1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
:mod:`!math` --- Mathematical functions
=======================================
.. module:: math
:synopsis: Mathematical functions (sin() etc.).
.. testsetup::
from math import fsum
--------------
This module provides access to common mathematical functions and constants,
including those defined by the C standard.
These functions cannot be used with complex numbers; use the functions of the
same name from the :mod:`cmath` module if you require support for complex
numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.
The following functions are provided by this module. Except when explicitly
noted otherwise, all return values are floats.
==================================================== ============================================
**Number-theoretic functions**
--------------------------------------------------------------------------------------------------
:func:`comb(n, k) <comb>` Number of ways to choose *k* items from *n* items without repetition and without order
:func:`factorial(n) <factorial>` *n* factorial
:func:`gcd(*integers) <gcd>` Greatest common divisor of the integer arguments
:func:`isqrt(n) <isqrt>` Integer square root of a nonnegative integer *n*
:func:`lcm(*integers) <lcm>` Least common multiple of the integer arguments
:func:`perm(n, k) <perm>` Number of ways to choose *k* items from *n* items without repetition and with order
**Floating point arithmetic**
--------------------------------------------------------------------------------------------------
:func:`ceil(x) <ceil>` Ceiling of *x*, the smallest integer greater than or equal to *x*
:func:`fabs(x) <fabs>` Absolute value of *x*
:func:`floor(x) <floor>` Floor of *x*, the largest integer less than or equal to *x*
:func:`fma(x, y, z) <fma>` Fused multiply-add operation: ``(x * y) + z``
:func:`fmod(x, y) <fmod>` Remainder of division ``x / y``
:func:`modf(x) <modf>` Fractional and integer parts of *x*
:func:`remainder(x, y) <remainder>` Remainder of *x* with respect to *y*
:func:`trunc(x) <trunc>` Integer part of *x*
**Floating point manipulation functions**
--------------------------------------------------------------------------------------------------
:func:`copysign(x, y) <copysign>` Magnitude (absolute value) of *x* with the sign of *y*
:func:`frexp(x) <frexp>` Mantissa and exponent of *x*
:func:`isclose(a, b, rel_tol, abs_tol) <isclose>` Check if the values *a* and *b* are close to each other
:func:`isfinite(x) <isfinite>` Check if *x* is neither an infinity nor a NaN
:func:`isinf(x) <isinf>` Check if *x* is a positive or negative infinity
:func:`isnan(x) <isnan>` Check if *x* is a NaN (not a number)
:func:`ldexp(x, i) <ldexp>` ``x * (2**i)``, inverse of function :func:`frexp`
:func:`nextafter(x, y, steps) <nextafter>` Floating-point value *steps* steps after *x* towards *y*
:func:`ulp(x) <ulp>` Value of the least significant bit of *x*
**Power, exponential and logarithmic functions**
--------------------------------------------------------------------------------------------------
:func:`cbrt(x) <cbrt>` Cube root of *x*
:func:`exp(x) <exp>` *e* raised to the power *x*
:func:`exp2(x) <exp2>` *2* raised to the power *x*
:func:`expm1(x) <expm1>` *e* raised to the power *x*, minus 1
:func:`log(x, base) <log>` Logarithm of *x* to the given base (*e* by default)
:func:`log1p(x) <log1p>` Natural logarithm of *1+x* (base *e*)
:func:`log2(x) <log2>` Base-2 logarithm of *x*
:func:`log10(x) <log10>` Base-10 logarithm of *x*
:func:`pow(x, y) <math.pow>` *x* raised to the power *y*
:func:`sqrt(x) <sqrt>` Square root of *x*
**Summation and product functions**
--------------------------------------------------------------------------------------------------
:func:`dist(p, q) <dist>` Euclidean distance between two points *p* and *q* given as an iterable of coordinates
:func:`fsum(iterable) <fsum>` Sum of values in the input *iterable*
:func:`hypot(*coordinates) <hypot>` Euclidean norm of an iterable of coordinates
:func:`prod(iterable, start) <prod>` Product of elements in the input *iterable* with a *start* value
:func:`sumprod(p, q) <sumprod>` Sum of products from two iterables *p* and *q*
**Angular conversion**
--------------------------------------------------------------------------------------------------
:func:`degrees(x) <degrees>` Convert angle *x* from radians to degrees
:func:`radians(x) <radians>` Convert angle *x* from degrees to radians
**Trigonometric functions**
--------------------------------------------------------------------------------------------------
:func:`acos(x) <acos>` Arc cosine of *x*
:func:`asin(x) <asin>` Arc sine of *x*
:func:`atan(x) <atan>` Arc tangent of *x*
:func:`atan2(y, x) <atan2>` ``atan(y / x)``
:func:`cos(x) <cos>` Cosine of *x*
:func:`sin(x) <sin>` Sine of *x*
:func:`tan(x) <tan>` Tangent of *x*
**Hyperbolic functions**
--------------------------------------------------------------------------------------------------
:func:`acosh(x) <acosh>` Inverse hyperbolic cosine of *x*
:func:`asinh(x) <asinh>` Inverse hyperbolic sine of *x*
:func:`atanh(x) <atanh>` Inverse hyperbolic tangent of *x*
:func:`cosh(x) <cosh>` Hyperbolic cosine of *x*
:func:`sinh(x) <sinh>` Hyperbolic sine of *x*
:func:`tanh(x) <tanh>` Hyperbolic tangent of *x*
**Special functions**
--------------------------------------------------------------------------------------------------
:func:`erf(x) <erf>` `Error function <https://en.wikipedia.org/wiki/Error_function>`_ at *x*
:func:`erfc(x) <erfc>` `Complementary error function <https://en.wikipedia.org/wiki/Error_function>`_ at *x*
:func:`gamma(x) <gamma>` `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at *x*
:func:`lgamma(x) <lgamma>` Natural logarithm of the absolute value of the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at *x*
**Constants**
--------------------------------------------------------------------------------------------------
:data:`pi` *π* = 3.141592...
:data:`e` *e* = 2.718281...
:data:`tau` *τ* = 2\ *π* = 6.283185...
:data:`inf` Positive infinity
:data:`nan` "Not a number" (NaN)
==================================================== ============================================
Number-theoretic functions
--------------------------
.. function:: comb(n, k)
Return the number of ways to choose *k* items from *n* items without repetition
and without order.
Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
to zero when ``k > n``.
Also called the binomial coefficient because it is equivalent
to the coefficient of k-th term in polynomial expansion of
``(1 + x)ⁿ``.
Raises :exc:`TypeError` if either of the arguments are not integers.
Raises :exc:`ValueError` if either of the arguments are negative.
.. versionadded:: 3.8
.. function:: factorial(n)
Return factorial of the nonnegative integer *n*.
.. versionchanged:: 3.10
Floats with integral values (like ``5.0``) are no longer accepted.
.. function:: gcd(*integers)
Return the greatest common divisor of the specified integer arguments.
If any of the arguments is nonzero, then the returned value is the largest
positive integer that is a divisor of all arguments. If all arguments
are zero, then the returned value is ``0``. ``gcd()`` without arguments
returns ``0``.
.. versionadded:: 3.5
.. versionchanged:: 3.9
Added support for an arbitrary number of arguments. Formerly, only two
arguments were supported.
.. function:: isqrt(n)
Return the integer square root of the nonnegative integer *n*. This is the
floor of the exact square root of *n*, or equivalently the greatest integer
*a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
For some applications, it may be more convenient to have the least integer
*a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
the exact square root of *n*. For positive *n*, this can be computed using
``a = 1 + isqrt(n - 1)``.
.. versionadded:: 3.8
.. function:: lcm(*integers)
Return the least common multiple of the specified integer arguments.
If all arguments are nonzero, then the returned value is the smallest
positive integer that is a multiple of all arguments. If any of the arguments
is zero, then the returned value is ``0``. ``lcm()`` without arguments
returns ``1``.
.. versionadded:: 3.9
.. function:: perm(n, k=None)
Return the number of ways to choose *k* items from *n* items
without repetition and with order.
Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
to zero when ``k > n``.
If *k* is not specified or is ``None``, then *k* defaults to *n*
and the function returns ``n!``.
Raises :exc:`TypeError` if either of the arguments are not integers.
Raises :exc:`ValueError` if either of the arguments are negative.
.. versionadded:: 3.8
Floating point arithmetic
-------------------------
.. function:: ceil(x)
Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`,
which should return an :class:`~numbers.Integral` value.
.. function:: fabs(x)
Return the absolute value of *x*.
.. function:: floor(x)
Return the floor of *x*, the largest integer less than or equal to *x*. If
*x* is not a float, delegates to :meth:`x.__floor__ <object.__floor__>`, which
should return an :class:`~numbers.Integral` value.
.. function:: fma(x, y, z)
Fused multiply-add operation. Return ``(x * y) + z``, computed as though with
infinite precision and range followed by a single round to the ``float``
format. This operation often provides better accuracy than the direct
expression ``(x * y) + z``.
This function follows the specification of the fusedMultiplyAdd operation
described in the IEEE 754 standard. The standard leaves one case
implementation-defined, namely the result of ``fma(0, inf, nan)``
and ``fma(inf, 0, nan)``. In these cases, ``math.fma`` returns a NaN,
and does not raise any exception.
.. versionadded:: 3.13
.. function:: fmod(x, y)
Return the floating-point remainder of ``x / y``,
as defined by the platform C library function ``fmod(x, y)``. Note that the
Python expression ``x % y`` may not return the same result. The intent of the C
standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
precision) equal to ``x - n*y`` for some integer *n* such that the result has
the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
returns a result with the sign of *y* instead, and may not be exactly computable
for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
represented exactly as a float, and rounds to the surprising ``1e100``. For
this reason, function :func:`fmod` is generally preferred when working with
floats, while Python's ``x % y`` is preferred when working with integers.
.. function:: modf(x)
Return the fractional and integer parts of *x*. Both results carry the sign
of *x* and are floats.
Note that :func:`modf` has a different call/return pattern
than its C equivalents: it takes a single argument and return a pair of
values, rather than returning its second return value through an 'output
parameter' (there is no such thing in Python).
.. function:: remainder(x, y)
Return the IEEE 754-style remainder of *x* with respect to *y*. For
finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
where ``n`` is the closest integer to the exact value of the quotient ``x /
y``. If ``x / y`` is exactly halfway between two consecutive integers, the
nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
*x* for any finite *x*, and ``remainder(x, 0)`` and
``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
If the result of the remainder operation is zero, that zero will have
the same sign as *x*.
On platforms using IEEE 754 binary floating point, the result of this
operation is always exactly representable: no rounding error is introduced.
.. versionadded:: 3.7
.. function:: trunc(x)
Return *x* with the fractional part
removed, leaving the integer part. This rounds toward 0: ``trunc()`` is
equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil`
for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__
<object.__trunc__>`, which should return an :class:`~numbers.Integral` value.
For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
necessarily has no fractional bits.
Floating point manipulation functions
-------------------------------------
.. function:: copysign(x, y)
Return a float with the magnitude (absolute value) of *x* but the sign of
*y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
returns *-1.0*.
.. function:: frexp(x)
Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
apart" the internal representation of a float in a portable way.
Note that :func:`frexp` has a different call/return pattern
than its C equivalents: it takes a single argument and return a pair of
values, rather than returning its second return value through an 'output
parameter' (there is no such thing in Python).
.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return ``True`` if the values *a* and *b* are close to each other and
``False`` otherwise.
Whether or not two values are considered close is determined according to
given absolute and relative tolerances. If no errors occur, the result will
be: ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
*rel_tol* is the relative tolerance -- it is the maximum allowed difference
between *a* and *b*, relative to the larger absolute value of *a* or *b*.
For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
tolerance is ``1e-09``, which assures that the two values are the same
within about 9 decimal digits. *rel_tol* must be nonnegative and less
than ``1.0``.
*abs_tol* is the absolute tolerance; it defaults to ``0.0`` and it must be
nonnegative. When comparing ``x`` to ``0.0``, ``isclose(x, 0)`` is computed
as ``abs(x) <= rel_tol * abs(x)``, which is ``False`` for any nonzero ``x`` and
*rel_tol* less than ``1.0``. So add an appropriate positive *abs_tol* argument
to the call.
The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
handled according to IEEE rules. Specifically, ``NaN`` is not considered
close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
considered close to themselves.
.. versionadded:: 3.5
.. seealso::
:pep:`485` -- A function for testing approximate equality
.. function:: isfinite(x)
Return ``True`` if *x* is neither an infinity nor a NaN, and
``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
.. versionadded:: 3.2
.. function:: isinf(x)
Return ``True`` if *x* is a positive or negative infinity, and
``False`` otherwise.
.. function:: isnan(x)
Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
.. function:: ldexp(x, i)
Return ``x * (2**i)``. This is essentially the inverse of function
:func:`frexp`.
.. function:: nextafter(x, y, steps=1)
Return the floating-point value *steps* steps after *x* towards *y*.
If *x* is equal to *y*, return *y*, unless *steps* is zero.
Examples:
* ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
* ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
* ``math.nextafter(x, 0.0)`` goes towards zero.
* ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.
See also :func:`math.ulp`.
.. versionadded:: 3.9
.. versionchanged:: 3.12
Added the *steps* argument.
.. function:: ulp(x)
Return the value of the least significant bit of the float *x*:
* If *x* is a NaN (not a number), return *x*.
* If *x* is negative, return ``ulp(-x)``.
* If *x* is a positive infinity, return *x*.
* If *x* is equal to zero, return the smallest positive
*denormalized* representable float (smaller than the minimum positive
*normalized* float, :data:`sys.float_info.min <sys.float_info>`).
* If *x* is equal to the largest positive representable float,
return the value of the least significant bit of *x*, such that the first
float smaller than *x* is ``x - ulp(x)``.
* Otherwise (*x* is a positive finite number), return the value of the least
significant bit of *x*, such that the first float bigger than *x*
is ``x + ulp(x)``.
ULP stands for "Unit in the Last Place".
See also :func:`math.nextafter` and :data:`sys.float_info.epsilon
<sys.float_info>`.
.. versionadded:: 3.9
Power, exponential and logarithmic functions
--------------------------------------------
.. function:: cbrt(x)
Return the cube root of *x*.
.. versionadded:: 3.11
.. function:: exp(x)
Return *e* raised to the power *x*, where *e* = 2.718281... is the base
of natural logarithms. This is usually more accurate than ``math.e ** x``
or ``pow(math.e, x)``.
.. function:: exp2(x)
Return *2* raised to the power *x*.
.. versionadded:: 3.11
.. function:: expm1(x)
Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
can result in a `significant loss of precision
<https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
function provides a way to compute this quantity to full precision:
>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05
.. versionadded:: 3.2
.. function:: log(x[, base])
With one argument, return the natural logarithm of *x* (to base *e*).
With two arguments, return the logarithm of *x* to the given *base*,
calculated as ``log(x)/log(base)``.
.. function:: log1p(x)
Return the natural logarithm of *1+x* (base *e*). The
result is calculated in a way which is accurate for *x* near zero.
.. function:: log2(x)
Return the base-2 logarithm of *x*. This is usually more accurate than
``log(x, 2)``.
.. versionadded:: 3.3
.. seealso::
:meth:`int.bit_length` returns the number of bits necessary to represent
an integer in binary, excluding the sign and leading zeros.
.. function:: log10(x)
Return the base-10 logarithm of *x*. This is usually more accurate
than ``log(x, 10)``.
.. function:: pow(x, y)
Return *x* raised to the power *y*. Exceptional cases follow
the IEEE 754 standard as far as possible. In particular,
``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
when *x* is a zero or a NaN. If both *x* and *y* are finite,
*x* is negative, and *y* is not an integer then ``pow(x, y)``
is undefined, and raises :exc:`ValueError`.
Unlike the built-in ``**`` operator, :func:`math.pow` converts both
its arguments to type :class:`float`. Use ``**`` or the built-in
:func:`pow` function for computing exact integer powers.
.. versionchanged:: 3.11
The special cases ``pow(0.0, -inf)`` and ``pow(-0.0, -inf)`` were
changed to return ``inf`` instead of raising :exc:`ValueError`,
for consistency with IEEE 754.
.. function:: sqrt(x)
Return the square root of *x*.
Summation and product functions
-------------------------------
.. function:: dist(p, q)
Return the Euclidean distance between two points *p* and *q*, each
given as a sequence (or iterable) of coordinates. The two points
must have the same dimension.
Roughly equivalent to::
sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
.. versionadded:: 3.8
.. function:: fsum(iterable)
Return an accurate floating-point sum of values in the iterable. Avoids
loss of precision by tracking multiple intermediate partial sums.
The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
typical case where the rounding mode is half-even. On some non-Windows
builds, the underlying C library uses extended precision addition and may
occasionally double-round an intermediate sum causing it to be off in its
least significant bit.
For further discussion and two alternative approaches, see the `ASPN cookbook
recipes for accurate floating-point summation
<https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>`_\.
.. function:: hypot(*coordinates)
Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
This is the length of the vector from the origin to the point
given by the coordinates.
For a two dimensional point ``(x, y)``, this is equivalent to computing
the hypotenuse of a right triangle using the Pythagorean theorem,
``sqrt(x*x + y*y)``.
.. versionchanged:: 3.8
Added support for n-dimensional points. Formerly, only the two
dimensional case was supported.
.. versionchanged:: 3.10
Improved the algorithm's accuracy so that the maximum error is
under 1 ulp (unit in the last place). More typically, the result
is almost always correctly rounded to within 1/2 ulp.
.. function:: prod(iterable, *, start=1)
Calculate the product of all the elements in the input *iterable*.
The default *start* value for the product is ``1``.
When the iterable is empty, return the start value. This function is
intended specifically for use with numeric values and may reject
non-numeric types.
.. versionadded:: 3.8
.. function:: sumprod(p, q)
Return the sum of products of values from two iterables *p* and *q*.
Raises :exc:`ValueError` if the inputs do not have the same length.
Roughly equivalent to::
sum(map(operator.mul, p, q, strict=True))
For float and mixed int/float inputs, the intermediate products
and sums are computed with extended precision.
.. versionadded:: 3.12
Angular conversion
------------------
.. function:: degrees(x)
Convert angle *x* from radians to degrees.
.. function:: radians(x)
Convert angle *x* from degrees to radians.
Trigonometric functions
-----------------------
.. function:: acos(x)
Return the arc cosine of *x*, in radians. The result is between ``0`` and
``pi``.
.. function:: asin(x)
Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
``pi/2``.
.. function:: atan(x)
Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
``pi/2``.
.. function:: atan2(y, x)
Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
The vector in the plane from the origin to point ``(x, y)`` makes this angle
with the positive X axis. The point of :func:`atan2` is that the signs of both
inputs are known to it, so it can compute the correct quadrant for the angle.
For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
-1)`` is ``-3*pi/4``.
.. function:: cos(x)
Return the cosine of *x* radians.
.. function:: sin(x)
Return the sine of *x* radians.
.. function:: tan(x)
Return the tangent of *x* radians.
Hyperbolic functions
--------------------
`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_functions>`_
are analogs of trigonometric functions that are based on hyperbolas
instead of circles.
.. function:: acosh(x)
Return the inverse hyperbolic cosine of *x*.
.. function:: asinh(x)
Return the inverse hyperbolic sine of *x*.
.. function:: atanh(x)
Return the inverse hyperbolic tangent of *x*.
.. function:: cosh(x)
Return the hyperbolic cosine of *x*.
.. function:: sinh(x)
Return the hyperbolic sine of *x*.
.. function:: tanh(x)
Return the hyperbolic tangent of *x*.
Special functions
-----------------
.. function:: erf(x)
Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
*x*.
The :func:`erf` function can be used to compute traditional statistical
functions such as the `cumulative standard normal distribution
<https://en.wikipedia.org/wiki/Cumulative_distribution_function>`_::
def phi(x):
'Cumulative distribution function for the standard normal distribution'
return (1.0 + erf(x / sqrt(2.0))) / 2.0
.. versionadded:: 3.2
.. function:: erfc(x)
Return the complementary error function at *x*. The `complementary error
function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
from one would cause a `loss of significance
<https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
.. versionadded:: 3.2
.. function:: gamma(x)
Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
*x*.
.. versionadded:: 3.2
.. function:: lgamma(x)
Return the natural logarithm of the absolute value of the Gamma
function at *x*.
.. versionadded:: 3.2
Constants
---------
.. data:: pi
The mathematical constant *π* = 3.141592..., to available precision.
.. data:: e
The mathematical constant *e* = 2.718281..., to available precision.
.. data:: tau
The mathematical constant *τ* = 6.283185..., to available precision.
Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
Wrong <https://vimeo.com/147792667>`_, and start celebrating
`Tau day <https://tauday.com/>`_ by eating twice as much pie!
.. versionadded:: 3.6
.. data:: inf
A floating-point positive infinity. (For negative infinity, use
``-math.inf``.) Equivalent to the output of ``float('inf')``.
.. versionadded:: 3.5
.. data:: nan
A floating-point "not a number" (NaN) value. Equivalent to the output of
``float('nan')``. Due to the requirements of the `IEEE-754 standard
<https://en.wikipedia.org/wiki/IEEE_754>`_, ``math.nan`` and ``float('nan')`` are
not considered to equal to any other numeric value, including themselves. To check
whether a number is a NaN, use the :func:`isnan` function to test
for NaNs instead of ``is`` or ``==``.
Example:
>>> import math
>>> math.nan == math.nan
False
>>> float('nan') == float('nan')
False
>>> math.isnan(math.nan)
True
>>> math.isnan(float('nan'))
True
.. versionadded:: 3.5
.. versionchanged:: 3.11
It is now always available.
.. impl-detail::
The :mod:`math` module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of
the C99 standard where appropriate. The current implementation will raise
:exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
(where C99 Annex F recommends signaling invalid operation or divide-by-zero),
and :exc:`OverflowError` for results that overflow (for example,
``exp(1000.0)``). A NaN will not be returned from any of the functions
above unless one or more of the input arguments was a NaN; in that case,
most functions will return a NaN, but (again following C99 Annex F) there
are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
``hypot(float('nan'), float('inf'))``.
Note that Python makes no effort to distinguish signaling NaNs from
quiet NaNs, and behavior for signaling NaNs remains unspecified.
Typical behavior is to treat all NaNs as though they were quiet.
.. seealso::
Module :mod:`cmath`
Complex number versions of many of these functions.
.. |nbsp| unicode:: 0xA0
:trim:
|