1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
|
:mod:`!decimal` --- Decimal fixed-point and floating-point arithmetic
=====================================================================
.. module:: decimal
:synopsis: Implementation of the General Decimal Arithmetic Specification.
.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
.. moduleauthor:: Raymond Hettinger <python at rcn.com>
.. moduleauthor:: Aahz <aahz at pobox.com>
.. moduleauthor:: Tim Peters <tim.one at comcast.net>
.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
**Source code:** :source:`Lib/decimal.py`
.. import modules for testing inline doctests with the Sphinx doctest builder
.. testsetup:: *
import decimal
import math
from decimal import *
# make sure each group gets a fresh context
setcontext(Context())
.. testcleanup:: *
# make sure other tests (outside this file) get a fresh context
setcontext(Context())
--------------
The :mod:`decimal` module provides support for fast correctly rounded
decimal floating-point arithmetic. It offers several advantages over the
:class:`float` datatype:
* Decimal "is based on a floating-point model which was designed with people
in mind, and necessarily has a paramount guiding principle -- computers must
provide an arithmetic that works in the same way as the arithmetic that
people learn at school." -- excerpt from the decimal arithmetic specification.
* Decimal numbers can be represented exactly. In contrast, numbers like
``1.1`` and ``2.2`` do not have exact representations in binary
floating point. End users typically would not expect ``1.1 + 2.2`` to display
as ``3.3000000000000003`` as it does with binary floating point.
* The exactness carries over into arithmetic. In decimal floating point, ``0.1
+ 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
is ``5.5511151231257827e-017``. While near to zero, the differences
prevent reliable equality testing and differences can accumulate. For this
reason, decimal is preferred in accounting applications which have strict
equality invariants.
* The decimal module incorporates a notion of significant places so that ``1.30
+ 1.20`` is ``2.50``. The trailing zero is kept to indicate significance.
This is the customary presentation for monetary applications. For
multiplication, the "schoolbook" approach uses all the figures in the
multiplicands. For instance, ``1.3 * 1.2`` gives ``1.56`` while ``1.30 *
1.20`` gives ``1.5600``.
* Unlike hardware based binary floating point, the decimal module has a user
alterable precision (defaulting to 28 places) which can be as large as needed for
a given problem:
>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal('0.142857')
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429')
* Both binary and decimal floating point are implemented in terms of published
standards. While the built-in float type exposes only a modest portion of its
capabilities, the decimal module exposes all required parts of the standard.
When needed, the programmer has full control over rounding and signal handling.
This includes an option to enforce exact arithmetic by using exceptions
to block any inexact operations.
* The decimal module was designed to support "without prejudice, both exact
unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
and rounded floating-point arithmetic." -- excerpt from the decimal
arithmetic specification.
The module design is centered around three concepts: the decimal number, the
context for arithmetic, and signals.
A decimal number is immutable. It has a sign, coefficient digits, and an
exponent. To preserve significance, the coefficient digits do not truncate
trailing zeros. Decimals also include special values such as
``Infinity``, ``-Infinity``, and ``NaN``. The standard also
differentiates ``-0`` from ``+0``.
The context for arithmetic is an environment specifying precision, rounding
rules, limits on exponents, flags indicating the results of operations, and trap
enablers which determine whether signals are treated as exceptions. Rounding
options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Signals are groups of exceptional conditions arising during the course of
computation. Depending on the needs of the application, signals may be ignored,
considered as informational, or treated as exceptions. The signals in the
decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
For each signal there is a flag and a trap enabler. When a signal is
encountered, its flag is set to one, then, if the trap enabler is
set to one, an exception is raised. Flags are sticky, so the user needs to
reset them before monitoring a calculation.
.. seealso::
* IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Specification <https://speleotrove.com/decimal/decarith.html>`_.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-tutorial:
Quick-start tutorial
--------------------
The usual start to using decimals is importing the module, viewing the current
context with :func:`getcontext` and, if necessary, setting new values for
precision, rounding, or enabled traps::
>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext().prec = 7 # Set a new precision
Decimal instances can be constructed from integers, strings, floats, or tuples.
Construction from an integer or a float performs an exact conversion of the
value of that integer or float. Decimal numbers include special values such as
``NaN`` which stands for "Not a number", positive and negative
``Infinity``, and ``-0``::
>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')
If the :exc:`FloatOperation` signal is trapped, accidental mixing of
decimals and floats in constructors or ordering comparisons raises
an exception::
>>> c = getcontext()
>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True
.. versionadded:: 3.3
The significance of a new Decimal is determined solely by the number of digits
input. Context precision and rounding only come into play during arithmetic
operations.
.. doctest:: newcontext
>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')
If the internal limits of the C version are exceeded, constructing
a decimal raises :class:`InvalidOperation`::
>>> Decimal("1e9999999999999999999")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
.. versionchanged:: 3.3
Decimals interact well with much of the rest of Python. Here is a small decimal
floating-point flying circus:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1)
Decimal('1.3')
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')
And some mathematical functions are also available to Decimal:
>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')
The :meth:`~Decimal.quantize` method rounds a number to a fixed exponent. This method is
useful for monetary applications that often round results to a fixed number of
places:
>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')
As shown above, the :func:`getcontext` function accesses the current context and
allows the settings to be changed. This approach meets the needs of most
applications.
For more advanced work, it may be useful to create alternate contexts using the
Context() constructor. To make an alternate active, use the :func:`setcontext`
function.
In accordance with the standard, the :mod:`decimal` module provides two ready to
use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
former is especially useful for debugging because many of the traps are
enabled:
.. doctest:: newcontext
:options: +NORMALIZE_WHITESPACE
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')
>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0
Contexts also have signal flags for monitoring exceptional conditions
encountered during computations. The flags remain set until explicitly cleared,
so it is best to clear the flags before each set of monitored computations by
using the :meth:`~Context.clear_flags` method. ::
>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
The *flags* entry shows that the rational approximation to pi was
rounded (digits beyond the context precision were thrown away) and that the
result is inexact (some of the discarded digits were non-zero).
Individual traps are set using the dictionary in the :attr:`~Context.traps`
attribute of a context:
.. doctest:: newcontext
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)
DivisionByZero: x / 0
Most programs adjust the current context only once, at the beginning of the
program. And, in many applications, data is converted to :class:`Decimal` with
a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric
types.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-decimal:
Decimal objects
---------------
.. class:: Decimal(value="0", context=None)
Construct a new :class:`Decimal` object based from *value*.
*value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed::
sign ::= '+' | '-'
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator ::= 'e' | 'E'
digits ::= digit [digit]...
decimal-part ::= digits '.' [digits] | ['.'] digits
exponent-part ::= indicator [sign] digits
infinity ::= 'Infinity' | 'Inf'
nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan
Other Unicode decimal digits are also permitted where ``digit``
appears above. These include decimal digits from various other
alphabets (for example, Arabic-Indic and Devanāgarī digits) along
with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
Case is not significant, so, for example, ``inf``, ``Inf``, ``INFINITY``,
and ``iNfINity`` are all acceptable spellings for positive infinity.
If *value* is a :class:`tuple`, it should have three components, a sign
(``0`` for positive or ``1`` for negative), a :class:`tuple` of
digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
returns ``Decimal('1.414')``.
If *value* is a :class:`float`, the binary floating-point value is losslessly
converted to its exact decimal equivalent. This conversion can often require
53 or more digits of precision. For example, ``Decimal(float('1.1'))``
converts to
``Decimal('1.100000000000000088817841970012523233890533447265625')``.
The *context* precision does not affect how many digits are stored. That is
determined exclusively by the number of digits in *value*. For example,
``Decimal('3.00000')`` records all five zeros even if the context precision is
only three.
The purpose of the *context* argument is determining what to do if *value* is a
malformed string. If the context traps :const:`InvalidOperation`, an exception
is raised; otherwise, the constructor returns a new Decimal with the value of
``NaN``.
Once constructed, :class:`Decimal` objects are immutable.
.. versionchanged:: 3.2
The argument to the constructor is now permitted to be a :class:`float`
instance.
.. versionchanged:: 3.3
:class:`float` arguments raise an exception if the :exc:`FloatOperation`
trap is set. By default the trap is off.
.. versionchanged:: 3.6
Underscores are allowed for grouping, as with integral and floating-point
literals in code.
Decimal floating-point objects share many properties with the other built-in
numeric types such as :class:`float` and :class:`int`. All of the usual math
operations and special methods apply. Likewise, decimal objects can be
copied, pickled, printed, used as dictionary keys, used as set elements,
compared, sorted, and coerced to another type (such as :class:`float` or
:class:`int`).
There are some small differences between arithmetic on Decimal objects and
arithmetic on integers and floats. When the remainder operator ``%`` is
applied to Decimal objects, the sign of the result is the sign of the
*dividend* rather than the sign of the divisor::
>>> (-7) % 4
1
>>> Decimal(-7) % Decimal(4)
Decimal('-3')
The integer division operator ``//`` behaves analogously, returning the
integer part of the true quotient (truncating towards zero) rather than its
floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
>>> -7 // 4
-2
>>> Decimal(-7) // Decimal(4)
Decimal('-1')
The ``%`` and ``//`` operators implement the ``remainder`` and
``divide-integer`` operations (respectively) as described in the
specification.
Decimal objects cannot generally be combined with floats or
instances of :class:`fractions.Fraction` in arithmetic operations:
an attempt to add a :class:`Decimal` to a :class:`float`, for
example, will raise a :exc:`TypeError`. However, it is possible to
use Python's comparison operators to compare a :class:`Decimal`
instance ``x`` with another number ``y``. This avoids confusing results
when doing equality comparisons between numbers of different types.
.. versionchanged:: 3.2
Mixed-type comparisons between :class:`Decimal` instances and other
numeric types are now fully supported.
In addition to the standard numeric properties, decimal floating-point
objects also have a number of specialized methods:
.. method:: adjusted()
Return the adjusted exponent after shifting out the coefficient's
rightmost digits until only the lead digit remains:
``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
position of the most significant digit with respect to the decimal point.
.. method:: as_integer_ratio()
Return a pair ``(n, d)`` of integers that represent the given
:class:`Decimal` instance as a fraction, in lowest terms and
with a positive denominator::
>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)
The conversion is exact. Raise OverflowError on infinities and ValueError
on NaNs.
.. versionadded:: 3.6
.. method:: as_tuple()
Return a :term:`named tuple` representation of the number:
``DecimalTuple(sign, digits, exponent)``.
.. method:: canonical()
Return the canonical encoding of the argument. Currently, the encoding of
a :class:`Decimal` instance is always canonical, so this operation returns
its argument unchanged.
.. method:: compare(other, context=None)
Compare the values of two Decimal instances. :meth:`compare` returns a
Decimal instance, and if either operand is a NaN then the result is a
NaN::
a or b is a NaN ==> Decimal('NaN')
a < b ==> Decimal('-1')
a == b ==> Decimal('0')
a > b ==> Decimal('1')
.. method:: compare_signal(other, context=None)
This operation is identical to the :meth:`compare` method, except that all
NaNs signal. That is, if neither operand is a signaling NaN then any
quiet NaN operand is treated as though it were a signaling NaN.
.. method:: compare_total(other, context=None)
Compare two operands using their abstract representation rather than their
numerical value. Similar to the :meth:`compare` method, but the result
gives a total ordering on :class:`Decimal` instances. Two
:class:`Decimal` instances with the same numeric value but different
representations compare unequal in this ordering:
>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')
Quiet and signaling NaNs are also included in the total ordering. The
result of this function is ``Decimal('0')`` if both operands have the same
representation, ``Decimal('-1')`` if the first operand is lower in the
total order than the second, and ``Decimal('1')`` if the first operand is
higher in the total order than the second operand. See the specification
for details of the total order.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: compare_total_mag(other, context=None)
Compare two operands using their abstract representation rather than their
value as in :meth:`compare_total`, but ignoring the sign of each operand.
``x.compare_total_mag(y)`` is equivalent to
``x.copy_abs().compare_total(y.copy_abs())``.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: conjugate()
Just returns self, this method is only to comply with the Decimal
Specification.
.. method:: copy_abs()
Return the absolute value of the argument. This operation is unaffected
by the context and is quiet: no flags are changed and no rounding is
performed.
.. method:: copy_negate()
Return the negation of the argument. This operation is unaffected by the
context and is quiet: no flags are changed and no rounding is performed.
.. method:: copy_sign(other, context=None)
Return a copy of the first operand with the sign set to be the same as the
sign of the second operand. For example:
>>> Decimal('2.3').copy_sign(Decimal('-1.5'))
Decimal('-2.3')
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: exp(context=None)
Return the value of the (natural) exponential function ``e**x`` at the
given number. The result is correctly rounded using the
:const:`ROUND_HALF_EVEN` rounding mode.
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal(321).exp()
Decimal('2.561702493119680037517373933E+139')
.. classmethod:: from_float(f)
Alternative constructor that only accepts instances of :class:`float` or
:class:`int`.
Note ``Decimal.from_float(0.1)`` is not the same as ``Decimal('0.1')``.
Since 0.1 is not exactly representable in binary floating point, the
value is stored as the nearest representable value which is
``0x1.999999999999ap-4``. That equivalent value in decimal is
``0.1000000000000000055511151231257827021181583404541015625``.
.. note:: From Python 3.2 onwards, a :class:`Decimal` instance
can also be constructed directly from a :class:`float`.
.. doctest::
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(float('-inf'))
Decimal('-Infinity')
.. versionadded:: 3.1
.. classmethod:: from_number(number)
Alternative constructor that only accepts instances of
:class:`float`, :class:`int` or :class:`Decimal`, but not strings
or tuples.
.. doctest::
>>> Decimal.from_number(314)
Decimal('314')
>>> Decimal.from_number(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_number(Decimal('3.14'))
Decimal('3.14')
.. versionadded:: 3.14
.. method:: fma(other, third, context=None)
Fused multiply-add. Return self*other+third with no rounding of the
intermediate product self*other.
>>> Decimal(2).fma(3, 5)
Decimal('11')
.. method:: is_canonical()
Return :const:`True` if the argument is canonical and :const:`False`
otherwise. Currently, a :class:`Decimal` instance is always canonical, so
this operation always returns :const:`True`.
.. method:: is_finite()
Return :const:`True` if the argument is a finite number, and
:const:`False` if the argument is an infinity or a NaN.
.. method:: is_infinite()
Return :const:`True` if the argument is either positive or negative
infinity and :const:`False` otherwise.
.. method:: is_nan()
Return :const:`True` if the argument is a (quiet or signaling) NaN and
:const:`False` otherwise.
.. method:: is_normal(context=None)
Return :const:`True` if the argument is a *normal* finite number. Return
:const:`False` if the argument is zero, subnormal, infinite or a NaN.
.. method:: is_qnan()
Return :const:`True` if the argument is a quiet NaN, and
:const:`False` otherwise.
.. method:: is_signed()
Return :const:`True` if the argument has a negative sign and
:const:`False` otherwise. Note that zeros and NaNs can both carry signs.
.. method:: is_snan()
Return :const:`True` if the argument is a signaling NaN and :const:`False`
otherwise.
.. method:: is_subnormal(context=None)
Return :const:`True` if the argument is subnormal, and :const:`False`
otherwise.
.. method:: is_zero()
Return :const:`True` if the argument is a (positive or negative) zero and
:const:`False` otherwise.
.. method:: ln(context=None)
Return the natural (base e) logarithm of the operand. The result is
correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
.. method:: log10(context=None)
Return the base ten logarithm of the operand. The result is correctly
rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
.. method:: logb(context=None)
For a nonzero number, return the adjusted exponent of its operand as a
:class:`Decimal` instance. If the operand is a zero then
``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
returned.
.. method:: logical_and(other, context=None)
:meth:`logical_and` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise ``and`` of the two operands.
.. method:: logical_invert(context=None)
:meth:`logical_invert` is a logical operation. The
result is the digit-wise inversion of the operand.
.. method:: logical_or(other, context=None)
:meth:`logical_or` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise ``or`` of the two operands.
.. method:: logical_xor(other, context=None)
:meth:`logical_xor` is a logical operation which takes two *logical
operands* (see :ref:`logical_operands_label`). The result is the
digit-wise exclusive or of the two operands.
.. method:: max(other, context=None)
Like ``max(self, other)`` except that the context rounding rule is applied
before returning and that ``NaN`` values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).
.. method:: max_mag(other, context=None)
Similar to the :meth:`.max` method, but the comparison is done using the
absolute values of the operands.
.. method:: min(other, context=None)
Like ``min(self, other)`` except that the context rounding rule is applied
before returning and that ``NaN`` values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).
.. method:: min_mag(other, context=None)
Similar to the :meth:`.min` method, but the comparison is done using the
absolute values of the operands.
.. method:: next_minus(context=None)
Return the largest number representable in the given context (or in the
current thread's context if no context is given) that is smaller than the
given operand.
.. method:: next_plus(context=None)
Return the smallest number representable in the given context (or in the
current thread's context if no context is given) that is larger than the
given operand.
.. method:: next_toward(other, context=None)
If the two operands are unequal, return the number closest to the first
operand in the direction of the second operand. If both operands are
numerically equal, return a copy of the first operand with the sign set to
be the same as the sign of the second operand.
.. method:: normalize(context=None)
Used for producing canonical values of an equivalence
class within either the current context or the specified context.
This has the same semantics as the unary plus operation, except that if
the final result is finite it is reduced to its simplest form, with all
trailing zeros removed and its sign preserved. That is, while the
coefficient is non-zero and a multiple of ten the coefficient is divided
by ten and the exponent is incremented by 1. Otherwise (the coefficient is
zero) the exponent is set to 0. In all cases the sign is unchanged.
For example, ``Decimal('32.100')`` and ``Decimal('0.321000e+2')`` both
normalize to the equivalent value ``Decimal('32.1')``.
Note that rounding is applied *before* reducing to simplest form.
In the latest versions of the specification, this operation is also known
as ``reduce``.
.. method:: number_class(context=None)
Return a string describing the *class* of the operand. The returned value
is one of the following ten strings.
* ``"-Infinity"``, indicating that the operand is negative infinity.
* ``"-Normal"``, indicating that the operand is a negative normal number.
* ``"-Subnormal"``, indicating that the operand is negative and subnormal.
* ``"-Zero"``, indicating that the operand is a negative zero.
* ``"+Zero"``, indicating that the operand is a positive zero.
* ``"+Subnormal"``, indicating that the operand is positive and subnormal.
* ``"+Normal"``, indicating that the operand is a positive normal number.
* ``"+Infinity"``, indicating that the operand is positive infinity.
* ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
* ``"sNaN"``, indicating that the operand is a signaling NaN.
.. method:: quantize(exp, rounding=None, context=None)
Return a value equal to the first operand after rounding and having the
exponent of the second operand.
>>> Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')
Unlike other operations, if the length of the coefficient after the
quantize operation would be greater than precision, then an
:const:`InvalidOperation` is signaled. This guarantees that, unless there
is an error condition, the quantized exponent is always equal to that of
the right-hand operand.
Also unlike other operations, quantize never signals Underflow, even if
the result is subnormal and inexact.
If the exponent of the second operand is larger than that of the first
then rounding may be necessary. In this case, the rounding mode is
determined by the ``rounding`` argument if given, else by the given
``context`` argument; if neither argument is given the rounding mode of
the current thread's context is used.
An error is returned whenever the resulting exponent is greater than
:attr:`~Context.Emax` or less than :meth:`~Context.Etiny`.
.. method:: radix()
Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
class does all its arithmetic. Included for compatibility with the
specification.
.. method:: remainder_near(other, context=None)
Return the remainder from dividing *self* by *other*. This differs from
``self % other`` in that the sign of the remainder is chosen so as to
minimize its absolute value. More precisely, the return value is
``self - n * other`` where ``n`` is the integer nearest to the exact
value of ``self / other``, and if two integers are equally near then the
even one is chosen.
If the result is zero then its sign will be the sign of *self*.
>>> Decimal(18).remainder_near(Decimal(10))
Decimal('-2')
>>> Decimal(25).remainder_near(Decimal(10))
Decimal('5')
>>> Decimal(35).remainder_near(Decimal(10))
Decimal('-5')
.. method:: rotate(other, context=None)
Return the result of rotating the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right.
The coefficient of the first operand is padded on the left with zeros to
length precision if necessary. The sign and exponent of the first operand
are unchanged.
.. method:: same_quantum(other, context=None)
Test whether self and other have the same exponent or whether both are
``NaN``.
This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.
.. method:: scaleb(other, context=None)
Return the first operand with exponent adjusted by the second.
Equivalently, return the first operand multiplied by ``10**other``. The
second operand must be an integer.
.. method:: shift(other, context=None)
Return the result of shifting the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the
right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.
.. method:: sqrt(context=None)
Return the square root of the argument to full precision.
.. method:: to_eng_string(context=None)
Convert to a string, using engineering notation if an exponent is needed.
Engineering notation has an exponent which is a multiple of 3. This
can leave up to 3 digits to the left of the decimal place and may
require the addition of either one or two trailing zeros.
For example, this converts ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
.. method:: to_integral(rounding=None, context=None)
Identical to the :meth:`to_integral_value` method. The ``to_integral``
name has been kept for compatibility with older versions.
.. method:: to_integral_exact(rounding=None, context=None)
Round to the nearest integer, signaling :const:`Inexact` or
:const:`Rounded` as appropriate if rounding occurs. The rounding mode is
determined by the ``rounding`` parameter if given, else by the given
``context``. If neither parameter is given then the rounding mode of the
current context is used.
.. method:: to_integral_value(rounding=None, context=None)
Round to the nearest integer without signaling :const:`Inexact` or
:const:`Rounded`. If given, applies *rounding*; otherwise, uses the
rounding method in either the supplied *context* or the current context.
Decimal numbers can be rounded using the :func:`.round` function:
.. describe:: round(number)
.. describe:: round(number, ndigits)
If *ndigits* is not given or ``None``,
returns the nearest :class:`int` to *number*,
rounding ties to even, and ignoring the rounding mode of the
:class:`Decimal` context. Raises :exc:`OverflowError` if *number* is an
infinity or :exc:`ValueError` if it is a (quiet or signaling) NaN.
If *ndigits* is an :class:`int`, the context's rounding mode is respected
and a :class:`Decimal` representing *number* rounded to the nearest
multiple of ``Decimal('1E-ndigits')`` is returned; in this case,
``round(number, ndigits)`` is equivalent to
``self.quantize(Decimal('1E-ndigits'))``. Returns ``Decimal('NaN')`` if
*number* is a quiet NaN. Raises :class:`InvalidOperation` if *number*
is an infinity, a signaling NaN, or if the length of the coefficient after
the quantize operation would be greater than the current context's
precision. In other words, for the non-corner cases:
* if *ndigits* is positive, return *number* rounded to *ndigits* decimal
places;
* if *ndigits* is zero, return *number* rounded to the nearest integer;
* if *ndigits* is negative, return *number* rounded to the nearest
multiple of ``10**abs(ndigits)``.
For example::
>>> from decimal import Decimal, getcontext, ROUND_DOWN
>>> getcontext().rounding = ROUND_DOWN
>>> round(Decimal('3.75')) # context rounding ignored
4
>>> round(Decimal('3.5')) # round-ties-to-even
4
>>> round(Decimal('3.75'), 0) # uses the context rounding
Decimal('3')
>>> round(Decimal('3.75'), 1)
Decimal('3.7')
>>> round(Decimal('3.75'), -1)
Decimal('0E+1')
.. _logical_operands_label:
Logical operands
^^^^^^^^^^^^^^^^
The :meth:`~Decimal.logical_and`, :meth:`~Decimal.logical_invert`, :meth:`~Decimal.logical_or`,
and :meth:`~Decimal.logical_xor` methods expect their arguments to be *logical
operands*. A *logical operand* is a :class:`Decimal` instance whose
exponent and sign are both zero, and whose digits are all either
``0`` or ``1``.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-context:
Context objects
---------------
Contexts are environments for arithmetic operations. They govern precision, set
rules for rounding, determine which signals are treated as exceptions, and limit
the range for exponents.
Each thread has its own current context which is accessed or changed using the
:func:`getcontext` and :func:`setcontext` functions:
.. function:: getcontext()
Return the current context for the active thread.
.. function:: setcontext(c)
Set the current context for the active thread to *c*.
You can also use the :keyword:`with` statement and the :func:`localcontext`
function to temporarily change the active context.
.. function:: localcontext(ctx=None, **kwargs)
Return a context manager that will set the current context for the active thread
to a copy of *ctx* on entry to the with-statement and restore the previous context
when exiting the with-statement. If no context is specified, a copy of the
current context is used. The *kwargs* argument is used to set the attributes
of the new context.
For example, the following code sets the current decimal precision to 42 places,
performs a calculation, and then automatically restores the previous context::
from decimal import localcontext
with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision
Using keyword arguments, the code would be the following::
from decimal import localcontext
with localcontext(prec=42) as ctx:
s = calculate_something()
s = +s
Raises :exc:`TypeError` if *kwargs* supplies an attribute that :class:`Context` doesn't
support. Raises either :exc:`TypeError` or :exc:`ValueError` if *kwargs* supplies an
invalid value for an attribute.
.. versionchanged:: 3.11
:meth:`localcontext` now supports setting context attributes through the use of keyword arguments.
.. function:: IEEEContext(bits)
Return a context object initialized to the proper values for one of the
IEEE interchange formats. The argument must be a multiple of 32 and less
than :const:`IEEE_CONTEXT_MAX_BITS`.
.. versionadded:: 3.14
New contexts can also be created using the :class:`Context` constructor
described below. In addition, the module provides three pre-made contexts:
.. data:: BasicContext
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
:const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
as exceptions) except :const:`Inexact`, :const:`Rounded`, and
:const:`Subnormal`.
Because many of the traps are enabled, this context is useful for debugging.
.. data:: ExtendedContext
This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
:const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
exceptions are not raised during computations).
Because the traps are disabled, this context is useful for applications that
prefer to have result value of ``NaN`` or ``Infinity`` instead of
raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.
.. data:: DefaultContext
This context is used by the :class:`Context` constructor as a prototype for new
contexts. Changing a field (such a precision) has the effect of changing the
default for new contexts created by the :class:`Context` constructor.
This context is most useful in multi-threaded environments. Changing one of the
fields before threads are started has the effect of setting system-wide
defaults. Changing the fields after threads have started is not recommended as
it would require thread synchronization to prevent race conditions.
In single threaded environments, it is preferable to not use this context at
all. Instead, simply create contexts explicitly as described below.
The default values are :attr:`Context.prec`\ =\ ``28``,
:attr:`Context.rounding`\ =\ :const:`ROUND_HALF_EVEN`,
and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
:class:`DivisionByZero`.
In addition to the three supplied contexts, new contexts can be created with the
:class:`Context` constructor.
.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Creates a new context. If a field is not specified or is :const:`None`, the
default values are copied from the :const:`DefaultContext`. If the *flags*
field is not specified or is :const:`None`, all flags are cleared.
.. attribute:: prec
An integer in the range [``1``, :const:`MAX_PREC`] that sets
the precision for arithmetic operations in the context.
.. attribute:: rounding
One of the constants listed in the section `Rounding Modes`_.
.. attribute:: traps
flags
Lists of any signals to be set. Generally, new contexts should only set
traps and leave the flags clear.
.. attribute:: Emin
Emax
Integers specifying the outer limits allowable for exponents. *Emin* must
be in the range [:const:`MIN_EMIN`, ``0``], *Emax* in the range
[``0``, :const:`MAX_EMAX`].
.. attribute:: capitals
Either ``0`` or ``1`` (the default). If set to
``1``, exponents are printed with a capital ``E``; otherwise, a
lowercase ``e`` is used: ``Decimal('6.02e+23')``.
.. attribute:: clamp
Either ``0`` (the default) or ``1``. If set to ``1``, the exponent ``e``
of a :class:`Decimal` instance representable in this context is strictly
limited to the range ``Emin - prec + 1 <= e <= Emax - prec + 1``.
If *clamp* is ``0`` then a weaker condition holds: the adjusted exponent of
the :class:`Decimal` instance is at most :attr:`~Context.Emax`. When *clamp* is
``1``, a large normal number will, where possible, have its
exponent reduced and a corresponding number of zeros added to its
coefficient, in order to fit the exponent constraints; this
preserves the value of the number but loses information about
significant trailing zeros. For example::
>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
Decimal('1.23000E+999')
A *clamp* value of ``1`` allows compatibility with the
fixed-width decimal interchange formats specified in IEEE 754.
The :class:`Context` class defines several general purpose methods as well as
a large number of methods for doing arithmetic directly in a given context.
In addition, for each of the :class:`Decimal` methods described above (with
the exception of the :meth:`~Decimal.adjusted` and :meth:`~Decimal.as_tuple` methods) there is
a corresponding :class:`Context` method. For example, for a :class:`Context`
instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Python integer (an instance of :class:`int`) anywhere that a
Decimal instance is accepted.
.. method:: clear_flags()
Resets all of the flags to ``0``.
.. method:: clear_traps()
Resets all of the traps to ``0``.
.. versionadded:: 3.3
.. method:: copy()
Return a duplicate of the context.
.. method:: copy_decimal(num)
Return a copy of the Decimal instance num.
.. method:: create_decimal(num)
Creates a new Decimal instance from *num* but using *self* as
context. Unlike the :class:`Decimal` constructor, the context precision,
rounding method, flags, and traps are applied to the conversion.
This is useful because constants are often given to a greater precision
than is needed by the application. Another benefit is that rounding
immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that
adding zero to a sum can change the result:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> Decimal('3.4445') + Decimal('1.0023')
Decimal('4.45')
>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
Decimal('4.44')
This method implements the to-number operation of the IBM specification.
If the argument is a string, no leading or trailing whitespace or
underscores are permitted.
.. method:: create_decimal_from_float(f)
Creates a new Decimal instance from a float *f* but rounding using *self*
as the context. Unlike the :meth:`Decimal.from_float` class method,
the context precision, rounding method, flags, and traps are applied to
the conversion.
.. doctest::
>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415')
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):
...
decimal.Inexact: None
.. versionadded:: 3.1
.. method:: Etiny()
Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
value for subnormal results. When underflow occurs, the exponent is set
to :const:`Etiny`.
.. method:: Etop()
Returns a value equal to ``Emax - prec + 1``.
The usual approach to working with decimals is to create :class:`Decimal`
instances and then apply arithmetic operations which take place within the
current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are
similar to those for the :class:`Decimal` class and are only briefly
recounted here.
.. method:: abs(x)
Returns the absolute value of *x*.
.. method:: add(x, y)
Return the sum of *x* and *y*.
.. method:: canonical(x)
Returns the same Decimal object *x*.
.. method:: compare(x, y)
Compares *x* and *y* numerically.
.. method:: compare_signal(x, y)
Compares the values of the two operands numerically.
.. method:: compare_total(x, y)
Compares two operands using their abstract representation.
.. method:: compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.
.. method:: copy_abs(x)
Returns a copy of *x* with the sign set to 0.
.. method:: copy_negate(x)
Returns a copy of *x* with the sign inverted.
.. method:: copy_sign(x, y)
Copies the sign from *y* to *x*.
.. method:: divide(x, y)
Return *x* divided by *y*.
.. method:: divide_int(x, y)
Return *x* divided by *y*, truncated to an integer.
.. method:: divmod(x, y)
Divides two numbers and returns the integer part of the result.
.. method:: exp(x)
Returns ``e ** x``.
.. method:: fma(x, y, z)
Returns *x* multiplied by *y*, plus *z*.
.. method:: is_canonical(x)
Returns ``True`` if *x* is canonical; otherwise returns ``False``.
.. method:: is_finite(x)
Returns ``True`` if *x* is finite; otherwise returns ``False``.
.. method:: is_infinite(x)
Returns ``True`` if *x* is infinite; otherwise returns ``False``.
.. method:: is_nan(x)
Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
.. method:: is_normal(x)
Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
.. method:: is_qnan(x)
Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
.. method:: is_signed(x)
Returns ``True`` if *x* is negative; otherwise returns ``False``.
.. method:: is_snan(x)
Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
.. method:: is_subnormal(x)
Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
.. method:: is_zero(x)
Returns ``True`` if *x* is a zero; otherwise returns ``False``.
.. method:: ln(x)
Returns the natural (base e) logarithm of *x*.
.. method:: log10(x)
Returns the base 10 logarithm of *x*.
.. method:: logb(x)
Returns the exponent of the magnitude of the operand's MSD.
.. method:: logical_and(x, y)
Applies the logical operation *and* between each operand's digits.
.. method:: logical_invert(x)
Invert all the digits in *x*.
.. method:: logical_or(x, y)
Applies the logical operation *or* between each operand's digits.
.. method:: logical_xor(x, y)
Applies the logical operation *xor* between each operand's digits.
.. method:: max(x, y)
Compares two values numerically and returns the maximum.
.. method:: max_mag(x, y)
Compares the values numerically with their sign ignored.
.. method:: min(x, y)
Compares two values numerically and returns the minimum.
.. method:: min_mag(x, y)
Compares the values numerically with their sign ignored.
.. method:: minus(x)
Minus corresponds to the unary prefix minus operator in Python.
.. method:: multiply(x, y)
Return the product of *x* and *y*.
.. method:: next_minus(x)
Returns the largest representable number smaller than *x*.
.. method:: next_plus(x)
Returns the smallest representable number larger than *x*.
.. method:: next_toward(x, y)
Returns the number closest to *x*, in direction towards *y*.
.. method:: normalize(x)
Reduces *x* to its simplest form.
.. method:: number_class(x)
Returns an indication of the class of *x*.
.. method:: plus(x)
Plus corresponds to the unary prefix plus operator in Python. This
operation applies the context precision and rounding, so it is *not* an
identity operation.
.. method:: power(x, y, modulo=None)
Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
must be integral. The result will be inexact unless ``y`` is integral and
the result is finite and can be expressed exactly in 'precision' digits.
The rounding mode of the context is used. Results are always correctly rounded
in the Python version.
``Decimal(0) ** Decimal(0)`` results in ``InvalidOperation``, and if ``InvalidOperation``
is not trapped, then results in ``Decimal('NaN')``.
.. versionchanged:: 3.3
The C module computes :meth:`power` in terms of the correctly rounded
:meth:`exp` and :meth:`ln` functions. The result is well-defined but
only "almost always correctly rounded".
With three arguments, compute ``(x**y) % modulo``. For the three argument
form, the following restrictions on the arguments hold:
- all three arguments must be integral
- ``y`` must be nonnegative
- at least one of ``x`` or ``y`` must be nonzero
- ``modulo`` must be nonzero and have at most 'precision' digits
The value resulting from ``Context.power(x, y, modulo)`` is
equal to the value that would be obtained by computing ``(x**y)
% modulo`` with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of
the exponents of ``x``, ``y`` and ``modulo``. The result is
always exact.
.. method:: quantize(x, y)
Returns a value equal to *x* (rounded), having the exponent of *y*.
.. method:: radix()
Just returns 10, as this is Decimal, :)
.. method:: remainder(x, y)
Returns the remainder from integer division.
The sign of the result, if non-zero, is the same as that of the original
dividend.
.. method:: remainder_near(x, y)
Returns ``x - y * n``, where *n* is the integer nearest the exact value
of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
.. method:: rotate(x, y)
Returns a rotated copy of *x*, *y* times.
.. method:: same_quantum(x, y)
Returns ``True`` if the two operands have the same exponent.
.. method:: scaleb (x, y)
Returns the first operand after adding the second value its exp.
.. method:: shift(x, y)
Returns a shifted copy of *x*, *y* times.
.. method:: sqrt(x)
Square root of a non-negative number to context precision.
.. method:: subtract(x, y)
Return the difference between *x* and *y*.
.. method:: to_eng_string(x)
Convert to a string, using engineering notation if an exponent is needed.
Engineering notation has an exponent which is a multiple of 3. This
can leave up to 3 digits to the left of the decimal place and may
require the addition of either one or two trailing zeros.
.. method:: to_integral_exact(x)
Rounds to an integer.
.. method:: to_sci_string(x)
Converts a number to a string using scientific notation.
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-rounding-modes:
Constants
---------
The constants in this section are only relevant for the C module. They
are also included in the pure Python version for compatibility.
+---------------------------------+---------------------+-------------------------------+
| | 32-bit | 64-bit |
+=================================+=====================+===============================+
| .. data:: MAX_PREC | ``425000000`` | ``999999999999999999`` |
+---------------------------------+---------------------+-------------------------------+
| .. data:: MAX_EMAX | ``425000000`` | ``999999999999999999`` |
+---------------------------------+---------------------+-------------------------------+
| .. data:: MIN_EMIN | ``-425000000`` | ``-999999999999999999`` |
+---------------------------------+---------------------+-------------------------------+
| .. data:: MIN_ETINY | ``-849999999`` | ``-1999999999999999997`` |
+---------------------------------+---------------------+-------------------------------+
| .. data:: IEEE_CONTEXT_MAX_BITS | ``256`` | ``512`` |
+---------------------------------+---------------------+-------------------------------+
.. data:: HAVE_THREADS
The value is ``True``. Deprecated, because Python now always has threads.
.. deprecated:: 3.9
.. data:: HAVE_CONTEXTVAR
The default value is ``True``. If Python is :option:`configured using
the --without-decimal-contextvar option <--without-decimal-contextvar>`,
the C version uses a thread-local rather than a coroutine-local context and the value
is ``False``. This is slightly faster in some nested context scenarios.
.. versionadded:: 3.8.3
Rounding modes
--------------
.. data:: ROUND_CEILING
Round towards ``Infinity``.
.. data:: ROUND_DOWN
Round towards zero.
.. data:: ROUND_FLOOR
Round towards ``-Infinity``.
.. data:: ROUND_HALF_DOWN
Round to nearest with ties going towards zero.
.. data:: ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.
.. data:: ROUND_HALF_UP
Round to nearest with ties going away from zero.
.. data:: ROUND_UP
Round away from zero.
.. data:: ROUND_05UP
Round away from zero if last digit after rounding towards zero would have
been 0 or 5; otherwise round towards zero.
.. _decimal-signals:
Signals
-------
Signals represent conditions that arise during computation. Each corresponds to
one context flag and one context trap enabler.
The context flag is set whenever the condition is encountered. After the
computation, flags may be checked for informational purposes (for instance, to
determine whether a computation was exact). After checking the flags, be sure to
clear all flags before starting the next computation.
If the context's trap enabler is set for the signal, then the condition causes a
Python exception to be raised. For example, if the :class:`DivisionByZero` trap
is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
condition.
.. class:: Clamped
Altered an exponent to fit representation constraints.
Typically, clamping occurs when an exponent falls outside the context's
:attr:`~Context.Emin` and :attr:`~Context.Emax` limits. If possible, the exponent is reduced to
fit by adding zeros to the coefficient.
.. class:: DecimalException
Base class for other signals and a subclass of :exc:`ArithmeticError`.
.. class:: DivisionByZero
Signals the division of a non-infinite number by zero.
Can occur with division, modulo division, or when raising a number to a negative
power. If this signal is not trapped, returns ``Infinity`` or
``-Infinity`` with the sign determined by the inputs to the calculation.
.. class:: Inexact
Indicates that rounding occurred and the result is not exact.
Signals when non-zero digits were discarded during rounding. The rounded result
is returned. The signal flag or trap is used to detect when results are
inexact.
.. class:: InvalidOperation
An invalid operation was performed.
Indicates that an operation was requested that does not make sense. If not
trapped, returns ``NaN``. Possible causes include::
Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity
.. class:: Overflow
Numerical overflow.
Indicates the exponent is larger than :attr:`Context.Emax` after rounding has
occurred. If not trapped, the result depends on the rounding mode, either
pulling inward to the largest representable finite number or rounding outward
to ``Infinity``. In either case, :class:`Inexact` and :class:`Rounded`
are also signaled.
.. class:: Rounded
Rounding occurred though possibly no information was lost.
Signaled whenever rounding discards digits; even if those digits are zero
(such as rounding ``5.00`` to ``5.0``). If not trapped, returns
the result unchanged. This signal is used to detect loss of significant
digits.
.. class:: Subnormal
Exponent was lower than :attr:`~Context.Emin` prior to rounding.
Occurs when an operation result is subnormal (the exponent is too small). If
not trapped, returns the result unchanged.
.. class:: Underflow
Numerical underflow with result rounded to zero.
Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
and :class:`Subnormal` are also signaled.
.. class:: FloatOperation
Enable stricter semantics for mixing floats and Decimals.
If the signal is not trapped (default), mixing floats and Decimals is
permitted in the :class:`~decimal.Decimal` constructor,
:meth:`~decimal.Context.create_decimal` and all comparison operators.
Both conversion and comparisons are exact. Any occurrence of a mixed
operation is silently recorded by setting :exc:`FloatOperation` in the
context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
Otherwise (the signal is trapped), only equality comparisons and explicit
conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
The following table summarizes the hierarchy of signals::
exceptions.ArithmeticError(exceptions.Exception)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation(DecimalException, exceptions.TypeError)
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-notes:
Floating-point notes
--------------------
Mitigating round-off error with increased precision
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The use of decimal floating point eliminates decimal representation error
(making it possible to represent ``0.1`` exactly); however, some operations
can still incur round-off error when non-zero digits exceed the fixed precision.
The effects of round-off error can be amplified by the addition or subtraction
of nearly offsetting quantities resulting in loss of significance. Knuth
provides two instructive examples where rounded floating-point arithmetic with
insufficient precision causes the breakdown of the associative and distributive
properties of addition:
.. doctest:: newcontext
# Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')
The :mod:`decimal` module makes it possible to restore the identities by
expanding the precision sufficiently to avoid loss of significance:
.. doctest:: newcontext
>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')
Special values
^^^^^^^^^^^^^^
The number system for the :mod:`decimal` module provides special values
including ``NaN``, ``sNaN``, ``-Infinity``, ``Infinity``,
and two zeros, ``+0`` and ``-0``.
Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.
The infinities are signed (affine) and can be used in arithmetic operations
where they get treated as very large, indeterminate numbers. For instance,
adding a constant to infinity gives another infinite result.
Some operations are indeterminate and return ``NaN``, or if the
:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
``0/0`` returns ``NaN`` which means "not a number". This variety of
``NaN`` is quiet and, once created, will flow through other computations
always resulting in another ``NaN``. This behavior can be useful for a
series of computations that occasionally have missing inputs --- it allows the
calculation to proceed while flagging specific results as invalid.
A variant is ``sNaN`` which signals rather than remaining quiet after every
operation. This is a useful return value when an invalid result needs to
interrupt a calculation for special handling.
The behavior of Python's comparison operators can be a little surprising where a
``NaN`` is involved. A test for equality where one of the operands is a
quiet or signaling ``NaN`` always returns :const:`False` (even when doing
``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
:const:`True`. An attempt to compare two Decimals using any of the ``<``,
``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
if either operand is a ``NaN``, and return :const:`False` if this signal is
not trapped. Note that the General Decimal Arithmetic specification does not
specify the behavior of direct comparisons; these rules for comparisons
involving a ``NaN`` were taken from the IEEE 854 standard (see Table 3 in
section 5.7). To ensure strict standards-compliance, use the :meth:`~Decimal.compare`
and :meth:`~Decimal.compare_signal` methods instead.
The signed zeros can result from calculations that underflow. They keep the sign
that would have resulted if the calculation had been carried out to greater
precision. Since their magnitude is zero, both positive and negative zeros are
treated as equal and their sign is informational.
In addition to the two signed zeros which are distinct yet equal, there are
various representations of zero with differing precisions yet equivalent in
value. This takes a bit of getting used to. For an eye accustomed to
normalized floating-point representations, it is not immediately obvious that
the following calculation returns a value equal to zero:
>>> 1 / Decimal('Infinity')
Decimal('0E-1000026')
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-threads:
Working with threads
--------------------
The :func:`getcontext` function accesses a different :class:`Context` object for
each thread. Having separate thread contexts means that threads may make
changes (such as ``getcontext().prec=10``) without interfering with other threads.
Likewise, the :func:`setcontext` function automatically assigns its target to
the current thread.
If :func:`setcontext` has not been called before :func:`getcontext`, then
:func:`getcontext` will automatically create a new context for use in the
current thread. New context objects have default values set from the
:data:`decimal.DefaultContext` object.
The :data:`sys.flags.thread_inherit_context` flag affects the context for
new threads. If the flag is false, new threads will start with an empty
context. In this case, :func:`getcontext` will create a new context object
when called and use the default values from *DefaultContext*. If the flag
is true, new threads will start with a copy of context from the caller of
:meth:`threading.Thread.start`.
To control the defaults so that each thread will use the same values throughout
the application, directly modify the *DefaultContext* object. This should be
done *before* any threads are started so that there won't be a race condition
between threads calling :func:`getcontext`. For example::
# Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)
# Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-recipes:
Recipes
-------
Here are a few recipes that serve as utility functions and that demonstrate ways
to work with the :class:`Decimal` class::
def moneyfmt(value, places=2, curr='', sep=',', dp='.',
pos='', neg='-', trailneg=''):
"""Convert Decimal to a money formatted string.
places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places is zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank
>>> d = Decimal('-1234567.8901')
>>> moneyfmt(d, curr='$')
'-$1,234,567.89'
>>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
'1.234.568-'
>>> moneyfmt(d, curr='$', neg='(', trailneg=')')
'($1,234,567.89)'
>>> moneyfmt(Decimal(123456789), sep=' ')
'123 456 789.00'
>>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
'<0.02>'
"""
q = Decimal(10) ** -places # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
build(next() if digits else '0')
if places:
build(dp)
if not digits:
build('0')
i = 0
while digits:
build(next())
i += 1
if i == 3 and digits:
i = 0
build(sep)
build(curr)
build(neg if sign else pos)
return ''.join(reversed(result))
def pi():
"""Compute Pi to the current precision.
>>> print(pi())
3.141592653589793238462643383
"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t
getcontext().prec -= 2
return +s # unary plus applies the new precision
def exp(x):
"""Return e raised to the power of x. Result type matches input type.
>>> print(exp(Decimal(1)))
2.718281828459045235360287471
>>> print(exp(Decimal(2)))
7.389056098930650227230427461
>>> print(exp(2.0))
7.38905609893
>>> print(exp(2+0j))
(7.38905609893+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:
lasts = s
i += 1
fact *= i
num *= x
s += num / fact
getcontext().prec -= 2
return +s
def cos(x):
"""Return the cosine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(cos(Decimal('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189
>>> print(cos(0.5+0j))
(0.87758256189+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
def sin(x):
"""Return the sine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(sin(Decimal('0.5')))
0.4794255386042030002732879352
>>> print(sin(0.5))
0.479425538604
>>> print(sin(0.5+0j))
(0.479425538604+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
.. _decimal-faq:
Decimal FAQ
-----------
Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
minimize typing when using the interactive interpreter?
A. Some users abbreviate the constructor to just a single letter:
>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')
Q. In a fixed-point application with two decimal places, some inputs have many
places and need to be rounded. Others are not supposed to have excess digits
and need to be validated. What methods should be used?
A. The :meth:`~Decimal.quantize` method rounds to a fixed number of decimal places. If
the :const:`Inexact` trap is set, it is also useful for validation:
>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')
>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')
>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
...
Inexact: None
Q. Once I have valid two place inputs, how do I maintain that invariant
throughout an application?
A. Some operations like addition, subtraction, and multiplication by an integer
will automatically preserve fixed point. Others operations, like division and
non-integer multiplication, will change the number of decimal places and need to
be followed-up with a :meth:`~Decimal.quantize` step:
>>> a = Decimal('102.72') # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42 # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal('0.03')
In developing fixed-point applications, it is convenient to define functions
to handle the :meth:`~Decimal.quantize` step:
>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
...
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)
>>> mul(a, b) # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')
Q. There are many ways to express the same value. The numbers ``200``,
``200.000``, ``2E2``, and ``.02E+4`` all have the same value at
various precisions. Is there a way to transform them to a single recognizable
canonical value?
A. The :meth:`~Decimal.normalize` method maps all equivalent values to a single
representative:
>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Q. When does rounding occur in a computation?
A. It occurs *after* the computation. The philosophy of the decimal
specification is that numbers are considered exact and are created
independent of the current context. They can even have greater
precision than current context. Computations process with those
exact inputs and then rounding (or other context operations) is
applied to the *result* of the computation::
>>> getcontext().prec = 5
>>> pi = Decimal('3.1415926535') # More than 5 digits
>>> pi # All digits are retained
Decimal('3.1415926535')
>>> pi + 0 # Rounded after an addition
Decimal('3.1416')
>>> pi - Decimal('0.00005') # Subtract unrounded numbers, then round
Decimal('3.1415')
>>> pi + 0 - Decimal('0.00005'). # Intermediate values are rounded
Decimal('3.1416')
Q. Some decimal values always print with exponential notation. Is there a way
to get a non-exponential representation?
A. For some values, exponential notation is the only way to express the number
of significant places in the coefficient. For example, expressing
``5.0E+3`` as ``5000`` keeps the value constant but cannot show the
original's two-place significance.
If an application does not care about tracking significance, it is easy to
remove the exponent and trailing zeroes, losing significance, but keeping the
value unchanged:
>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
>>> remove_exponent(Decimal('5E+3'))
Decimal('5000')
Q. Is there a way to convert a regular float to a :class:`Decimal`?
A. Yes, any binary floating-point number can be exactly expressed as a
Decimal though an exact conversion may take more precision than intuition would
suggest:
.. doctest::
>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')
Q. Within a complex calculation, how can I make sure that I haven't gotten a
spurious result because of insufficient precision or rounding anomalies.
A. The decimal module makes it easy to test results. A best practice is to
re-run calculations using greater precision and with various rounding modes.
Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.
Q. I noticed that context precision is applied to the results of operations but
not to the inputs. Is there anything to watch out for when mixing values of
different precisions?
A. Yes. The principle is that all values are considered to be exact and so is
the arithmetic on those values. Only the results are rounded. The advantage
for inputs is that "what you type is what you get". A disadvantage is that the
results can look odd if you forget that the inputs haven't been rounded:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')
The solution is either to increase precision or to force rounding of inputs
using the unary plus operation:
.. doctest:: newcontext
>>> getcontext().prec = 3
>>> +Decimal('1.23456789') # unary plus triggers rounding
Decimal('1.23')
Alternatively, inputs can be rounded upon creation using the
:meth:`Context.create_decimal` method:
>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')
Q. Is the CPython implementation fast for large numbers?
A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of
the decimal module integrate the high speed `libmpdec
<https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html>`_ library for
arbitrary precision correctly rounded decimal floating-point arithmetic [#]_.
``libmpdec`` uses `Karatsuba multiplication
<https://en.wikipedia.org/wiki/Karatsuba_algorithm>`_
for medium-sized numbers and the `Number Theoretic Transform
<https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform>`_
for very large numbers.
The context must be adapted for exact arbitrary precision arithmetic. :attr:`~Context.Emin`
and :attr:`~Context.Emax` should always be set to the maximum values, :attr:`~Context.clamp`
should always be 0 (the default). Setting :attr:`~Context.prec` requires some care.
The easiest approach for trying out bignum arithmetic is to use the maximum
value for :attr:`~Context.prec` as well [#]_::
>>> setcontext(Context(prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))
>>> x = Decimal(2) ** 256
>>> x / 128
Decimal('904625697166532776746648320380374280103671755200316906558262375061821325312')
For inexact results, :const:`MAX_PREC` is far too large on 64-bit platforms and
the available memory will be insufficient::
>>> Decimal(1) / 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
MemoryError
On systems with overallocation (e.g. Linux), a more sophisticated approach is to
adjust :attr:`~Context.prec` to the amount of available RAM. Suppose that you have 8GB of
RAM and expect 10 simultaneous operands using a maximum of 500MB each::
>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> c = Context(prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext(c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal(0).logical_invert() * 9
>>> sys.getsizeof(x)
524288112
>>> x + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.Inexact: [<class 'decimal.Inexact'>]
In general (and especially on systems without overallocation), it is recommended
to estimate even tighter bounds and set the :attr:`Inexact` trap if all calculations
are expected to be exact.
.. [#]
.. versionadded:: 3.3
.. [#]
.. versionchanged:: 3.9
This approach now works for all exact results except for non-integer powers.
|