1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
|
:mod:`!itertools` --- Functions creating iterators for efficient looping
========================================================================
.. module:: itertools
:synopsis: Functions creating iterators for efficient looping.
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
.. testsetup::
from itertools import *
import collections
import math
import operator
import random
--------------
This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML. Each has been recast in a form
suitable for Python.
The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination. Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.
For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``. The same effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.
**Infinite iterators:**
================== ================= ================================================= =========================================
Iterator Arguments Results Example
================== ================= ================================================= =========================================
:func:`count` [start[, step]] start, start+step, start+2*step, ... ``count(10) → 10 11 12 13 14 ...``
:func:`cycle` p p0, p1, ... plast, p0, p1, ... ``cycle('ABCD') → A B C D A B C D ...``
:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times ``repeat(10, 3) → 10 10 10``
================== ================= ================================================= =========================================
**Iterators terminating on the shortest input sequence:**
============================ ============================ ================================================= =============================================================
Iterator Arguments Results Example
============================ ============================ ================================================= =============================================================
:func:`accumulate` p [,func] p0, p0+p1, p0+p1+p2, ... ``accumulate([1,2,3,4,5]) → 1 3 6 10 15``
:func:`batched` p, n (p0, p1, ..., p_n-1), ... ``batched('ABCDEFG', n=2) → AB CD EF G``
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') → A B C D E F``
:func:`chain.from_iterable` iterable p0, p1, ... plast, q0, q1, ... ``chain.from_iterable(['ABC', 'DEF']) → A B C D E F``
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) → A C E F``
:func:`dropwhile` predicate, seq seq[n], seq[n+1], starting when predicate fails ``dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8``
:func:`filterfalse` predicate, seq elements of seq where predicate(elem) fails ``filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8``
:func:`groupby` iterable[, key] sub-iterators grouped by value of key(v) ``groupby(['A','B','DEF'], len) → (1, A B) (3, DEF)``
:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step] ``islice('ABCDEFG', 2, None) → C D E F G``
:func:`pairwise` iterable (p[0], p[1]), (p[1], p[2]) ``pairwise('ABCDEFG') → AB BC CD DE EF FG``
:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ... ``starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000``
:func:`takewhile` predicate, seq seq[0], seq[1], until predicate fails ``takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4``
:func:`tee` it, n it1, it2, ... itn splits one iterator into n ``tee('ABC', 2) → A B C, A B C``
:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ... ``zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-``
============================ ============================ ================================================= =============================================================
**Combinatoric iterators:**
============================================== ==================== =============================================================
Iterator Arguments Results
============================================== ==================== =============================================================
:func:`product` p, q, ... [repeat=1] cartesian product, equivalent to a nested for-loop
:func:`permutations` p[, r] r-length tuples, all possible orderings, no repeated elements
:func:`combinations` p, r r-length tuples, in sorted order, no repeated elements
:func:`combinations_with_replacement` p, r r-length tuples, in sorted order, with repeated elements
============================================== ==================== =============================================================
============================================== =============================================================
Examples Results
============================================== =============================================================
``product('ABCD', repeat=2)`` ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
``permutations('ABCD', 2)`` ``AB AC AD BA BC BD CA CB CD DA DB DC``
``combinations('ABCD', 2)`` ``AB AC AD BC BD CD``
``combinations_with_replacement('ABCD', 2)`` ``AA AB AC AD BB BC BD CC CD DD``
============================================== =============================================================
.. _itertools-functions:
Itertool Functions
------------------
The following functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.
.. function:: accumulate(iterable[, function, *, initial=None])
Make an iterator that returns accumulated sums or accumulated
results from other binary functions.
The *function* defaults to addition. The *function* should accept
two arguments, an accumulated total and a value from the *iterable*.
If an *initial* value is provided, the accumulation will start with
that value and the output will have one more element than the input
iterable.
Roughly equivalent to::
def accumulate(iterable, function=operator.add, *, initial=None):
'Return running totals'
# accumulate([1,2,3,4,5]) → 1 3 6 10 15
# accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115
# accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120
iterator = iter(iterable)
total = initial
if initial is None:
try:
total = next(iterator)
except StopIteration:
return
yield total
for element in iterator:
total = function(total, element)
yield total
To compute a running minimum, set *function* to :func:`min`.
For a running maximum, set *function* to :func:`max`.
Or for a running product, set *function* to :func:`operator.mul`.
To build an `amortization table
<https://www.ramseysolutions.com/real-estate/amortization-schedule>`_,
accumulate the interest and apply payments:
.. doctest::
>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
>>> list(accumulate(data, max)) # running maximum
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
>>> list(accumulate(data, operator.mul)) # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
# Amortize a 5% loan of 1000 with 10 annual payments of 90
>>> update = lambda balance, payment: round(balance * 1.05) - payment
>>> list(accumulate(repeat(90, 10), update, initial=1_000))
[1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]
See :func:`functools.reduce` for a similar function that returns only the
final accumulated value.
.. versionadded:: 3.2
.. versionchanged:: 3.3
Added the optional *function* parameter.
.. versionchanged:: 3.8
Added the optional *initial* parameter.
.. function:: batched(iterable, n, *, strict=False)
Batch data from the *iterable* into tuples of length *n*. The last
batch may be shorter than *n*.
If *strict* is true, will raise a :exc:`ValueError` if the final
batch is shorter than *n*.
Loops over the input iterable and accumulates data into tuples up to
size *n*. The input is consumed lazily, just enough to fill a batch.
The result is yielded as soon as the batch is full or when the input
iterable is exhausted:
.. doctest::
>>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']
>>> unflattened = list(batched(flattened_data, 2))
>>> unflattened
[('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]
Roughly equivalent to::
def batched(iterable, n, *, strict=False):
# batched('ABCDEFG', 2) → AB CD EF G
if n < 1:
raise ValueError('n must be at least one')
iterator = iter(iterable)
while batch := tuple(islice(iterator, n)):
if strict and len(batch) != n:
raise ValueError('batched(): incomplete batch')
yield batch
.. versionadded:: 3.12
.. versionchanged:: 3.13
Added the *strict* option.
.. function:: chain(*iterables)
Make an iterator that returns elements from the first iterable until
it is exhausted, then proceeds to the next iterable, until all of the
iterables are exhausted. This combines multiple data sources into a
single iterator. Roughly equivalent to::
def chain(*iterables):
# chain('ABC', 'DEF') → A B C D E F
for iterable in iterables:
yield from iterable
.. classmethod:: chain.from_iterable(iterable)
Alternate constructor for :func:`chain`. Gets chained inputs from a
single iterable argument that is evaluated lazily. Roughly equivalent to::
def from_iterable(iterables):
# chain.from_iterable(['ABC', 'DEF']) → A B C D E F
for iterable in iterables:
yield from iterable
.. function:: combinations(iterable, r)
Return *r* length subsequences of elements from the input *iterable*.
The output is a subsequence of :func:`product` keeping only entries that
are subsequences of the *iterable*. The length of the output is given
by :func:`math.comb` which computes ``n! / r! / (n - r)!`` when ``0 ≤ r
≤ n`` or zero when ``r > n``.
The combination tuples are emitted in lexicographic order according to
the order of the input *iterable*. If the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. If the input elements are unique, there will be no repeated
values within each combination.
Roughly equivalent to::
def combinations(iterable, r):
# combinations('ABCD', 2) → AB AC AD BC BD CD
# combinations(range(4), 3) → 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+1, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
.. function:: combinations_with_replacement(iterable, r)
Return *r* length subsequences of elements from the input *iterable*
allowing individual elements to be repeated more than once.
The output is a subsequence of :func:`product` that keeps only entries
that are subsequences (with possible repeated elements) of the
*iterable*. The number of subsequence returned is ``(n + r - 1)! / r! /
(n - 1)!`` when ``n > 0``.
The combination tuples are emitted in lexicographic order according to
the order of the input *iterable*. if the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. If the input elements are unique, the generated combinations
will also be unique.
Roughly equivalent to::
def combinations_with_replacement(iterable, r):
# combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)
.. versionadded:: 3.1
.. function:: compress(data, selectors)
Make an iterator that returns elements from *data* where the
corresponding element in *selectors* is true. Stops when either the
*data* or *selectors* iterables have been exhausted. Roughly
equivalent to::
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) → A C E F
return (datum for datum, selector in zip(data, selectors) if selector)
.. versionadded:: 3.1
.. function:: count(start=0, step=1)
Make an iterator that returns evenly spaced values beginning with
*start*. Can be used with :func:`map` to generate consecutive data
points or with :func:`zip` to add sequence numbers. Roughly
equivalent to::
def count(start=0, step=1):
# count(10) → 10 11 12 13 14 ...
# count(2.5, 0.5) → 2.5 3.0 3.5 ...
n = start
while True:
yield n
n += step
When counting with floating-point numbers, better accuracy can sometimes be
achieved by substituting multiplicative code such as: ``(start + step * i
for i in count())``.
.. versionchanged:: 3.1
Added *step* argument and allowed non-integer arguments.
.. function:: cycle(iterable)
Make an iterator returning elements from the *iterable* and saving a
copy of each. When the iterable is exhausted, return elements from
the saved copy. Repeats indefinitely. Roughly equivalent to::
def cycle(iterable):
# cycle('ABCD') → A B C D A B C D A B C D ...
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element
This itertool may require significant auxiliary storage (depending on
the length of the iterable).
.. function:: dropwhile(predicate, iterable)
Make an iterator that drops elements from the *iterable* while the
*predicate* is true and afterwards returns every element. Roughly
equivalent to::
def dropwhile(predicate, iterable):
# dropwhile(lambda x: x<5, [1,4,6,3,8]) → 6 3 8
iterator = iter(iterable)
for x in iterator:
if not predicate(x):
yield x
break
for x in iterator:
yield x
Note this does not produce *any* output until the predicate first
becomes false, so this itertool may have a lengthy start-up time.
.. function:: filterfalse(predicate, iterable)
Make an iterator that filters elements from the *iterable* returning
only those for which the *predicate* returns a false value. If
*predicate* is ``None``, returns the items that are false. Roughly
equivalent to::
def filterfalse(predicate, iterable):
# filterfalse(lambda x: x<5, [1,4,6,3,8]) → 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x
.. function:: groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the *iterable*.
The *key* is a function computing a key value for each element. If not
specified or is ``None``, *key* defaults to an identity function and returns
the element unchanged. Generally, the iterable needs to already be sorted on
the same key function.
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
generates a break or new group every time the value of the key function changes
(which is why it is usually necessary to have sorted the data using the same key
function). That behavior differs from SQL's GROUP BY which aggregates common
elements regardless of their input order.
The returned group is itself an iterator that shares the underlying iterable
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
object is advanced, the previous group is no longer visible. So, if that data
is needed later, it should be stored as a list::
groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
:func:`groupby` is roughly equivalent to::
def groupby(iterable, key=None):
# [k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B
# [list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D
keyfunc = (lambda x: x) if key is None else key
iterator = iter(iterable)
exhausted = False
def _grouper(target_key):
nonlocal curr_value, curr_key, exhausted
yield curr_value
for curr_value in iterator:
curr_key = keyfunc(curr_value)
if curr_key != target_key:
return
yield curr_value
exhausted = True
try:
curr_value = next(iterator)
except StopIteration:
return
curr_key = keyfunc(curr_value)
while not exhausted:
target_key = curr_key
curr_group = _grouper(target_key)
yield curr_key, curr_group
if curr_key == target_key:
for _ in curr_group:
pass
.. function:: islice(iterable, stop)
islice(iterable, start, stop[, step])
Make an iterator that returns selected elements from the iterable.
Works like sequence slicing but does not support negative values for
*start*, *stop*, or *step*.
If *start* is zero or ``None``, iteration starts at zero. Otherwise,
elements from the iterable are skipped until *start* is reached.
If *stop* is ``None``, iteration continues until the input is
exhausted, if at all. Otherwise, it stops at the specified position.
If *step* is ``None``, the step defaults to one. Elements are returned
consecutively unless *step* is set higher than one which results in
items being skipped.
Roughly equivalent to::
def islice(iterable, *args):
# islice('ABCDEFG', 2) → A B
# islice('ABCDEFG', 2, 4) → C D
# islice('ABCDEFG', 2, None) → C D E F G
# islice('ABCDEFG', 0, None, 2) → A C E G
s = slice(*args)
start = 0 if s.start is None else s.start
stop = s.stop
step = 1 if s.step is None else s.step
if start < 0 or (stop is not None and stop < 0) or step <= 0:
raise ValueError
indices = count() if stop is None else range(max(start, stop))
next_i = start
for i, element in zip(indices, iterable):
if i == next_i:
yield element
next_i += step
If the input is an iterator, then fully consuming the *islice*
advances the input iterator by ``max(start, stop)`` steps regardless
of the *step* value.
.. function:: pairwise(iterable)
Return successive overlapping pairs taken from the input *iterable*.
The number of 2-tuples in the output iterator will be one fewer than the
number of inputs. It will be empty if the input iterable has fewer than
two values.
Roughly equivalent to::
def pairwise(iterable):
# pairwise('ABCDEFG') → AB BC CD DE EF FG
iterator = iter(iterable)
a = next(iterator, None)
for b in iterator:
yield a, b
a = b
.. versionadded:: 3.10
.. function:: permutations(iterable, r=None)
Return successive *r* length `permutations of elements
<https://www.britannica.com/science/permutation>`_ from the *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length
of the *iterable* and all possible full-length permutations
are generated.
The output is a subsequence of :func:`product` where entries with
repeated elements have been filtered out. The length of the output is
given by :func:`math.perm` which computes ``n! / (n - r)!`` when
``0 ≤ r ≤ n`` or zero when ``r > n``.
The permutation tuples are emitted in lexicographic order according to
the order of the input *iterable*. If the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. If the input elements are unique, there will be no repeated
values within a permutation.
Roughly equivalent to::
def permutations(iterable, r=None):
# permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) → 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = list(range(n))
cycles = list(range(n, n-r, -1))
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
.. function:: product(*iterables, repeat=1)
`Cartesian product <https://en.wikipedia.org/wiki/Cartesian_product>`_
of the input iterables.
Roughly equivalent to nested for-loops in a generator expression. For example,
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
the input's iterables are sorted, the product tuples are emitted in sorted
order.
To compute the product of an iterable with itself, specify the number of
repetitions with the optional *repeat* keyword argument. For example,
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
This function is roughly equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory::
def product(*iterables, repeat=1):
# product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) → 000 001 010 011 100 101 110 111
if repeat < 0:
raise ValueError('repeat argument cannot be negative')
pools = [tuple(pool) for pool in iterables] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
Before :func:`product` runs, it completely consumes the input iterables,
keeping pools of values in memory to generate the products. Accordingly,
it is only useful with finite inputs.
.. function:: repeat(object[, times])
Make an iterator that returns *object* over and over again. Runs indefinitely
unless the *times* argument is specified.
Roughly equivalent to::
def repeat(object, times=None):
# repeat(10, 3) → 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times):
yield object
A common use for *repeat* is to supply a stream of constant values to *map*
or *zip*:
.. doctest::
>>> list(map(pow, range(10), repeat(2)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
.. function:: starmap(function, iterable)
Make an iterator that computes the *function* using arguments obtained
from the *iterable*. Used instead of :func:`map` when argument
parameters have already been "pre-zipped" into tuples.
The difference between :func:`map` and :func:`starmap` parallels the
distinction between ``function(a,b)`` and ``function(*c)``. Roughly
equivalent to::
def starmap(function, iterable):
# starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000
for args in iterable:
yield function(*args)
.. function:: takewhile(predicate, iterable)
Make an iterator that returns elements from the *iterable* as long as
the *predicate* is true. Roughly equivalent to::
def takewhile(predicate, iterable):
# takewhile(lambda x: x<5, [1,4,6,3,8]) → 1 4
for x in iterable:
if not predicate(x):
break
yield x
Note, the element that first fails the predicate condition is
consumed from the input iterator and there is no way to access it.
This could be an issue if an application wants to further consume the
input iterator after *takewhile* has been run to exhaustion. To work
around this problem, consider using `more-itertools before_and_after()
<https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.before_and_after>`_
instead.
.. function:: tee(iterable, n=2)
Return *n* independent iterators from a single iterable.
Roughly equivalent to::
def tee(iterable, n=2):
if n < 0:
raise ValueError
if n == 0:
return ()
iterator = _tee(iterable)
result = [iterator]
for _ in range(n - 1):
result.append(_tee(iterator))
return tuple(result)
class _tee:
def __init__(self, iterable):
it = iter(iterable)
if isinstance(it, _tee):
self.iterator = it.iterator
self.link = it.link
else:
self.iterator = it
self.link = [None, None]
def __iter__(self):
return self
def __next__(self):
link = self.link
if link[1] is None:
link[0] = next(self.iterator)
link[1] = [None, None]
value, self.link = link
return value
When the input *iterable* is already a tee iterator object, all
members of the return tuple are constructed as if they had been
produced by the upstream :func:`tee` call. This "flattening step"
allows nested :func:`tee` calls to share the same underlying data
chain and to have a single update step rather than a chain of calls.
The flattening property makes tee iterators efficiently peekable:
.. testcode::
def lookahead(tee_iterator):
"Return the next value without moving the input forward"
[forked_iterator] = tee(tee_iterator, 1)
return next(forked_iterator)
.. doctest::
>>> iterator = iter('abcdef')
>>> [iterator] = tee(iterator, 1) # Make the input peekable
>>> next(iterator) # Move the iterator forward
'a'
>>> lookahead(iterator) # Check next value
'b'
>>> next(iterator) # Continue moving forward
'b'
``tee`` iterators are not threadsafe. A :exc:`RuntimeError` may be
raised when simultaneously using iterators returned by the same :func:`tee`
call, even if the original *iterable* is threadsafe.
This itertool may require significant auxiliary storage (depending on how
much temporary data needs to be stored). In general, if one iterator uses
most or all of the data before another iterator starts, it is faster to use
:func:`list` instead of :func:`tee`.
.. function:: zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the
*iterables*.
If the iterables are of uneven length, missing values are filled-in
with *fillvalue*. If not specified, *fillvalue* defaults to ``None``.
Iteration continues until the longest iterable is exhausted.
Roughly equivalent to::
def zip_longest(*iterables, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-
iterators = list(map(iter, iterables))
num_active = len(iterators)
if not num_active:
return
while True:
values = []
for i, iterator in enumerate(iterators):
try:
value = next(iterator)
except StopIteration:
num_active -= 1
if not num_active:
return
iterators[i] = repeat(fillvalue)
value = fillvalue
values.append(value)
yield tuple(values)
If one of the iterables is potentially infinite, then the :func:`zip_longest`
function should be wrapped with something that limits the number of calls
(for example :func:`islice` or :func:`takewhile`).
.. _itertools-recipes:
Itertools Recipes
-----------------
This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.
The primary purpose of the itertools recipes is educational. The recipes show
various ways of thinking about individual tools — for example, that
``chain.from_iterable`` is related to the concept of flattening. The recipes
also give ideas about ways that the tools can be combined — for example, how
``starmap()`` and ``repeat()`` can work together. The recipes also show patterns
for using itertools with the :mod:`operator` and :mod:`collections` modules as
well as with the built-in itertools such as ``map()``, ``filter()``,
``reversed()``, and ``enumerate()``.
A secondary purpose of the recipes is to serve as an incubator. The
``accumulate()``, ``compress()``, and ``pairwise()`` itertools started out as
recipes. Currently, the ``sliding_window()``, ``iter_index()``, and ``sieve()``
recipes are being tested to see whether they prove their worth.
Substantially all of these recipes and many, many others can be installed from
the :pypi:`more-itertools` project found
on the Python Package Index::
python -m pip install more-itertools
Many of the recipes offer the same high performance as the underlying toolset.
Superior memory performance is kept by processing elements one at a time rather
than bringing the whole iterable into memory all at once. Code volume is kept
small by linking the tools together in a `functional style
<https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf>`_. High speed
is retained by preferring "vectorized" building blocks over the use of for-loops
and :term:`generators <generator>` which incur interpreter overhead.
.. testcode::
from collections import Counter, deque
from contextlib import suppress
from functools import reduce
from math import comb, prod, sumprod, isqrt
from operator import itemgetter, getitem, mul, neg
def take(n, iterable):
"Return first n items of the iterable as a list."
return list(islice(iterable, n))
def prepend(value, iterable):
"Prepend a single value in front of an iterable."
# prepend(1, [2, 3, 4]) → 1 2 3 4
return chain([value], iterable)
def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))
def repeatfunc(function, times=None, *args):
"Repeat calls to a function with specified arguments."
if times is None:
return starmap(function, repeat(args))
return starmap(function, repeat(args, times))
def flatten(list_of_lists):
"Flatten one level of nesting."
return chain.from_iterable(list_of_lists)
def ncycles(iterable, n):
"Returns the sequence elements n times."
return chain.from_iterable(repeat(tuple(iterable), n))
def loops(n):
"Loop n times. Like range(n) but without creating integers."
# for _ in loops(100): ...
return repeat(None, n)
def tail(n, iterable):
"Return an iterator over the last n items."
# tail(3, 'ABCDEFG') → E F G
return iter(deque(iterable, maxlen=n))
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is None, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
deque(iterator, maxlen=0)
else:
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"Returns the nth item or a default value."
return next(islice(iterable, n, None), default)
def quantify(iterable, predicate=bool):
"Given a predicate that returns True or False, count the True results."
return sum(map(predicate, iterable))
def first_true(iterable, default=False, predicate=None):
"Returns the first true value or the *default* if there is no true value."
# first_true([a,b,c], x) → a or b or c or x
# first_true([a,b], x, f) → a if f(a) else b if f(b) else x
return next(filter(predicate, iterable), default)
def all_equal(iterable, key=None):
"Returns True if all the elements are equal to each other."
# all_equal('4٤௪౪໔', key=int) → True
return len(take(2, groupby(iterable, key))) <= 1
def unique_justseen(iterable, key=None):
"Yield unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') → A B C D A B
# unique_justseen('ABBcCAD', str.casefold) → A B c A D
if key is None:
return map(itemgetter(0), groupby(iterable))
return map(next, map(itemgetter(1), groupby(iterable, key)))
def unique_everseen(iterable, key=None):
"Yield unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') → A B C D
# unique_everseen('ABBcCAD', str.casefold) → A B c D
seen = set()
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen.add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen.add(k)
yield element
def unique(iterable, key=None, reverse=False):
"Yield unique elements in sorted order. Supports unhashable inputs."
# unique([[1, 2], [3, 4], [1, 2]]) → [1, 2] [3, 4]
sequenced = sorted(iterable, key=key, reverse=reverse)
return unique_justseen(sequenced, key=key)
def sliding_window(iterable, n):
"Collect data into overlapping fixed-length chunks or blocks."
# sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG
iterator = iter(iterable)
window = deque(islice(iterator, n - 1), maxlen=n)
for x in iterator:
window.append(x)
yield tuple(window)
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
"Collect data into non-overlapping fixed-length chunks or blocks."
# grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx
# grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError
# grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF
iterators = [iter(iterable)] * n
match incomplete:
case 'fill':
return zip_longest(*iterators, fillvalue=fillvalue)
case 'strict':
return zip(*iterators, strict=True)
case 'ignore':
return zip(*iterators)
case _:
raise ValueError('Expected fill, strict, or ignore')
def roundrobin(*iterables):
"Visit input iterables in a cycle until each is exhausted."
# roundrobin('ABC', 'D', 'EF') → A D E B F C
# Algorithm credited to George Sakkis
iterators = map(iter, iterables)
for num_active in range(len(iterables), 0, -1):
iterators = cycle(islice(iterators, num_active))
yield from map(next, iterators)
def subslices(seq):
"Return all contiguous non-empty subslices of a sequence."
# subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
return map(getitem, repeat(seq), slices)
def iter_index(iterable, value, start=0, stop=None):
"Return indices where a value occurs in a sequence or iterable."
# iter_index('AABCADEAF', 'A') → 0 1 4 7
seq_index = getattr(iterable, 'index', None)
if seq_index is None:
iterator = islice(iterable, start, stop)
for i, element in enumerate(iterator, start):
if element is value or element == value:
yield i
else:
stop = len(iterable) if stop is None else stop
i = start
with suppress(ValueError):
while True:
yield (i := seq_index(value, i, stop))
i += 1
def iter_except(function, exception, first=None):
"Convert a call-until-exception interface to an iterator interface."
# iter_except(d.popitem, KeyError) → non-blocking dictionary iterator
with suppress(exception):
if first is not None:
yield first()
while True:
yield function()
The following recipes have a more mathematical flavor:
.. testcode::
def multinomial(*counts):
"Number of distinct arrangements of a multiset."
# Counter('abracadabra').values() → 5 2 2 1 1
# multinomial(5, 2, 2, 1, 1) → 83160
return prod(map(comb, accumulate(counts), counts))
def powerset(iterable):
"Subsequences of the iterable from shortest to longest."
# powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def sum_of_squares(iterable):
"Add up the squares of the input values."
# sum_of_squares([10, 20, 30]) → 1400
return sumprod(*tee(iterable))
def reshape(matrix, columns):
"Reshape a 2-D matrix to have a given number of columns."
# reshape([(0, 1), (2, 3), (4, 5)], 3) → (0, 1, 2), (3, 4, 5)
return batched(chain.from_iterable(matrix), columns, strict=True)
def transpose(matrix):
"Swap the rows and columns of a 2-D matrix."
# transpose([(1, 2, 3), (11, 22, 33)]) → (1, 11) (2, 22) (3, 33)
return zip(*matrix, strict=True)
def matmul(m1, m2):
"Multiply two matrices."
# matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) → (49, 80), (41, 60)
n = len(m2[0])
return batched(starmap(sumprod, product(m1, transpose(m2))), n)
def convolve(signal, kernel):
"""Discrete linear convolution of two iterables.
Equivalent to polynomial multiplication.
Convolutions are mathematically commutative; however, the inputs are
evaluated differently. The signal is consumed lazily and can be
infinite. The kernel is fully consumed before the calculations begin.
Article: https://betterexplained.com/articles/intuitive-convolution/
Video: https://www.youtube.com/watch?v=KuXjwB4LzSA
"""
# convolve([1, -1, -20], [1, -3]) → 1 -4 -17 60
# convolve(data, [0.25, 0.25, 0.25, 0.25]) → Moving average (blur)
# convolve(data, [1/2, 0, -1/2]) → 1st derivative estimate
# convolve(data, [1, -2, 1]) → 2nd derivative estimate
kernel = tuple(kernel)[::-1]
n = len(kernel)
padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
windowed_signal = sliding_window(padded_signal, n)
return map(sumprod, repeat(kernel), windowed_signal)
def polynomial_from_roots(roots):
"""Compute a polynomial's coefficients from its roots.
(x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60
"""
# polynomial_from_roots([5, -4, 3]) → [1, -4, -17, 60]
factors = zip(repeat(1), map(neg, roots))
return list(reduce(convolve, factors, [1]))
def polynomial_eval(coefficients, x):
"""Evaluate a polynomial at a specific value.
Computes with better numeric stability than Horner's method.
"""
# Evaluate x³ -4x² -17x + 60 at x = 5
# polynomial_eval([1, -4, -17, 60], x=5) → 0
n = len(coefficients)
if not n:
return type(x)(0)
powers = map(pow, repeat(x), reversed(range(n)))
return sumprod(coefficients, powers)
def polynomial_derivative(coefficients):
"""Compute the first derivative of a polynomial.
f(x) = x³ -4x² -17x + 60
f'(x) = 3x² -8x -17
"""
# polynomial_derivative([1, -4, -17, 60]) → [3, -8, -17]
n = len(coefficients)
powers = reversed(range(1, n))
return list(map(mul, coefficients, powers))
def sieve(n):
"Primes less than n."
# sieve(30) → 2 3 5 7 11 13 17 19 23 29
if n > 2:
yield 2
data = bytearray((0, 1)) * (n // 2)
for p in iter_index(data, 1, start=3, stop=isqrt(n) + 1):
data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
yield from iter_index(data, 1, start=3)
def factor(n):
"Prime factors of n."
# factor(99) → 3 3 11
# factor(1_000_000_000_000_007) → 47 59 360620266859
# factor(1_000_000_000_000_403) → 1000000000000403
for prime in sieve(isqrt(n) + 1):
while not n % prime:
yield prime
n //= prime
if n == 1:
return
if n > 1:
yield n
def is_prime(n):
"Return True if n is prime."
# is_prime(1_000_000_000_000_403) → True
return n > 1 and next(factor(n)) == n
def totient(n):
"Count of natural numbers up to n that are coprime to n."
# https://mathworld.wolfram.com/TotientFunction.html
# totient(12) → 4 because len([1, 5, 7, 11]) == 4
for prime in set(factor(n)):
n -= n // prime
return n
.. doctest::
:hide:
These examples no longer appear in the docs but are guaranteed
to keep working.
>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in zip(count(1200), amounts):
... print('Check %d is for $%.2f' % (checknum, amount))
...
Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14
>>> import operator
>>> for cube in map(operator.pow, range(1,4), repeat(3)):
... print(cube)
...
1
8
27
>>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura', '', 'martin', '', 'walter', '', 'samuele']
>>> for name in islice(reportlines, 3, None, 2):
... print(name.title())
...
Alex
Laura
Martin
Walter
Samuele
>>> from operator import itemgetter
>>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
>>> di = sorted(sorted(d.items()), key=itemgetter(1))
>>> for k, g in groupby(di, itemgetter(1)):
... print(k, list(map(itemgetter(0), g)))
...
1 ['a', 'c', 'e']
2 ['b', 'd', 'f']
3 ['g']
# Find runs of consecutive numbers using groupby. The key to the solution
# is differencing with a range so that consecutive numbers all appear in
# same group.
>>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
>>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
... print(list(map(operator.itemgetter(1), g)))
...
[1]
[4, 5, 6]
[10]
[15, 16, 17, 18]
[22]
[25, 26, 27, 28]
Now, we test all of the itertool recipes
>>> take(10, count())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> # Verify that the input is consumed lazily
>>> it = iter('abcdef')
>>> take(3, it)
['a', 'b', 'c']
>>> list(it)
['d', 'e', 'f']
>>> list(prepend(1, [2, 3, 4]))
[1, 2, 3, 4]
>>> list(enumerate('abc'))
[(0, 'a'), (1, 'b'), (2, 'c')]
>>> list(islice(tabulate(lambda x: 2*x), 4))
[0, 2, 4, 6]
>>> for _ in loops(5):
... print('hi')
...
hi
hi
hi
hi
hi
>>> list(tail(3, 'ABCDEFG'))
['E', 'F', 'G']
>>> # Verify the input is consumed greedily
>>> input_iterator = iter('ABCDEFG')
>>> output_iterator = tail(3, input_iterator)
>>> list(input_iterator)
[]
>>> it = iter(range(10))
>>> consume(it, 3)
>>> # Verify the input is consumed lazily
>>> next(it)
3
>>> # Verify the input is consumed completely
>>> consume(it)
>>> next(it, 'Done')
'Done'
>>> nth('abcde', 3)
'd'
>>> nth('abcde', 9) is None
True
>>> # Verify that the input is consumed lazily
>>> it = iter('abcde')
>>> nth(it, 2)
'c'
>>> list(it)
['d', 'e']
>>> [all_equal(s) for s in ('', 'A', 'AAAA', 'AAAB', 'AAABA')]
[True, True, True, False, False]
>>> [all_equal(s, key=str.casefold) for s in ('', 'A', 'AaAa', 'AAAB', 'AAABA')]
[True, True, True, False, False]
>>> # Verify that the input is consumed lazily and that only
>>> # one element of a second equivalence class is used to disprove
>>> # the assertion that all elements are equal.
>>> it = iter('aaabbbccc')
>>> all_equal(it)
False
>>> ''.join(it)
'bbccc'
>>> quantify(range(99), lambda x: x%2==0)
50
>>> quantify([True, False, False, True, True])
3
>>> quantify(range(12), predicate=lambda x: x%2==1)
6
>>> a = [[1, 2, 3], [4, 5, 6]]
>>> list(flatten(a))
[1, 2, 3, 4, 5, 6]
>>> list(ncycles('abc', 3))
['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']
>>> # Verify greedy consumption of input iterator
>>> input_iterator = iter('abc')
>>> output_iterator = ncycles(input_iterator, 3)
>>> list(input_iterator)
[]
>>> sum_of_squares([10, 20, 30])
1400
>>> list(reshape([(0, 1), (2, 3), (4, 5)], 3))
[(0, 1, 2), (3, 4, 5)]
>>> M = [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
>>> list(reshape(M, 1))
[(0,), (1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,), (9,), (10,), (11,)]
>>> list(reshape(M, 2))
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11)]
>>> list(reshape(M, 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11)]
>>> list(reshape(M, 4))
[(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
>>> list(reshape(M, 5))
Traceback (most recent call last):
...
ValueError: batched(): incomplete batch
>>> list(reshape(M, 6))
[(0, 1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11)]
>>> list(reshape(M, 12))
[(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)]
>>> list(transpose([(1, 2, 3), (11, 22, 33)]))
[(1, 11), (2, 22), (3, 33)]
>>> # Verify that the inputs are consumed lazily
>>> input1 = iter([1, 2, 3])
>>> input2 = iter([11, 22, 33])
>>> output_iterator = transpose([input1, input2])
>>> next(output_iterator)
(1, 11)
>>> list(zip(input1, input2))
[(2, 22), (3, 33)]
>>> list(matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]))
[(49, 80), (41, 60)]
>>> list(matmul([[2, 5], [7, 9], [3, 4]], [[7, 11, 5, 4, 9], [3, 5, 2, 6, 3]]))
[(29, 47, 20, 38, 33), (76, 122, 53, 82, 90), (33, 53, 23, 36, 39)]
>>> list(convolve([1, -1, -20], [1, -3])) == [1, -4, -17, 60]
True
>>> data = [20, 40, 24, 32, 20, 28, 16]
>>> list(convolve(data, [0.25, 0.25, 0.25, 0.25]))
[5.0, 15.0, 21.0, 29.0, 29.0, 26.0, 24.0, 16.0, 11.0, 4.0]
>>> list(convolve(data, [1, -1]))
[20, 20, -16, 8, -12, 8, -12, -16]
>>> list(convolve(data, [1, -2, 1]))
[20, 0, -36, 24, -20, 20, -20, -4, 16]
>>> # Verify signal is consumed lazily and the kernel greedily
>>> signal_iterator = iter([10, 20, 30, 40, 50])
>>> kernel_iterator = iter([1, 2, 3])
>>> output_iterator = convolve(signal_iterator, kernel_iterator)
>>> list(kernel_iterator)
[]
>>> next(output_iterator)
10
>>> next(output_iterator)
40
>>> list(signal_iterator)
[30, 40, 50]
>>> from fractions import Fraction
>>> from decimal import Decimal
>>> polynomial_eval([1, -4, -17, 60], x=5)
0
>>> x = 5; x**3 - 4*x**2 -17*x + 60
0
>>> polynomial_eval([1, -4, -17, 60], x=2.5)
8.125
>>> x = 2.5; x**3 - 4*x**2 -17*x + 60
8.125
>>> polynomial_eval([1, -4, -17, 60], x=Fraction(2, 3))
Fraction(1274, 27)
>>> x = Fraction(2, 3); x**3 - 4*x**2 -17*x + 60
Fraction(1274, 27)
>>> polynomial_eval([1, -4, -17, 60], x=Decimal('1.75'))
Decimal('23.359375')
>>> x = Decimal('1.75'); x**3 - 4*x**2 -17*x + 60
Decimal('23.359375')
>>> polynomial_eval([], 2)
0
>>> polynomial_eval([], 2.5)
0.0
>>> polynomial_eval([], Fraction(2, 3))
Fraction(0, 1)
>>> polynomial_eval([], Decimal('1.75'))
Decimal('0')
>>> polynomial_eval([11], 7) == 11
True
>>> polynomial_eval([11, 2], 7) == 11 * 7 + 2
True
>>> polynomial_from_roots([5, -4, 3])
[1, -4, -17, 60]
>>> factored = lambda x: (x - 5) * (x + 4) * (x - 3)
>>> expanded = lambda x: x**3 -4*x**2 -17*x + 60
>>> all(factored(x) == expanded(x) for x in range(-10, 11))
True
>>> polynomial_derivative([1, -4, -17, 60])
[3, -8, -17]
>>> list(iter_index('AABCADEAF', 'A'))
[0, 1, 4, 7]
>>> list(iter_index('AABCADEAF', 'B'))
[2]
>>> list(iter_index('AABCADEAF', 'X'))
[]
>>> list(iter_index('', 'X'))
[]
>>> list(iter_index('AABCADEAF', 'A', 1))
[1, 4, 7]
>>> list(iter_index(iter('AABCADEAF'), 'A', 1))
[1, 4, 7]
>>> list(iter_index('AABCADEAF', 'A', 2))
[4, 7]
>>> list(iter_index(iter('AABCADEAF'), 'A', 2))
[4, 7]
>>> list(iter_index('AABCADEAF', 'A', 10))
[]
>>> list(iter_index(iter('AABCADEAF'), 'A', 10))
[]
>>> list(iter_index('AABCADEAF', 'A', 1, 7))
[1, 4]
>>> list(iter_index(iter('AABCADEAF'), 'A', 1, 7))
[1, 4]
>>> # Verify that ValueErrors not swallowed (gh-107208)
>>> def assert_no_value(iterable, forbidden_value):
... for item in iterable:
... if item == forbidden_value:
... raise ValueError
... yield item
...
>>> list(iter_index(assert_no_value('AABCADEAF', 'B'), 'A'))
Traceback (most recent call last):
...
ValueError
>>> # Verify that both paths can find identical NaN values
>>> x = float('NaN')
>>> y = float('NaN')
>>> list(iter_index([0, x, x, y, 0], x))
[1, 2]
>>> list(iter_index(iter([0, x, x, y, 0]), x))
[1, 2]
>>> # Test list input. Lists do not support None for the stop argument
>>> list(iter_index(list('AABCADEAF'), 'A'))
[0, 1, 4, 7]
>>> # Verify that input is consumed lazily
>>> input_iterator = iter('AABCADEAF')
>>> output_iterator = iter_index(input_iterator, 'A')
>>> next(output_iterator)
0
>>> next(output_iterator)
1
>>> next(output_iterator)
4
>>> ''.join(input_iterator)
'DEAF'
>>> # Verify that the target value can be a sequence.
>>> seq = [[10, 20], [30, 40], 30, 40, [30, 40], 50]
>>> target = [30, 40]
>>> list(iter_index(seq, target))
[1, 4]
>>> # Verify faithfulness to type specific index() method behaviors.
>>> # For example, bytes and str perform continuous-subsequence searches
>>> # that do not match the general behavior specified
>>> # in collections.abc.Sequence.index().
>>> seq = 'abracadabra'
>>> target = 'ab'
>>> list(iter_index(seq, target))
[0, 7]
>>> list(sieve(30))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
>>> all(list(sieve(n)) == [p for p in small_primes if p < n] for n in range(101))
True
>>> len(list(sieve(100)))
25
>>> len(list(sieve(1_000)))
168
>>> len(list(sieve(10_000)))
1229
>>> len(list(sieve(100_000)))
9592
>>> len(list(sieve(1_000_000)))
78498
>>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911} # https://oeis.org/A002997
>>> set(sieve(10_000)).isdisjoint(carmichael)
True
>>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
>>> list(filter(is_prime, range(-100, 100))) == small_primes
True
>>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911} # https://oeis.org/A002997
>>> any(map(is_prime, carmichael))
False
>>> # https://www.wolframalpha.com/input?i=is+128884753939+prime
>>> is_prime(128_884_753_939) # large prime
True
>>> is_prime(999953 * 999983) # large semiprime
False
>>> is_prime(1_000_000_000_000_007) # factor() example
False
>>> is_prime(1_000_000_000_000_403) # factor() example
True
>>> list(factor(99)) # Code example 1
[3, 3, 11]
>>> list(factor(1_000_000_000_000_007)) # Code example 2
[47, 59, 360620266859]
>>> list(factor(1_000_000_000_000_403)) # Code example 3
[1000000000000403]
>>> list(factor(0))
[]
>>> list(factor(1))
[]
>>> list(factor(2))
[2]
>>> list(factor(3))
[3]
>>> list(factor(4))
[2, 2]
>>> list(factor(5))
[5]
>>> list(factor(6))
[2, 3]
>>> list(factor(7))
[7]
>>> list(factor(8))
[2, 2, 2]
>>> list(factor(9))
[3, 3]
>>> list(factor(10))
[2, 5]
>>> list(factor(128_884_753_939)) # large prime
[128884753939]
>>> list(factor(999953 * 999983)) # large semiprime
[999953, 999983]
>>> list(factor(6 ** 20)) == [2] * 20 + [3] * 20 # large power
True
>>> list(factor(909_909_090_909)) # large multiterm composite
[3, 3, 7, 13, 13, 751, 113797]
>>> math.prod([3, 3, 7, 13, 13, 751, 113797])
909909090909
>>> all(math.prod(factor(n)) == n for n in range(1, 2_000))
True
>>> all(set(factor(n)) <= set(sieve(n+1)) for n in range(2_000))
True
>>> all(list(factor(n)) == sorted(factor(n)) for n in range(2_000))
True
>>> totient(0) # https://www.wolframalpha.com/input?i=totient+0
0
>>> first_totients = [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6,
... 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18,
... 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36,
... 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44] # https://oeis.org/A000010
...
>>> list(map(totient, range(1, 70))) == first_totients
True
>>> reference_totient = lambda n: sum(math.gcd(t, n) == 1 for t in range(1, n+1))
>>> all(totient(n) == reference_totient(n) for n in range(1000))
True
>>> totient(128_884_753_939) == 128_884_753_938 # large prime
True
>>> totient(999953 * 999983) == 999952 * 999982 # large semiprime
True
>>> totient(6 ** 20) == 1 * 2**19 * 2 * 3**19 # repeated primes
True
>>> list(flatten([('a', 'b'), (), ('c', 'd', 'e'), ('f',), ('g', 'h', 'i')]))
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']
>>> list(repeatfunc(pow, 5, 2, 3))
[8, 8, 8, 8, 8]
>>> take(5, map(int, repeatfunc(random.random)))
[0, 0, 0, 0, 0]
>>> random.seed(85753098575309)
>>> list(repeatfunc(random.random, 3))
[0.16370491282496968, 0.45889608687313455, 0.3747076837820118]
>>> list(repeatfunc(chr, 3, 65))
['A', 'A', 'A']
>>> list(repeatfunc(pow, 3, 2, 5))
[32, 32, 32]
>>> list(grouper('abcdefg', 3, fillvalue='x'))
[('a', 'b', 'c'), ('d', 'e', 'f'), ('g', 'x', 'x')]
>>> it = grouper('abcdefg', 3, incomplete='strict')
>>> next(it)
('a', 'b', 'c')
>>> next(it)
('d', 'e', 'f')
>>> next(it)
Traceback (most recent call last):
...
ValueError: zip() argument 2 is shorter than argument 1
>>> list(grouper('abcdefg', n=3, incomplete='ignore'))
[('a', 'b', 'c'), ('d', 'e', 'f')]
>>> list(sliding_window('ABCDEFG', 1))
[('A',), ('B',), ('C',), ('D',), ('E',), ('F',), ('G',)]
>>> list(sliding_window('ABCDEFG', 2))
[('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'F'), ('F', 'G')]
>>> list(sliding_window('ABCDEFG', 3))
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]
>>> list(sliding_window('ABCDEFG', 4))
[('A', 'B', 'C', 'D'), ('B', 'C', 'D', 'E'), ('C', 'D', 'E', 'F'), ('D', 'E', 'F', 'G')]
>>> list(sliding_window('ABCDEFG', 5))
[('A', 'B', 'C', 'D', 'E'), ('B', 'C', 'D', 'E', 'F'), ('C', 'D', 'E', 'F', 'G')]
>>> list(sliding_window('ABCDEFG', 6))
[('A', 'B', 'C', 'D', 'E', 'F'), ('B', 'C', 'D', 'E', 'F', 'G')]
>>> list(sliding_window('ABCDEFG', 7))
[('A', 'B', 'C', 'D', 'E', 'F', 'G')]
>>> list(sliding_window('ABCDEFG', 8))
[]
>>> try:
... list(sliding_window('ABCDEFG', -1))
... except ValueError:
... 'zero or negative n not supported'
...
'zero or negative n not supported'
>>> try:
... list(sliding_window('ABCDEFG', 0))
... except ValueError:
... 'zero or negative n not supported'
...
'zero or negative n not supported'
>>> list(roundrobin('abc', 'd', 'ef'))
['a', 'd', 'e', 'b', 'f', 'c']
>>> ranges = [range(5, 1000), range(4, 3000), range(0), range(3, 2000), range(2, 5000), range(1, 3500)]
>>> collections.Counter(roundrobin(*ranges)) == collections.Counter(chain(*ranges))
True
>>> # Verify that the inputs are consumed lazily
>>> input_iterators = list(map(iter, ['abcd', 'ef', '', 'ghijk', 'l', 'mnopqr']))
>>> output_iterator = roundrobin(*input_iterators)
>>> ''.join(islice(output_iterator, 10))
'aeglmbfhnc'
>>> ''.join(chain(*input_iterators))
'dijkopqr'
>>> list(subslices('ABCD'))
['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']
>>> list(powerset([1,2,3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> all(len(list(powerset(range(n)))) == 2**n for n in range(18))
True
>>> list(powerset('abcde')) == sorted(sorted(set(powerset('abcde'))), key=len)
True
>>> list(unique_everseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBCcAD', str.casefold))
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBcCAD', str.casefold))
['A', 'B', 'c', 'D']
>>> # Verify that the input is consumed lazily
>>> input_iterator = iter('AAAABBBCCDAABBB')
>>> output_iterator = unique_everseen(input_iterator)
>>> next(output_iterator)
'A'
>>> ''.join(input_iterator)
'AAABBBCCDAABBB'
>>> list(unique_justseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D', 'A', 'B']
>>> list(unique_justseen('ABBCcAD', str.casefold))
['A', 'B', 'C', 'A', 'D']
>>> list(unique_justseen('ABBcCAD', str.casefold))
['A', 'B', 'c', 'A', 'D']
>>> # Verify that the input is consumed lazily
>>> input_iterator = iter('AAAABBBCCDAABBB')
>>> output_iterator = unique_justseen(input_iterator)
>>> next(output_iterator)
'A'
>>> ''.join(input_iterator)
'AAABBBCCDAABBB'
>>> list(unique([[1, 2], [3, 4], [1, 2]]))
[[1, 2], [3, 4]]
>>> list(unique('ABBcCAD', str.casefold))
['A', 'B', 'c', 'D']
>>> list(unique('ABBcCAD', str.casefold, reverse=True))
['D', 'c', 'B', 'A']
>>> d = dict(a=1, b=2, c=3)
>>> it = iter_except(d.popitem, KeyError)
>>> d['d'] = 4
>>> next(it)
('d', 4)
>>> next(it)
('c', 3)
>>> next(it)
('b', 2)
>>> d['e'] = 5
>>> next(it)
('e', 5)
>>> next(it)
('a', 1)
>>> next(it, 'empty')
'empty'
>>> first_true('ABC0DEF1', '9', str.isdigit)
'0'
>>> # Verify that inputs are consumed lazily
>>> it = iter('ABC0DEF1')
>>> first_true(it, predicate=str.isdigit)
'0'
>>> ''.join(it)
'DEF1'
>>> multinomial(5, 2, 2, 1, 1)
83160
>>> word = 'coffee'
>>> multinomial(*Counter(word).values()) == len(set(permutations(word)))
True
.. testcode::
:hide:
# Old recipes and their tests which are guaranteed to continue to work.
def old_sumprod_recipe(vec1, vec2):
"Compute a sum of products."
return sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))
def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))
def pad_none(iterable):
"""Returns the sequence elements and then returns None indefinitely.
Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))
def triplewise(iterable):
"Return overlapping triplets from an iterable"
# triplewise('ABCDEFG') → ABC BCD CDE DEF EFG
for (a, _), (b, c) in pairwise(pairwise(iterable)):
yield a, b, c
def nth_combination(iterable, r, index):
"Equivalent to list(combinations(iterable, r))[index]"
pool = tuple(iterable)
n = len(pool)
c = math.comb(n, r)
if index < 0:
index += c
if index < 0 or index >= c:
raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(pool[-1-n])
return tuple(result)
def before_and_after(predicate, it):
""" Variant of takewhile() that allows complete
access to the remainder of the iterator.
>>> it = iter('ABCdEfGhI')
>>> all_upper, remainder = before_and_after(str.isupper, it)
>>> ''.join(all_upper)
'ABC'
>>> ''.join(remainder) # takewhile() would lose the 'd'
'dEfGhI'
Note that the true iterator must be fully consumed
before the remainder iterator can generate valid results.
"""
it = iter(it)
transition = []
def true_iterator():
for elem in it:
if predicate(elem):
yield elem
else:
transition.append(elem)
return
return true_iterator(), chain(transition, it)
def partition(predicate, iterable):
"""Partition entries into false entries and true entries.
If *predicate* is slow, consider wrapping it with functools.lru_cache().
"""
# partition(is_odd, range(10)) → 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(predicate, t1), filter(predicate, t2)
.. doctest::
:hide:
>>> dotproduct([1,2,3], [4,5,6])
32
>>> old_sumprod_recipe([1,2,3], [4,5,6])
32
>>> list(islice(pad_none('abc'), 0, 6))
['a', 'b', 'c', None, None, None]
>>> list(triplewise('ABCDEFG'))
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]
>>> population = 'ABCDEFGH'
>>> for r in range(len(population) + 1):
... seq = list(combinations(population, r))
... for i in range(len(seq)):
... assert nth_combination(population, r, i) == seq[i]
... for i in range(-len(seq), 0):
... assert nth_combination(population, r, i) == seq[i]
...
>>> iterable = 'abcde'
>>> r = 3
>>> combos = list(combinations(iterable, r))
>>> all(nth_combination(iterable, r, i) == comb for i, comb in enumerate(combos))
True
>>> it = iter('ABCdEfGhI')
>>> all_upper, remainder = before_and_after(str.isupper, it)
>>> ''.join(all_upper)
'ABC'
>>> ''.join(remainder)
'dEfGhI'
>>> def is_odd(x):
... return x % 2 == 1
...
>>> evens, odds = partition(is_odd, range(10))
>>> list(evens)
[0, 2, 4, 6, 8]
>>> list(odds)
[1, 3, 5, 7, 9]
>>> # Verify that the input is consumed lazily
>>> input_iterator = iter(range(10))
>>> evens, odds = partition(is_odd, input_iterator)
>>> next(odds)
1
>>> next(odds)
3
>>> next(evens)
0
>>> list(input_iterator)
[4, 5, 6, 7, 8, 9]
|