date())
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. versionchanged:: 3.13
Raises :exc:`ValueError` if *delay* is :data:`~math.nan`.
Running Tasks Concurrently
==========================
.. awaitablefunction:: gather(*aws, return_exceptions=False)
Run :ref:`awaitable objects <asyncio-awaitables>` in the *aws*
sequence *concurrently*.
If any awaitable in *aws* is a coroutine, it is automatically
scheduled as a Task.
If all awaitables are completed successfully, the result is an
aggregate list of returned values. The order of result values
corresponds to the order of awaitables in *aws*.
If *return_exceptions* is ``False`` (default), the first
raised exception is immediately propagated to the task that
awaits on ``gather()``. Other awaitables in the *aws* sequence
**won't be cancelled** and will continue to run.
If *return_exceptions* is ``True``, exceptions are treated the
same as successful results, and aggregated in the result list.
If ``gather()`` is *cancelled*, all submitted awaitables
(that have not completed yet) are also *cancelled*.
If any Task or Future from the *aws* sequence is *cancelled*, it is
treated as if it raised :exc:`CancelledError` -- the ``gather()``
call is **not** cancelled in this case. This is to prevent the
cancellation of one submitted Task/Future to cause other
Tasks/Futures to be cancelled.
.. note::
A new alternative to create and run tasks concurrently and
wait for their completion is :class:`asyncio.TaskGroup`. *TaskGroup*
provides stronger safety guarantees than *gather* for scheduling a nesting of subtasks:
if a task (or a subtask, a task scheduled by a task)
raises an exception, *TaskGroup* will, while *gather* will not,
cancel the remaining scheduled tasks).
.. _asyncio_example_gather:
Example::
import asyncio
async def factorial(name, number):
f = 1
for i in range(2, number + 1):
print(f"Task {name}: Compute factorial({number}), currently i={i}...")
await asyncio.sleep(1)
f *= i
print(f"Task {name}: factorial({number}) = {f}")
return f
async def main():
# Schedule three calls *concurrently*:
L = await asyncio.gather(
factorial("A", 2),
factorial("B", 3),
factorial("C", 4),
)
print(L)
asyncio.run(main())
# Expected output:
#
# Task A: Compute factorial(2), currently i=2...
# Task B: Compute factorial(3), currently i=2...
# Task C: Compute factorial(4), currently i=2...
# Task A: factorial(2) = 2
# Task B: Compute factorial(3), currently i=3...
# Task C: Compute factorial(4), currently i=3...
# Task B: factorial(3) = 6
# Task C: Compute factorial(4), currently i=4...
# Task C: factorial(4) = 24
# [2, 6, 24]
.. note::
If *return_exceptions* is false, cancelling gather() after it
has been marked done won't cancel any submitted awaitables.
For instance, gather can be marked done after propagating an
exception to the caller, therefore, calling ``gather.cancel()``
after catching an exception (raised by one of the awaitables) from
gather won't cancel any other awaitables.
.. versionchanged:: 3.7
If the *gather* itself is cancelled, the cancellation is
propagated regardless of *return_exceptions*.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. deprecated:: 3.10
Deprecation warning is emitted if no positional arguments are provided
or not all positional arguments are Future-like objects
and there is no running event loop.
.. _eager-task-factory:
Eager Task Factory
==================
.. function:: eager_task_factory(loop, coro, *, name=None, context=None)
A task factory for eager task execution.
When using this factory (via :meth:`loop.set_task_factory(asyncio.eager_task_factory) <loop.set_task_factory>`),
coroutines begin execution synchronously during :class:`Task` construction.
Tasks are only scheduled on the event loop if they block.
This can be a performance improvement as the overhead of loop scheduling
is avoided for coroutines that complete synchronously.
A common example where this is beneficial is coroutines which employ
caching or memoization to avoid actual I/O when possible.
.. note::
Immediate execution of the coroutine is a semantic change.
If the coroutine returns or raises, the task is never scheduled
to the event loop. If the coroutine execution blocks, the task is
scheduled to the event loop. This change may introduce behavior
changes to existing applications. For example,
the application's task execution order is likely to change.
.. versionadded:: 3.12
.. function:: create_eager_task_factory(custom_task_constructor)
Create an eager task factory, similar to :func:`eager_task_factory`,
using the provided *custom_task_constructor* when creating a new task instead
of the default :class:`Task`.
*custom_task_constructor* must be a *callable* with the signature matching
the signature of :class:`Task.__init__ <Task>`.
The callable must return a :class:`asyncio.Task`-compatible object.
This function returns a *callable* intended to be used as a task factory of an
event loop via :meth:`loop.set_task_factory(factory) <loop.set_task_factory>`).
.. versionadded:: 3.12
Shielding From Cancellation
===========================
.. awaitablefunction:: shield(aw)
Protect an :ref:`awaitable object <asyncio-awaitables>`
from being :meth:`cancelled <Task.cancel>`.
If *aw* is a coroutine it is automatically scheduled as a Task.
The statement::
task = asyncio.create_task(something())
res = await shield(task)
is equivalent to::
res = await something()
*except* that if the coroutine containing it is cancelled, the
Task running in ``something()`` is not cancelled. From the point
of view of ``something()``, the cancellation did not happen.
Although its caller is still cancelled, so the "await" expression
still raises a :exc:`CancelledError`.
If ``something()`` is cancelled by other means (i.e. from within
itself) that would also cancel ``shield()``.
If it is desired to completely ignore cancellation (not recommended)
the ``shield()`` function should be combined with a try/except
clause, as follows::
task = asyncio.create_task(something())
try:
res = await shield(task)
except CancelledError:
res = None
.. important::
Save a reference to tasks passed to this function, to avoid
a task disappearing mid-execution. The event loop only keeps
weak references to tasks. A task that isn't referenced elsewhere
may get garbage collected at any time, even before it's done.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. deprecated:: 3.10
Deprecation warning is emitted if *aw* is not Future-like object
and there is no running event loop.
Timeouts
========
.. function:: timeout(delay)
Return an :ref:`asynchronous context manager <async-context-managers>`
that can be used to limit the amount of time spent waiting on
something.
*delay* can either be ``None``, or a float/int number of
seconds to wait. If *delay* is ``None``, no time limit will
be applied; this can be useful if the delay is unknown when
the context manager is created.
In either case, the context manager can be rescheduled after
creation using :meth:`Timeout.reschedule`.
Example::
async def main():
async with asyncio.timeout(10):
await long_running_task()
If ``long_running_task`` takes more than 10 seconds to complete,
the context manager will cancel the current task and handle
the resulting :exc:`asyncio.CancelledError` internally, transforming it
into a :exc:`TimeoutError` which can be caught and handled.
.. note::
The :func:`asyncio.timeout` context manager is what transforms
the :exc:`asyncio.CancelledError` into a :exc:`TimeoutError`,
which means the :exc:`TimeoutError` can only be caught
*outside* of the context manager.
Example of catching :exc:`TimeoutError`::
async def main():
try:
async with asyncio.timeout(10):
await long_running_task()
except TimeoutError:
print("The long operation timed out, but we've handled it.")
print("This statement will run regardless.")
The context manager produced by :func:`asyncio.timeout` can be
rescheduled to a different deadline and inspected.
.. class:: Timeout(when)
An :ref:`asynchronous context manager <async-context-managers>`
for cancelling overdue coroutines.
``when`` should be an absolute time at which the context should time out,
as measured by the event loop's clock:
- If ``when`` is ``None``, the timeout will never trigger.
- If ``when < loop.time()``, the timeout will trigger on the next
iteration of the event loop.
.. method:: when() -> float | None
Return the current deadline, or ``None`` if the current
deadline is not set.
.. method:: reschedule(when: float | None)
Reschedule the timeout.
.. method:: expired() -> bool
Return whether the context manager has exceeded its deadline
(expired).
Example::
async def main():
try:
# We do not know the timeout when starting, so we pass ``None``.
async with asyncio.timeout(None) as cm:
# We know the timeout now, so we reschedule it.
new_deadline = get_running_loop().time() + 10
cm.reschedule(new_deadline)
await long_running_task()
except TimeoutError:
pass
if cm.expired():
print("Looks like we haven't finished on time.")
Timeout context managers can be safely nested.
.. versionadded:: 3.11
.. function:: timeout_at(when)
Similar to :func:`asyncio.timeout`, except *when* is the absolute time
to stop waiting, or ``None``.
Example::
async def main():
loop = get_running_loop()
deadline = loop.time() + 20
try:
async with asyncio.timeout_at(deadline):
await long_running_task()
except TimeoutError:
print("The long operation timed out, but we've handled it.")
print("This statement will run regardless.")
.. versionadded:: 3.11
.. function:: wait_for(aw, timeout)
:async:
Wait for the *aw* :ref:`awaitable <asyncio-awaitables>`
to complete with a timeout.
If *aw* is a coroutine it is automatically scheduled as a Task.
*timeout* can either be ``None`` or a float or int number of seconds
to wait for. If *timeout* is ``None``, block until the future
completes.
If a timeout occurs, it cancels the task and raises
:exc:`TimeoutError`.
To avoid the task :meth:`cancellation <Task.cancel>`,
wrap it in :func:`shield`.
The function will wait until the future is actually cancelled,
so the total wait time may exceed the *timeout*. If an exception
happens during cancellation, it is propagated.
If the wait is cancelled, the future *aw* is also cancelled.
.. _asyncio_example_waitfor:
Example::
async def eternity():
# Sleep for one hour
await asyncio.sleep(3600)
print('yay!')
async def main():
# Wait for at most 1 second
try:
await asyncio.wait_for(eternity(), timeout=1.0)
except TimeoutError:
print('timeout!')
asyncio.run(main())
# Expected output:
#
# timeout!
.. versionchanged:: 3.7
When *aw* is cancelled due to a timeout, ``wait_for`` waits
for *aw* to be cancelled. Previously, it raised
:exc:`TimeoutError` immediately.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. versionchanged:: 3.11
Raises :exc:`TimeoutError` instead of :exc:`asyncio.TimeoutError`.
Waiting Primitives
==================
.. function:: wait(aws, *, timeout=None, return_when=ALL_COMPLETED)
:async:
Run :class:`~asyncio.Future` and :class:`~asyncio.Task` instances in the *aws*
iterable concurrently and block until the condition specified
by *return_when*.
The *aws* iterable must not be empty.
Returns two sets of Tasks/Futures: ``(done, pending)``.
Usage::
done, pending = await asyncio.wait(aws)
*timeout* (a float or int), if specified, can be used to control
the maximum number of seconds to wait before returning.
Note that this function does not raise :exc:`TimeoutError`.
Futures or Tasks that aren't done when the timeout occurs are simply
returned in the second set.
*return_when* indicates when this function should return. It must
be one of the following constants:
.. list-table::
:header-rows: 1
* - Constant
- Description
* - .. data:: FIRST_COMPLETED
- The function will return when any future finishes or is cancelled.
* - .. data:: FIRST_EXCEPTION
- The function will return when any future finishes by raising an
exception. If no future raises an exception
then it is equivalent to :const:`ALL_COMPLETED`.
* - .. data:: ALL_COMPLETED
- The function will return when all futures finish or are cancelled.
Unlike :func:`~asyncio.wait_for`, ``wait()`` does not cancel the
futures when a timeout occurs.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. versionchanged:: 3.11
Passing coroutine objects to ``wait()`` directly is forbidden.
.. versionchanged:: 3.12
Added support for generators yielding tasks.
.. function:: as_completed(aws, *, timeout=None)
Run :ref:`awaitable objects <asyncio-awaitables>` in the *aws* iterable
concurrently. The returned object can be iterated to obtain the results
of the awaitables as they finish.
The object returned by ``as_completed()`` can be iterated as an
:term:`asynchronous iterator` or a plain :term:`iterator`. When asynchronous
iteration is used, the originally-supplied awaitables are yielded if they
are tasks or futures. This makes it easy to correlate previously-scheduled
tasks with their results. Example::
ipv4_connect = create_task(open_connection("127.0.0.1", 80))
ipv6_connect = create_task(open_connection("::1", 80))
tasks = [ipv4_connect, ipv6_connect]
async for earliest_connect in as_completed(tasks):
# earliest_connect is done. The result can be obtained by
# awaiting it or calling earliest_connect.result()
reader, writer = await earliest_connect
if earliest_connect is ipv6_connect:
print("IPv6 connection established.")
else:
print("IPv4 connection established.")
During asynchronous iteration, implicitly-created tasks will be yielded for
supplied awaitables that aren't tasks or futures.
When used as a plain iterator, each iteration yields a new coroutine that
returns the result or raises the exception of the next completed awaitable.
This pattern is compatible with Python versions older than 3.13::
ipv4_connect = create_task(open_connection("127.0.0.1", 80))
ipv6_connect = create_task(open_connection("::1", 80))
tasks = [ipv4_connect, ipv6_connect]
for next_connect in as_completed(tasks):
# next_connect is not one of the original task objects. It must be
# awaited to obtain the result value or raise the exception of the
# awaitable that finishes next.
reader, writer = await next_connect
A :exc:`TimeoutError` is raised if the timeout occurs before all awaitables
are done. This is raised by the ``async for`` loop during asynchronous
iteration or by the coroutines yielded during plain iteration.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. deprecated:: 3.10
Deprecation warning is emitted if not all awaitable objects in the *aws*
iterable are Future-like objects and there is no running event loop.
.. versionchanged:: 3.12
Added support for generators yielding tasks.
.. versionchanged:: 3.13
The result can now be used as either an :term:`asynchronous iterator`
or as a plain :term:`iterator` (previously it was only a plain iterator).
Running in Threads
==================
.. function:: to_thread(func, /, *args, **kwargs)
:async:
Asynchronously run function *func* in a separate thread.
Any \*args and \*\*kwargs supplied for this function are directly passed
to *func*. Also, the current :class:`contextvars.Context` is propagated,
allowing context variables from the event loop thread to be accessed in the
separate thread.
Return a coroutine that can be awaited to get the eventual result of *func*.
This coroutine function is primarily intended to be used for executing
IO-bound functions/methods that would otherwise block the event loop if
they were run in the main thread. For example::
def blocking_io():
print(f"start blocking_io at {time.strftime('%X')}")
# Note that time.sleep() can be replaced with any blocking
# IO-bound operation, such as file operations.
time.sleep(1)
print(f"blocking_io complete at {time.strftime('%X')}")
async def main():
print(f"started main at {time.strftime('%X')}")
await asyncio.gather(
asyncio.to_thread(blocking_io),
asyncio.sleep(1))
print(f"finished main at {time.strftime('%X')}")
asyncio.run(main())
# Expected output:
#
# started main at 19:50:53
# start blocking_io at 19:50:53
# blocking_io complete at 19:50:54
# finished main at 19:50:54
Directly calling ``blocking_io()`` in any coroutine would block the event loop
for its duration, resulting in an additional 1 second of run time. Instead,
by using ``asyncio.to_thread()``, we can run it in a separate thread without
blocking the event loop.
.. note::
Due to the :term:`GIL`, ``asyncio.to_thread()`` can typically only be used
to make IO-bound functions non-blocking. However, for extension modules
that release the GIL or alternative Python implementations that don't
have one, ``asyncio.to_thread()`` can also be used for CPU-bound functions.
.. versionadded:: 3.9
Scheduling From Other Threads
=============================
.. function:: run_coroutine_threadsafe(coro, loop)
Submit a coroutine to the given event loop. Thread-safe.
Return a :class:`concurrent.futures.Future` to wait for the result
from another OS thread.
This function is meant to be called from a different OS thread
than the one where the event loop is running. Example::
def in_thread(loop: asyncio.AbstractEventLoop) -> None:
# Run some blocking IO
pathlib.Path("example.txt").write_text("hello world", encoding="utf8")
# Create a coroutine
coro = asyncio.sleep(1, result=3)
# Submit the coroutine to a given loop
future = asyncio.run_coroutine_threadsafe(coro, loop)
# Wait for the result with an optional timeout argument
assert future.result(timeout=2) == 3
async def amain() -> None:
# Get the running loop
loop = asyncio.get_running_loop()
# Run something in a thread
await asyncio.to_thread(in_thread, loop)
It's also possible to run the other way around. Example::
@contextlib.contextmanager
def loop_in_thread() -> Generator[asyncio.AbstractEventLoop]:
loop_fut = concurrent.futures.Future[asyncio.AbstractEventLoop]()
stop_event = asyncio.Event()
async def main() -> None:
loop_fut.set_result(asyncio.get_running_loop())
await stop_event.wait()
with concurrent.futures.ThreadPoolExecutor(1) as tpe:
complete_fut = tpe.submit(asyncio.run, main())
for fut in concurrent.futures.as_completed((loop_fut, complete_fut)):
if fut is loop_fut:
loop = loop_fut.result()
try:
yield loop
finally:
loop.call_soon_threadsafe(stop_event.set)
else:
fut.result()
# Create a loop in another thread
with loop_in_thread() as loop:
# Create a coroutine
coro = asyncio.sleep(1, result=3)
# Submit the coroutine to a given loop
future = asyncio.run_coroutine_threadsafe(coro, loop)
# Wait for the result with an optional timeout argument
assert future.result(timeout=2) == 3
If an exception is raised in the coroutine, the returned Future
will be notified. It can also be used to cancel the task in
the event loop::
try:
result = future.result(timeout)
except TimeoutError:
print('The coroutine took too long, cancelling the task...')
future.cancel()
except Exception as exc:
print(f'The coroutine raised an exception: {exc!r}')
else:
print(f'The coroutine returned: {result!r}')
See the :ref:`concurrency and multithreading <asyncio-multithreading>`
section of the documentation.
Unlike other asyncio functions this function requires the *loop*
argument to be passed explicitly.
.. versionadded:: 3.5.1
Introspection
=============
.. function:: current_task(loop=None)
Return the currently running :class:`Task` instance, or ``None`` if
no task is running.
If *loop* is ``None`` :func:`get_running_loop` is used to get
the current loop.
.. versionadded:: 3.7
.. function:: all_tasks(loop=None)
Return a set of not yet finished :class:`Task` objects run by
the loop.
If *loop* is ``None``, :func:`get_running_loop` is used for getting
current loop.
.. versionadded:: 3.7
.. function:: iscoroutine(obj)
Return ``True`` if *obj* is a coroutine object.
.. versionadded:: 3.4
Task Object
===========
.. class:: Task(coro, *, loop=None, name=None, context=None, eager_start=False)
A :class:`Future-like <Future>` object that runs a Python
:ref:`coroutine <coroutine>`. Not thread-safe.
Tasks are used to run coroutines in event loops.
If a coroutine awaits on a Future, the Task suspends
the execution of the coroutine and waits for the completion
of the Future. When the Future is *done*, the execution of
the wrapped coroutine resumes.
Event loops use cooperative scheduling: an event loop runs
one Task at a time. While a Task awaits for the completion of a
Future, the event loop runs other Tasks, callbacks, or performs
IO operations.
Use the high-level :func:`asyncio.create_task` function to create
Tasks, or the low-level :meth:`loop.create_task` or
:func:`ensure_future` functions. Manual instantiation of Tasks
is discouraged.
To cancel a running Task use the :meth:`cancel` method. Calling it
will cause the Task to throw a :exc:`CancelledError` exception into
the wrapped coroutine. If a coroutine is awaiting on a Future
object during cancellation, the Future object will be cancelled.
:meth:`cancelled` can be used to check if the Task was cancelled.
The method returns ``True`` if the wrapped coroutine did not
suppress the :exc:`CancelledError` exception and was actually
cancelled.
:class:`asyncio.Task` inherits from :class:`Future` all of its
APIs except :meth:`Future.set_result` and
:meth:`Future.set_exception`.
An optional keyword-only *context* argument allows specifying a
custom :class:`contextvars.Context` for the *coro* to run in.
If no *context* is provided, the Task copies the current context
and later runs its coroutine in the copied context.
An optional keyword-only *eager_start* argument allows eagerly starting
the execution of the :class:`asyncio.Task` at task creation time.
If set to ``True`` and the event loop is running, the task will start
executing the coroutine immediately, until the first time the coroutine
blocks. If the coroutine returns or raises without blocking, the task
will be finished eagerly and will skip scheduling to the event loop.
.. versionchanged:: 3.7
Added support for the :mod:`contextvars` module.
.. versionchanged:: 3.8
Added the *name* parameter.
.. deprecated:: 3.10
Deprecation warning is emitted if *loop* is not specified
and there is no running event loop.
.. versionchanged:: 3.11
Added the *context* parameter.
.. versionchanged:: 3.12
Added the *eager_start* parameter.
.. method:: done()
Return ``True`` if the Task is *done*.
A Task is *done* when the wrapped coroutine either returned
a value, raised an exception, or the Task was cancelled.
.. method:: result()
Return the result of the Task.
If the Task is *done*, the result of the wrapped coroutine
is returned (or if the coroutine raised an exception, that
exception is re-raised.)
If the Task has been *cancelled*, this method raises
a :exc:`CancelledError` exception.
If the Task's result isn't yet available, this method raises
an :exc:`InvalidStateError` exception.
.. method:: exception()
Return the exception of the Task.
If the wrapped coroutine raised an exception that exception
is returned. If the wrapped coroutine returned normally
this method returns ``None``.
If the Task has been *cancelled*, this method raises a
:exc:`CancelledError` exception.
If the Task isn't *done* yet, this method raises an
:exc:`InvalidStateError` exception.
.. method:: add_done_callback(callback, *, context=None)
Add a callback to be run when the Task is *done*.
This method should only be used in low-level callback-based code.
See the documentation of :meth:`Future.add_done_callback`
for more details.
.. method:: remove_done_callback(callback)
Remove *callback* from the callbacks list.
This method should only be used in low-level callback-based code.
See the documentation of :meth:`Future.remove_done_callback`
for more details.
.. method:: get_stack(*, limit=None)
Return the list of stack frames for this Task.
If the wrapped coroutine is not done, this returns the stack
where it is suspended. If the coroutine has completed
successfully or was cancelled, this returns an empty list.
If the coroutine was terminated by an exception, this returns
the list of traceback frames.
The frames are always ordered from oldest to newest.
Only one stack frame is returned for a suspended coroutine.
The optional *limit* argument sets the maximum number of frames
to return; by default all available frames are returned.
The ordering of the returned list differs depending on whether
a stack or a traceback is returned: the newest frames of a
stack are returned, but the oldest frames of a traceback are
returned. (This matches the behavior of the traceback module.)
.. method:: print_stack(*, limit=None, file=None)
Print the stack or traceback for this Task.
This produces output similar to that of the traceback module
for the frames retrieved by :meth:`get_stack`.
The *limit* argument is passed to :meth:`get_stack` directly.
The *file* argument is an I/O stream to which the output
is written; by default output is written to :data:`sys.stdout`.
.. method:: get_coro()
Return the coroutine object wrapped by the :class:`Task`.
.. note::
This will return ``None`` for Tasks which have already
completed eagerly. See the :ref:`Eager Task Factory <eager-task-factory>`.
.. versionadded:: 3.8
.. versionchanged:: 3.12
Newly added eager task execution means result may be ``None``.
.. method:: get_context()
Return the :class:`contextvars.Context` object
associated with the task.
.. versionadded:: 3.12
.. method:: get_name()
Return the name of the Task.
If no name has been explicitly assigned to the Task, the default
asyncio Task implementation generates a default name during
instantiation.
.. versionadded:: 3.8
.. method:: set_name(value)
Set the name of the Task.
The *value* argument can be any object, which is then
converted to a string.
In the default Task implementation, the name will be visible
in the :func:`repr` output of a task object.
.. versionadded:: 3.8
.. method:: cancel(msg=None)
Request the Task to be cancelled.
If the Task is already *done* or *cancelled*, return ``False``,
otherwise, return ``True``.
The method arranges for a :exc:`CancelledError` exception to be thrown
into the wrapped coroutine on the next cycle of the event loop.
The coroutine then has a chance to clean up or even deny the
request by suppressing the exception with a :keyword:`try` ...
... ``except CancelledError`` ... :keyword:`finally` block.
Therefore, unlike :meth:`Future.cancel`, :meth:`Task.cancel` does
not guarantee that the Task will be cancelled, although
suppressing cancellation completely is not common and is actively
discouraged. Should the coroutine nevertheless decide to suppress
the cancellation, it needs to call :meth:`Task.uncancel` in addition
to catching the exception.
.. versionchanged:: 3.9
Added the *msg* parameter.
.. versionchanged:: 3.11
The ``msg`` parameter is propagated from cancelled task to its awaiter.
.. _asyncio_example_task_cancel:
The following example illustrates how coroutines can intercept
the cancellation request::
async def cancel_me():
print('cancel_me(): before sleep')
try:
# Wait for 1 hour
await asyncio.sleep(3600)
except asyncio.CancelledError:
print('cancel_me(): cancel sleep')
raise
finally:
print('cancel_me(): after sleep')
async def main():
# Create a "cancel_me" Task
task = asyncio.create_task(cancel_me())
# Wait for 1 second
await asyncio.sleep(1)
task.cancel()
try:
await task
except asyncio.CancelledError:
print("main(): cancel_me is cancelled now")
asyncio.run(main())
# Expected output:
#
# cancel_me(): before sleep
# cancel_me(): cancel sleep
# cancel_me(): after sleep
# main(): cancel_me is cancelled now
.. method:: cancelled()
Return ``True`` if the Task is *cancelled*.
The Task is *cancelled* when the cancellation was requested with
:meth:`cancel` and the wrapped coroutine propagated the
:exc:`CancelledError` exception thrown into it.
.. method:: uncancel()
Decrement the count of cancellation requests to this Task.
Returns the remaining number of cancellation requests.
Note that once execution of a cancelled task completed, further
calls to :meth:`uncancel` are ineffective.
.. versionadded:: 3.11
This method is used by asyncio's internals and isn't expected to be
used by end-user code. In particular, if a Task gets successfully
uncancelled, this allows for elements of structured concurrency like
:ref:`taskgroups` and :func:`asyncio.timeout` to continue running,
isolating cancellation to the respective structured block.
For example::
async def make_request_with_timeout():
try:
async with asyncio.timeout(1):
# Structured block affected by the timeout:
await make_request()
await make_another_request()
except TimeoutError:
log("There was a timeout")
# Outer code not affected by the timeout:
await unrelated_code()
While the block with ``make_request()`` and ``make_another_request()``
might get cancelled due to the timeout, ``unrelated_code()`` should
continue running even in case of the timeout. This is implemented
with :meth:`uncancel`. :class:`TaskGroup` context managers use
:func:`uncancel` in a similar fashion.
If end-user code is, for some reason, suppressing cancellation by
catching :exc:`CancelledError`, it needs to call this method to remove
the cancellation state.
When this method decrements the cancellation count to zero,
the method checks if a previous :meth:`cancel` call had arranged
for :exc:`CancelledError` to be thrown into the task.
If it hasn't been thrown yet, that arrangement will be
rescinded (by resetting the internal ``_must_cancel`` flag).
.. versionchanged:: 3.13
Changed to rescind pending cancellation requests upon reaching zero.
.. method:: cancelling()
Return the number of pending cancellation requests to this Task, i.e.,
the number of calls to :meth:`cancel` less the number of
:meth:`uncancel` calls.
Note that if this number is greater than zero but the Task is
still executing, :meth:`cancelled` will still return ``False``.
This is because this number can be lowered by calling :meth:`uncancel`,
which can lead to the task not being cancelled after all if the
cancellation requests go down to zero.
This method is used by asyncio's internals and isn't expected to be
used by end-user code. See :meth:`uncancel` for more details.
.. versionadded:: 3.11
|