1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
|
:mod:`!re` --- Regular expression operations
============================================
.. module:: re
:synopsis: Regular expression operations.
.. moduleauthor:: Fredrik Lundh <fredrik@pythonware.com>
.. sectionauthor:: Andrew M. Kuchling <amk@amk.ca>
**Source code:** :source:`Lib/re/`
--------------
This module provides regular expression matching operations similar to
those found in Perl.
Both patterns and strings to be searched can be Unicode strings (:class:`str`)
as well as 8-bit strings (:class:`bytes`).
However, Unicode strings and 8-bit strings cannot be mixed:
that is, you cannot match a Unicode string with a bytes pattern or
vice-versa; similarly, when asking for a substitution, the replacement
string must be of the same type as both the pattern and the search string.
Regular expressions use the backslash character (``'\'``) to indicate
special forms or to allow special characters to be used without invoking
their special meaning. This collides with Python's usage of the same
character for the same purpose in string literals; for example, to match
a literal backslash, one might have to write ``'\\\\'`` as the pattern
string, because the regular expression must be ``\\``, and each
backslash must be expressed as ``\\`` inside a regular Python string
literal. Also, please note that any invalid escape sequences in Python's
usage of the backslash in string literals now generate a :exc:`SyntaxWarning`
and in the future this will become a :exc:`SyntaxError`. This behaviour
will happen even if it is a valid escape sequence for a regular expression.
The solution is to use Python's raw string notation for regular expression
patterns; backslashes are not handled in any special way in a string literal
prefixed with ``'r'``. So ``r"\n"`` is a two-character string containing
``'\'`` and ``'n'``, while ``"\n"`` is a one-character string containing a
newline. Usually patterns will be expressed in Python code using this raw
string notation.
It is important to note that most regular expression operations are available as
module-level functions and methods on
:ref:`compiled regular expressions <re-objects>`. The functions are shortcuts
that don't require you to compile a regex object first, but miss some
fine-tuning parameters.
.. seealso::
The third-party :pypi:`regex` module,
which has an API compatible with the standard library :mod:`re` module,
but offers additional functionality and a more thorough Unicode support.
.. _re-syntax:
Regular Expression Syntax
-------------------------
A regular expression (or RE) specifies a set of strings that matches it; the
functions in this module let you check if a particular string matches a given
regular expression (or if a given regular expression matches a particular
string, which comes down to the same thing).
Regular expressions can be concatenated to form new regular expressions; if *A*
and *B* are both regular expressions, then *AB* is also a regular expression.
In general, if a string *p* matches *A* and another string *q* matches *B*, the
string *pq* will match AB. This holds unless *A* or *B* contain low precedence
operations; boundary conditions between *A* and *B*; or have numbered group
references. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory
and implementation of regular expressions, consult the Friedl book [Frie09]_,
or almost any textbook about compiler construction.
A brief explanation of the format of regular expressions follows. For further
information and a gentler presentation, consult the :ref:`regex-howto`.
Regular expressions can contain both special and ordinary characters. Most
ordinary characters, like ``'A'``, ``'a'``, or ``'0'``, are the simplest regular
expressions; they simply match themselves. You can concatenate ordinary
characters, so ``last`` matches the string ``'last'``. (In the rest of this
section, we'll write RE's in ``this special style``, usually without quotes, and
strings to be matched ``'in single quotes'``.)
Some characters, like ``'|'`` or ``'('``, are special. Special
characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.
Repetition operators or quantifiers (``*``, ``+``, ``?``, ``{m,n}``, etc) cannot be
directly nested. This avoids ambiguity with the non-greedy modifier suffix
``?``, and with other modifiers in other implementations. To apply a second
repetition to an inner repetition, parentheses may be used. For example,
the expression ``(?:a{6})*`` matches any multiple of six ``'a'`` characters.
The special characters are:
.. index:: single: . (dot); in regular expressions
``.``
(Dot.) In the default mode, this matches any character except a newline. If
the :const:`DOTALL` flag has been specified, this matches any character
including a newline. ``(?s:.)`` matches any character regardless of flags.
.. index:: single: ^ (caret); in regular expressions
``^``
(Caret.) Matches the start of the string, and in :const:`MULTILINE` mode also
matches immediately after each newline.
.. index:: single: $ (dollar); in regular expressions
``$``
Matches the end of the string or just before the newline at the end of the
string, and in :const:`MULTILINE` mode also matches before a newline. ``foo``
matches both 'foo' and 'foobar', while the regular expression ``foo$`` matches
only 'foo'. More interestingly, searching for ``foo.$`` in ``'foo1\nfoo2\n'``
matches 'foo2' normally, but 'foo1' in :const:`MULTILINE` mode; searching for
a single ``$`` in ``'foo\n'`` will find two (empty) matches: one just before
the newline, and one at the end of the string.
.. index:: single: * (asterisk); in regular expressions
``*``
Causes the resulting RE to match 0 or more repetitions of the preceding RE, as
many repetitions as are possible. ``ab*`` will match 'a', 'ab', or 'a' followed
by any number of 'b's.
.. index:: single: + (plus); in regular expressions
``+``
Causes the resulting RE to match 1 or more repetitions of the preceding RE.
``ab+`` will match 'a' followed by any non-zero number of 'b's; it will not
match just 'a'.
.. index:: single: ? (question mark); in regular expressions
``?``
Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.
``ab?`` will match either 'a' or 'ab'.
.. index::
single: *?; in regular expressions
single: +?; in regular expressions
single: ??; in regular expressions
``*?``, ``+?``, ``??``
The ``'*'``, ``'+'``, and ``'?'`` quantifiers are all :dfn:`greedy`; they match
as much text as possible. Sometimes this behaviour isn't desired; if the RE
``<.*>`` is matched against ``'<a> b <c>'``, it will match the entire
string, and not just ``'<a>'``. Adding ``?`` after the quantifier makes it
perform the match in :dfn:`non-greedy` or :dfn:`minimal` fashion; as *few*
characters as possible will be matched. Using the RE ``<.*?>`` will match
only ``'<a>'``.
.. index::
single: *+; in regular expressions
single: ++; in regular expressions
single: ?+; in regular expressions
``*+``, ``++``, ``?+``
Like the ``'*'``, ``'+'``, and ``'?'`` quantifiers, those where ``'+'`` is
appended also match as many times as possible.
However, unlike the true greedy quantifiers, these do not allow
back-tracking when the expression following it fails to match.
These are known as :dfn:`possessive` quantifiers.
For example, ``a*a`` will match ``'aaaa'`` because the ``a*`` will match
all 4 ``'a'``\ s, but, when the final ``'a'`` is encountered, the
expression is backtracked so that in the end the ``a*`` ends up matching
3 ``'a'``\ s total, and the fourth ``'a'`` is matched by the final ``'a'``.
However, when ``a*+a`` is used to match ``'aaaa'``, the ``a*+`` will
match all 4 ``'a'``, but when the final ``'a'`` fails to find any more
characters to match, the expression cannot be backtracked and will thus
fail to match.
``x*+``, ``x++`` and ``x?+`` are equivalent to ``(?>x*)``, ``(?>x+)``
and ``(?>x?)`` correspondingly.
.. versionadded:: 3.11
.. index::
single: {} (curly brackets); in regular expressions
``{m}``
Specifies that exactly *m* copies of the previous RE should be matched; fewer
matches cause the entire RE not to match. For example, ``a{6}`` will match
exactly six ``'a'`` characters, but not five.
``{m,n}``
Causes the resulting RE to match from *m* to *n* repetitions of the preceding
RE, attempting to match as many repetitions as possible. For example,
``a{3,5}`` will match from 3 to 5 ``'a'`` characters. Omitting *m* specifies a
lower bound of zero, and omitting *n* specifies an infinite upper bound. As an
example, ``a{4,}b`` will match ``'aaaab'`` or a thousand ``'a'`` characters
followed by a ``'b'``, but not ``'aaab'``. The comma may not be omitted or the
modifier would be confused with the previously described form.
``{m,n}?``
Causes the resulting RE to match from *m* to *n* repetitions of the preceding
RE, attempting to match as *few* repetitions as possible. This is the
non-greedy version of the previous quantifier. For example, on the
6-character string ``'aaaaaa'``, ``a{3,5}`` will match 5 ``'a'`` characters,
while ``a{3,5}?`` will only match 3 characters.
``{m,n}+``
Causes the resulting RE to match from *m* to *n* repetitions of the
preceding RE, attempting to match as many repetitions as possible
*without* establishing any backtracking points.
This is the possessive version of the quantifier above.
For example, on the 6-character string ``'aaaaaa'``, ``a{3,5}+aa``
attempt to match 5 ``'a'`` characters, then, requiring 2 more ``'a'``\ s,
will need more characters than available and thus fail, while
``a{3,5}aa`` will match with ``a{3,5}`` capturing 5, then 4 ``'a'``\ s
by backtracking and then the final 2 ``'a'``\ s are matched by the final
``aa`` in the pattern.
``x{m,n}+`` is equivalent to ``(?>x{m,n})``.
.. versionadded:: 3.11
.. index:: single: \ (backslash); in regular expressions
``\``
Either escapes special characters (permitting you to match characters like
``'*'``, ``'?'``, and so forth), or signals a special sequence; special
sequences are discussed below.
If you're not using a raw string to express the pattern, remember that Python
also uses the backslash as an escape sequence in string literals; if the escape
sequence isn't recognized by Python's parser, the backslash and subsequent
character are included in the resulting string. However, if Python would
recognize the resulting sequence, the backslash should be repeated twice. This
is complicated and hard to understand, so it's highly recommended that you use
raw strings for all but the simplest expressions.
.. index::
single: [] (square brackets); in regular expressions
``[]``
Used to indicate a set of characters. In a set:
* Characters can be listed individually, e.g. ``[amk]`` will match ``'a'``,
``'m'``, or ``'k'``.
.. index:: single: - (minus); in regular expressions
* Ranges of characters can be indicated by giving two characters and separating
them by a ``'-'``, for example ``[a-z]`` will match any lowercase ASCII letter,
``[0-5][0-9]`` will match all the two-digits numbers from ``00`` to ``59``, and
``[0-9A-Fa-f]`` will match any hexadecimal digit. If ``-`` is escaped (e.g.
``[a\-z]``) or if it's placed as the first or last character
(e.g. ``[-a]`` or ``[a-]``), it will match a literal ``'-'``.
* Special characters except backslash lose their special meaning inside sets.
For example,
``[(+*)]`` will match any of the literal characters ``'('``, ``'+'``,
``'*'``, or ``')'``.
.. index:: single: \ (backslash); in regular expressions
* Backslash either escapes characters which have special meaning in a set
such as ``'-'``, ``']'``, ``'^'`` and ``'\\'`` itself or signals
a special sequence which represents a single character such as
``\xa0`` or ``\n`` or a character class such as ``\w`` or ``\S``
(defined below).
Note that ``\b`` represents a single "backspace" character,
not a word boundary as outside a set, and numeric escapes
such as ``\1`` are always octal escapes, not group references.
Special sequences which do not match a single character such as ``\A``
and ``\z`` are not allowed.
.. index:: single: ^ (caret); in regular expressions
* Characters that are not within a range can be matched by :dfn:`complementing`
the set. If the first character of the set is ``'^'``, all the characters
that are *not* in the set will be matched. For example, ``[^5]`` will match
any character except ``'5'``, and ``[^^]`` will match any character except
``'^'``. ``^`` has no special meaning if it's not the first character in
the set.
* To match a literal ``']'`` inside a set, precede it with a backslash, or
place it at the beginning of the set. For example, both ``[()[\]{}]`` and
``[]()[{}]`` will match a right bracket, as well as left bracket, braces,
and parentheses.
.. .. index:: single: --; in regular expressions
.. .. index:: single: &&; in regular expressions
.. .. index:: single: ~~; in regular expressions
.. .. index:: single: ||; in regular expressions
* Support of nested sets and set operations as in `Unicode Technical
Standard #18`_ might be added in the future. This would change the
syntax, so to facilitate this change a :exc:`FutureWarning` will be raised
in ambiguous cases for the time being.
That includes sets starting with a literal ``'['`` or containing literal
character sequences ``'--'``, ``'&&'``, ``'~~'``, and ``'||'``. To
avoid a warning escape them with a backslash.
.. _Unicode Technical Standard #18: https://unicode.org/reports/tr18/
.. versionchanged:: 3.7
:exc:`FutureWarning` is raised if a character set contains constructs
that will change semantically in the future.
.. index:: single: | (vertical bar); in regular expressions
``|``
``A|B``, where *A* and *B* can be arbitrary REs, creates a regular expression that
will match either *A* or *B*. An arbitrary number of REs can be separated by the
``'|'`` in this way. This can be used inside groups (see below) as well. As
the target string is scanned, REs separated by ``'|'`` are tried from left to
right. When one pattern completely matches, that branch is accepted. This means
that once *A* matches, *B* will not be tested further, even if it would
produce a longer overall match. In other words, the ``'|'`` operator is never
greedy. To match a literal ``'|'``, use ``\|``, or enclose it inside a
character class, as in ``[|]``.
.. index::
single: () (parentheses); in regular expressions
``(...)``
Matches whatever regular expression is inside the parentheses, and indicates the
start and end of a group; the contents of a group can be retrieved after a match
has been performed, and can be matched later in the string with the ``\number``
special sequence, described below. To match the literals ``'('`` or ``')'``,
use ``\(`` or ``\)``, or enclose them inside a character class: ``[(]``, ``[)]``.
.. index:: single: (?; in regular expressions
``(?...)``
This is an extension notation (a ``'?'`` following a ``'('`` is not meaningful
otherwise). The first character after the ``'?'`` determines what the meaning
and further syntax of the construct is. Extensions usually do not create a new
group; ``(?P<name>...)`` is the only exception to this rule. Following are the
currently supported extensions.
``(?aiLmsux)``
(One or more letters from the set
``'a'``, ``'i'``, ``'L'``, ``'m'``, ``'s'``, ``'u'``, ``'x'``.)
The group matches the empty string;
the letters set the corresponding flags for the entire regular expression:
* :const:`re.A` (ASCII-only matching)
* :const:`re.I` (ignore case)
* :const:`re.L` (locale dependent)
* :const:`re.M` (multi-line)
* :const:`re.S` (dot matches all)
* :const:`re.U` (Unicode matching)
* :const:`re.X` (verbose)
(The flags are described in :ref:`contents-of-module-re`.)
This is useful if you wish to include the flags as part of the
regular expression, instead of passing a *flag* argument to the
:func:`re.compile` function.
Flags should be used first in the expression string.
.. versionchanged:: 3.11
This construction can only be used at the start of the expression.
.. index:: single: (?:; in regular expressions
``(?:...)``
A non-capturing version of regular parentheses. Matches whatever regular
expression is inside the parentheses, but the substring matched by the group
*cannot* be retrieved after performing a match or referenced later in the
pattern.
``(?aiLmsux-imsx:...)``
(Zero or more letters from the set
``'a'``, ``'i'``, ``'L'``, ``'m'``, ``'s'``, ``'u'``, ``'x'``,
optionally followed by ``'-'`` followed by
one or more letters from the ``'i'``, ``'m'``, ``'s'``, ``'x'``.)
The letters set or remove the corresponding flags for the part of the expression:
* :const:`re.A` (ASCII-only matching)
* :const:`re.I` (ignore case)
* :const:`re.L` (locale dependent)
* :const:`re.M` (multi-line)
* :const:`re.S` (dot matches all)
* :const:`re.U` (Unicode matching)
* :const:`re.X` (verbose)
(The flags are described in :ref:`contents-of-module-re`.)
The letters ``'a'``, ``'L'`` and ``'u'`` are mutually exclusive when used
as inline flags, so they can't be combined or follow ``'-'``. Instead,
when one of them appears in an inline group, it overrides the matching mode
in the enclosing group. In Unicode patterns ``(?a:...)`` switches to
ASCII-only matching, and ``(?u:...)`` switches to Unicode matching
(default). In bytes patterns ``(?L:...)`` switches to locale dependent
matching, and ``(?a:...)`` switches to ASCII-only matching (default).
This override is only in effect for the narrow inline group, and the
original matching mode is restored outside of the group.
.. versionadded:: 3.6
.. versionchanged:: 3.7
The letters ``'a'``, ``'L'`` and ``'u'`` also can be used in a group.
``(?>...)``
Attempts to match ``...`` as if it was a separate regular expression, and
if successful, continues to match the rest of the pattern following it.
If the subsequent pattern fails to match, the stack can only be unwound
to a point *before* the ``(?>...)`` because once exited, the expression,
known as an :dfn:`atomic group`, has thrown away all stack points within
itself.
Thus, ``(?>.*).`` would never match anything because first the ``.*``
would match all characters possible, then, having nothing left to match,
the final ``.`` would fail to match.
Since there are no stack points saved in the Atomic Group, and there is
no stack point before it, the entire expression would thus fail to match.
.. versionadded:: 3.11
.. index:: single: (?P<; in regular expressions
``(?P<name>...)``
Similar to regular parentheses, but the substring matched by the group is
accessible via the symbolic group name *name*. Group names must be valid
Python identifiers, and in :class:`bytes` patterns they can only contain
bytes in the ASCII range. Each group name must be defined only once within
a regular expression. A symbolic group is also a numbered group, just as if
the group were not named.
Named groups can be referenced in three contexts. If the pattern is
``(?P<quote>['"]).*?(?P=quote)`` (i.e. matching a string quoted with either
single or double quotes):
+---------------------------------------+----------------------------------+
| Context of reference to group "quote" | Ways to reference it |
+=======================================+==================================+
| in the same pattern itself | * ``(?P=quote)`` (as shown) |
| | * ``\1`` |
+---------------------------------------+----------------------------------+
| when processing match object *m* | * ``m.group('quote')`` |
| | * ``m.end('quote')`` (etc.) |
+---------------------------------------+----------------------------------+
| in a string passed to the *repl* | * ``\g<quote>`` |
| argument of ``re.sub()`` | * ``\g<1>`` |
| | * ``\1`` |
+---------------------------------------+----------------------------------+
.. versionchanged:: 3.12
In :class:`bytes` patterns, group *name* can only contain bytes
in the ASCII range (``b'\x00'``-``b'\x7f'``).
.. index:: single: (?P=; in regular expressions
``(?P=name)``
A backreference to a named group; it matches whatever text was matched by the
earlier group named *name*.
.. index:: single: (?#; in regular expressions
``(?#...)``
A comment; the contents of the parentheses are simply ignored.
.. index:: single: (?=; in regular expressions
``(?=...)``
Matches if ``...`` matches next, but doesn't consume any of the string. This is
called a :dfn:`lookahead assertion`. For example, ``Isaac (?=Asimov)`` will match
``'Isaac '`` only if it's followed by ``'Asimov'``.
.. index:: single: (?!; in regular expressions
``(?!...)``
Matches if ``...`` doesn't match next. This is a :dfn:`negative lookahead assertion`.
For example, ``Isaac (?!Asimov)`` will match ``'Isaac '`` only if it's *not*
followed by ``'Asimov'``.
.. index:: single: (?<=; in regular expressions
``(?<=...)``
Matches if the current position in the string is preceded by a match for ``...``
that ends at the current position. This is called a :dfn:`positive lookbehind
assertion`. ``(?<=abc)def`` will find a match in ``'abcdef'``, since the
lookbehind will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length, meaning that
``abc`` or ``a|b`` are allowed, but ``a*`` and ``a{3,4}`` are not. Note that
patterns which start with positive lookbehind assertions will not match at the
beginning of the string being searched; you will most likely want to use the
:func:`search` function rather than the :func:`match` function:
>>> import re
>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)
'def'
This example looks for a word following a hyphen:
>>> m = re.search(r'(?<=-)\w+', 'spam-egg')
>>> m.group(0)
'egg'
.. versionchanged:: 3.5
Added support for group references of fixed length.
.. index:: single: (?<!; in regular expressions
``(?<!...)``
Matches if the current position in the string is not preceded by a match for
``...``. This is called a :dfn:`negative lookbehind assertion`. Similar to
positive lookbehind assertions, the contained pattern must only match strings of
some fixed length. Patterns which start with negative lookbehind assertions may
match at the beginning of the string being searched.
.. _re-conditional-expression:
.. index:: single: (?(; in regular expressions
``(?(id/name)yes-pattern|no-pattern)``
Will try to match with ``yes-pattern`` if the group with given *id* or
*name* exists, and with ``no-pattern`` if it doesn't. ``no-pattern`` is
optional and can be omitted. For example,
``(<)?(\w+@\w+(?:\.\w+)+)(?(1)>|$)`` is a poor email matching pattern, which
will match with ``'<user@host.com>'`` as well as ``'user@host.com'``, but
not with ``'<user@host.com'`` nor ``'user@host.com>'``.
.. versionchanged:: 3.12
Group *id* can only contain ASCII digits.
In :class:`bytes` patterns, group *name* can only contain bytes
in the ASCII range (``b'\x00'``-``b'\x7f'``).
.. _re-special-sequences:
The special sequences consist of ``'\'`` and a character from the list below.
If the ordinary character is not an ASCII digit or an ASCII letter, then the
resulting RE will match the second character. For example, ``\$`` matches the
character ``'$'``.
.. index:: single: \ (backslash); in regular expressions
``\number``
Matches the contents of the group of the same number. Groups are numbered
starting from 1. For example, ``(.+) \1`` matches ``'the the'`` or ``'55 55'``,
but not ``'thethe'`` (note the space after the group). This special sequence
can only be used to match one of the first 99 groups. If the first digit of
*number* is 0, or *number* is 3 octal digits long, it will not be interpreted as
a group match, but as the character with octal value *number*. Inside the
``'['`` and ``']'`` of a character class, all numeric escapes are treated as
characters.
.. index:: single: \A; in regular expressions
``\A``
Matches only at the start of the string.
.. index:: single: \b; in regular expressions
``\b``
Matches the empty string, but only at the beginning or end of a word.
A word is defined as a sequence of word characters.
Note that formally, ``\b`` is defined as the boundary
between a ``\w`` and a ``\W`` character (or vice versa),
or between ``\w`` and the beginning or end of the string.
This means that ``r'\bat\b'`` matches ``'at'``, ``'at.'``, ``'(at)'``,
and ``'as at ay'`` but not ``'attempt'`` or ``'atlas'``.
The default word characters in Unicode (str) patterns
are Unicode alphanumerics and the underscore,
but this can be changed by using the :py:const:`~re.ASCII` flag.
Word boundaries are determined by the current locale
if the :py:const:`~re.LOCALE` flag is used.
.. note::
Inside a character range, ``\b`` represents the backspace character,
for compatibility with Python's string literals.
.. index:: single: \B; in regular expressions
``\B``
Matches the empty string,
but only when it is *not* at the beginning or end of a word.
This means that ``r'at\B'`` matches ``'athens'``, ``'atom'``,
``'attorney'``, but not ``'at'``, ``'at.'``, or ``'at!'``.
``\B`` is the opposite of ``\b``,
so word characters in Unicode (str) patterns
are Unicode alphanumerics or the underscore,
although this can be changed by using the :py:const:`~re.ASCII` flag.
Word boundaries are determined by the current locale
if the :py:const:`~re.LOCALE` flag is used.
.. versionchanged:: 3.14
``\B`` now matches empty input string.
.. index:: single: \d; in regular expressions
``\d``
For Unicode (str) patterns:
Matches any Unicode decimal digit
(that is, any character in Unicode character category `[Nd]`__).
This includes ``[0-9]``, and also many other digit characters.
Matches ``[0-9]`` if the :py:const:`~re.ASCII` flag is used.
__ https://www.unicode.org/versions/Unicode15.0.0/ch04.pdf#G134153
For 8-bit (bytes) patterns:
Matches any decimal digit in the ASCII character set;
this is equivalent to ``[0-9]``.
.. index:: single: \D; in regular expressions
``\D``
Matches any character which is not a decimal digit.
This is the opposite of ``\d``.
Matches ``[^0-9]`` if the :py:const:`~re.ASCII` flag is used.
.. index:: single: \s; in regular expressions
``\s``
For Unicode (str) patterns:
Matches Unicode whitespace characters (as defined by :py:meth:`str.isspace`).
This includes ``[ \t\n\r\f\v]``, and also many other characters, for example the
non-breaking spaces mandated by typography rules in many languages.
Matches ``[ \t\n\r\f\v]`` if the :py:const:`~re.ASCII` flag is used.
For 8-bit (bytes) patterns:
Matches characters considered whitespace in the ASCII character set;
this is equivalent to ``[ \t\n\r\f\v]``.
.. index:: single: \S; in regular expressions
``\S``
Matches any character which is not a whitespace character. This is
the opposite of ``\s``.
Matches ``[^ \t\n\r\f\v]`` if the :py:const:`~re.ASCII` flag is used.
.. index:: single: \w; in regular expressions
``\w``
For Unicode (str) patterns:
Matches Unicode word characters;
this includes all Unicode alphanumeric characters
(as defined by :py:meth:`str.isalnum`),
as well as the underscore (``_``).
Matches ``[a-zA-Z0-9_]`` if the :py:const:`~re.ASCII` flag is used.
For 8-bit (bytes) patterns:
Matches characters considered alphanumeric in the ASCII character set;
this is equivalent to ``[a-zA-Z0-9_]``.
If the :py:const:`~re.LOCALE` flag is used,
matches characters considered alphanumeric in the current locale and the underscore.
.. index:: single: \W; in regular expressions
``\W``
Matches any character which is not a word character.
This is the opposite of ``\w``.
By default, matches non-underscore (``_``) characters
for which :py:meth:`str.isalnum` returns ``False``.
Matches ``[^a-zA-Z0-9_]`` if the :py:const:`~re.ASCII` flag is used.
If the :py:const:`~re.LOCALE` flag is used,
matches characters which are neither alphanumeric in the current locale
nor the underscore.
.. index:: single: \z; in regular expressions
single: \Z; in regular expressions
``\z``
Matches only at the end of the string.
.. versionadded:: 3.14
``\Z``
The same as ``\z``. For compatibility with old Python versions.
.. index::
single: \a; in regular expressions
single: \b; in regular expressions
single: \f; in regular expressions
single: \n; in regular expressions
single: \N; in regular expressions
single: \r; in regular expressions
single: \t; in regular expressions
single: \u; in regular expressions
single: \U; in regular expressions
single: \v; in regular expressions
single: \x; in regular expressions
single: \\; in regular expressions
Most of the :ref:`escape sequences <escape-sequences>` supported by Python
string literals are also accepted by the regular expression parser::
\a \b \f \n
\N \r \t \u
\U \v \x \\
(Note that ``\b`` is used to represent word boundaries, and means "backspace"
only inside character classes.)
``'\u'``, ``'\U'``, and ``'\N'`` escape sequences are
only recognized in Unicode (str) patterns.
In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved
for future use and treated as errors.
Octal escapes are included in a limited form. If the first digit is a 0, or if
there are three octal digits, it is considered an octal escape. Otherwise, it is
a group reference. As for string literals, octal escapes are always at most
three digits in length.
.. versionchanged:: 3.3
The ``'\u'`` and ``'\U'`` escape sequences have been added.
.. versionchanged:: 3.6
Unknown escapes consisting of ``'\'`` and an ASCII letter now are errors.
.. versionchanged:: 3.8
The :samp:`'\\N\\{{name}\\}'` escape sequence has been added. As in string literals,
it expands to the named Unicode character (e.g. ``'\N{EM DASH}'``).
.. _contents-of-module-re:
Module Contents
---------------
The module defines several functions, constants, and an exception. Some of the
functions are simplified versions of the full featured methods for compiled
regular expressions. Most non-trivial applications always use the compiled
form.
Flags
^^^^^
.. versionchanged:: 3.6
Flag constants are now instances of :class:`RegexFlag`, which is a subclass of
:class:`enum.IntFlag`.
.. class:: RegexFlag
An :class:`enum.IntFlag` class containing the regex options listed below.
.. versionadded:: 3.11 - added to ``__all__``
.. data:: A
ASCII
Make ``\w``, ``\W``, ``\b``, ``\B``, ``\d``, ``\D``, ``\s`` and ``\S``
perform ASCII-only matching instead of full Unicode matching. This is only
meaningful for Unicode (str) patterns, and is ignored for bytes patterns.
Corresponds to the inline flag ``(?a)``.
.. note::
The :py:const:`~re.U` flag still exists for backward compatibility,
but is redundant in Python 3 since
matches are Unicode by default for ``str`` patterns,
and Unicode matching isn't allowed for bytes patterns.
:py:const:`~re.UNICODE` and the inline flag ``(?u)`` are similarly redundant.
.. data:: DEBUG
Display debug information about compiled expression.
No corresponding inline flag.
.. data:: I
IGNORECASE
Perform case-insensitive matching;
expressions like ``[A-Z]`` will also match lowercase letters.
Full Unicode matching (such as ``Ü`` matching ``ü``)
also works unless the :py:const:`~re.ASCII` flag
is used to disable non-ASCII matches.
The current locale does not change the effect of this flag
unless the :py:const:`~re.LOCALE` flag is also used.
Corresponds to the inline flag ``(?i)``.
Note that when the Unicode patterns ``[a-z]`` or ``[A-Z]`` are used in
combination with the :const:`IGNORECASE` flag, they will match the 52 ASCII
letters and 4 additional non-ASCII letters: 'İ' (U+0130, Latin capital
letter I with dot above), 'ı' (U+0131, Latin small letter dotless i),
'ſ' (U+017F, Latin small letter long s) and 'K' (U+212A, Kelvin sign).
If the :py:const:`~re.ASCII` flag is used, only letters 'a' to 'z'
and 'A' to 'Z' are matched.
.. data:: L
LOCALE
Make ``\w``, ``\W``, ``\b``, ``\B`` and case-insensitive matching
dependent on the current locale.
This flag can be used only with bytes patterns.
Corresponds to the inline flag ``(?L)``.
.. warning::
This flag is discouraged; consider Unicode matching instead.
The locale mechanism is very unreliable
as it only handles one "culture" at a time
and only works with 8-bit locales.
Unicode matching is enabled by default for Unicode (str) patterns
and it is able to handle different locales and languages.
.. versionchanged:: 3.6
:py:const:`~re.LOCALE` can be used only with bytes patterns
and is not compatible with :py:const:`~re.ASCII`.
.. versionchanged:: 3.7
Compiled regular expression objects with the :py:const:`~re.LOCALE` flag
no longer depend on the locale at compile time.
Only the locale at matching time affects the result of matching.
.. data:: M
MULTILINE
When specified, the pattern character ``'^'`` matches at the beginning of the
string and at the beginning of each line (immediately following each newline);
and the pattern character ``'$'`` matches at the end of the string and at the
end of each line (immediately preceding each newline). By default, ``'^'``
matches only at the beginning of the string, and ``'$'`` only at the end of the
string and immediately before the newline (if any) at the end of the string.
Corresponds to the inline flag ``(?m)``.
.. data:: NOFLAG
Indicates no flag being applied, the value is ``0``. This flag may be used
as a default value for a function keyword argument or as a base value that
will be conditionally ORed with other flags. Example of use as a default
value::
def myfunc(text, flag=re.NOFLAG):
return re.match(text, flag)
.. versionadded:: 3.11
.. data:: S
DOTALL
Make the ``'.'`` special character match any character at all, including a
newline; without this flag, ``'.'`` will match anything *except* a newline.
Corresponds to the inline flag ``(?s)``.
.. data:: U
UNICODE
In Python 3, Unicode characters are matched by default
for ``str`` patterns.
This flag is therefore redundant with **no effect**
and is only kept for backward compatibility.
See :py:const:`~re.ASCII` to restrict matching to ASCII characters instead.
.. data:: X
VERBOSE
.. index:: single: # (hash); in regular expressions
This flag allows you to write regular expressions that look nicer and are
more readable by allowing you to visually separate logical sections of the
pattern and add comments. Whitespace within the pattern is ignored, except
when in a character class, or when preceded by an unescaped backslash,
or within tokens like ``*?``, ``(?:`` or ``(?P<...>``. For example, ``(? :``
and ``* ?`` are not allowed.
When a line contains a ``#`` that is not in a character class and is not
preceded by an unescaped backslash, all characters from the leftmost such
``#`` through the end of the line are ignored.
This means that the two following regular expression objects that match a
decimal number are functionally equal::
a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")
Corresponds to the inline flag ``(?x)``.
Functions
^^^^^^^^^
.. function:: compile(pattern, flags=0)
Compile a regular expression pattern into a :ref:`regular expression object
<re-objects>`, which can be used for matching using its
:func:`~Pattern.match`, :func:`~Pattern.search` and other methods, described
below.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
The sequence ::
prog = re.compile(pattern)
result = prog.match(string)
is equivalent to ::
result = re.match(pattern, string)
but using :func:`re.compile` and saving the resulting regular expression
object for reuse is more efficient when the expression will be used several
times in a single program.
.. note::
The compiled versions of the most recent patterns passed to
:func:`re.compile` and the module-level matching functions are cached, so
programs that use only a few regular expressions at a time needn't worry
about compiling regular expressions.
.. function:: search(pattern, string, flags=0)
Scan through *string* looking for the first location where the regular expression
*pattern* produces a match, and return a corresponding :class:`~re.Match`. Return
``None`` if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. function:: match(pattern, string, flags=0)
If zero or more characters at the beginning of *string* match the regular
expression *pattern*, return a corresponding :class:`~re.Match`. Return
``None`` if the string does not match the pattern; note that this is
different from a zero-length match.
Note that even in :const:`MULTILINE` mode, :func:`re.match` will only match
at the beginning of the string and not at the beginning of each line.
If you want to locate a match anywhere in *string*, use :func:`search`
instead (see also :ref:`search-vs-match`).
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. function:: fullmatch(pattern, string, flags=0)
If the whole *string* matches the regular expression *pattern*, return a
corresponding :class:`~re.Match`. Return ``None`` if the string does not match
the pattern; note that this is different from a zero-length match.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. versionadded:: 3.4
.. function:: split(pattern, string, maxsplit=0, flags=0)
Split *string* by the occurrences of *pattern*. If capturing parentheses are
used in *pattern*, then the text of all groups in the pattern are also returned
as part of the resulting list. If *maxsplit* is nonzero, at most *maxsplit*
splits occur, and the remainder of the string is returned as the final element
of the list. ::
>>> re.split(r'\W+', 'Words, words, words.')
['Words', 'words', 'words', '']
>>> re.split(r'(\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split(r'\W+', 'Words, words, words.', maxsplit=1)
['Words', 'words, words.']
>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
['0', '3', '9']
If there are capturing groups in the separator and it matches at the start of
the string, the result will start with an empty string. The same holds for
the end of the string::
>>> re.split(r'(\W+)', '...words, words...')
['', '...', 'words', ', ', 'words', '...', '']
That way, separator components are always found at the same relative
indices within the result list.
Adjacent empty matches are not possible, but an empty match can occur
immediately after a non-empty match.
.. code:: pycon
>>> re.split(r'\b', 'Words, words, words.')
['', 'Words', ', ', 'words', ', ', 'words', '.']
>>> re.split(r'\W*', '...words...')
['', '', 'w', 'o', 'r', 'd', 's', '', '']
>>> re.split(r'(\W*)', '...words...')
['', '...', '', '', 'w', '', 'o', '', 'r', '', 'd', '', 's', '...', '', '', '']
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. versionchanged:: 3.1
Added the optional flags argument.
.. versionchanged:: 3.7
Added support of splitting on a pattern that could match an empty string.
.. deprecated:: 3.13
Passing *maxsplit* and *flags* as positional arguments is deprecated.
In future Python versions they will be
:ref:`keyword-only parameters <keyword-only_parameter>`.
.. function:: findall(pattern, string, flags=0)
Return all non-overlapping matches of *pattern* in *string*, as a list of
strings or tuples. The *string* is scanned left-to-right, and matches
are returned in the order found. Empty matches are included in the result.
The result depends on the number of capturing groups in the pattern.
If there are no groups, return a list of strings matching the whole
pattern. If there is exactly one group, return a list of strings
matching that group. If multiple groups are present, return a list
of tuples of strings matching the groups. Non-capturing groups do not
affect the form of the result.
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.findall(r'(\w+)=(\d+)', 'set width=20 and height=10')
[('width', '20'), ('height', '10')]
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. versionchanged:: 3.7
Non-empty matches can now start just after a previous empty match.
.. function:: finditer(pattern, string, flags=0)
Return an :term:`iterator` yielding :class:`~re.Match` objects over
all non-overlapping matches for the RE *pattern* in *string*. The *string*
is scanned left-to-right, and matches are returned in the order found. Empty
matches are included in the result.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. versionchanged:: 3.7
Non-empty matches can now start just after a previous empty match.
.. function:: sub(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences
of *pattern* in *string* by the replacement *repl*. If the pattern isn't found,
*string* is returned unchanged. *repl* can be a string or a function; if it is
a string, any backslash escapes in it are processed. That is, ``\n`` is
converted to a single newline character, ``\r`` is converted to a carriage return, and
so forth. Unknown escapes of ASCII letters are reserved for future use and
treated as errors. Other unknown escapes such as ``\&`` are left alone.
Backreferences, such
as ``\6``, are replaced with the substring matched by group 6 in the pattern.
For example::
>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',
... r'static PyObject*\npy_\1(void)\n{',
... 'def myfunc():')
'static PyObject*\npy_myfunc(void)\n{'
If *repl* is a function, it is called for every non-overlapping occurrence of
*pattern*. The function takes a single :class:`~re.Match` argument, and returns
the replacement string. For example::
>>> def dashrepl(matchobj):
... if matchobj.group(0) == '-': return ' '
... else: return '-'
...
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'
The pattern may be a string or a :class:`~re.Pattern`.
The optional argument *count* is the maximum number of pattern occurrences to be
replaced; *count* must be a non-negative integer. If omitted or zero, all
occurrences will be replaced.
Adjacent empty matches are not possible, but an empty match can occur
immediately after a non-empty match.
As a result, ``sub('x*', '-', 'abxd')`` returns ``'-a-b--d-'``
instead of ``'-a-b-d-'``.
.. index:: single: \g; in regular expressions
In string-type *repl* arguments, in addition to the character escapes and
backreferences described above,
``\g<name>`` will use the substring matched by the group named ``name``, as
defined by the ``(?P<name>...)`` syntax. ``\g<number>`` uses the corresponding
group number; ``\g<2>`` is therefore equivalent to ``\2``, but isn't ambiguous
in a replacement such as ``\g<2>0``. ``\20`` would be interpreted as a
reference to group 20, not a reference to group 2 followed by the literal
character ``'0'``. The backreference ``\g<0>`` substitutes in the entire
substring matched by the RE.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. versionchanged:: 3.1
Added the optional flags argument.
.. versionchanged:: 3.5
Unmatched groups are replaced with an empty string.
.. versionchanged:: 3.6
Unknown escapes in *pattern* consisting of ``'\'`` and an ASCII letter
now are errors.
.. versionchanged:: 3.7
Unknown escapes in *repl* consisting of ``'\'`` and an ASCII letter
now are errors.
An empty match can occur immediately after a non-empty match.
.. versionchanged:: 3.12
Group *id* can only contain ASCII digits.
In :class:`bytes` replacement strings, group *name* can only contain bytes
in the ASCII range (``b'\x00'``-``b'\x7f'``).
.. deprecated:: 3.13
Passing *count* and *flags* as positional arguments is deprecated.
In future Python versions they will be
:ref:`keyword-only parameters <keyword-only_parameter>`.
.. function:: subn(pattern, repl, string, count=0, flags=0)
Perform the same operation as :func:`sub`, but return a tuple ``(new_string,
number_of_subs_made)``.
The expression's behaviour can be modified by specifying a *flags* value.
Values can be any of the `flags`_ variables, combined using bitwise OR
(the ``|`` operator).
.. function:: escape(pattern)
Escape special characters in *pattern*.
This is useful if you want to match an arbitrary literal string that may
have regular expression metacharacters in it. For example::
>>> print(re.escape('https://www.python.org'))
https://www\.python\.org
>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&'*+-.^_`|~:"
>>> print('[%s]+' % re.escape(legal_chars))
[abcdefghijklmnopqrstuvwxyz0123456789!\#\$%\&'\*\+\-\.\^_`\|\~:]+
>>> operators = ['+', '-', '*', '/', '**']
>>> print('|'.join(map(re.escape, sorted(operators, reverse=True))))
/|\-|\+|\*\*|\*
This function must not be used for the replacement string in :func:`sub`
and :func:`subn`, only backslashes should be escaped. For example::
>>> digits_re = r'\d+'
>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'
>>> print(re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings
.. versionchanged:: 3.3
The ``'_'`` character is no longer escaped.
.. versionchanged:: 3.7
Only characters that can have special meaning in a regular expression
are escaped. As a result, ``'!'``, ``'"'``, ``'%'``, ``"'"``, ``','``,
``'/'``, ``':'``, ``';'``, ``'<'``, ``'='``, ``'>'``, ``'@'``, and
``"`"`` are no longer escaped.
.. function:: purge()
Clear the regular expression cache.
Exceptions
^^^^^^^^^^
.. exception:: PatternError(msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a
valid regular expression (for example, it might contain unmatched parentheses)
or when some other error occurs during compilation or matching. It is never an
error if a string contains no match for a pattern. The ``PatternError`` instance has
the following additional attributes:
.. attribute:: msg
The unformatted error message.
.. attribute:: pattern
The regular expression pattern.
.. attribute:: pos
The index in *pattern* where compilation failed (may be ``None``).
.. attribute:: lineno
The line corresponding to *pos* (may be ``None``).
.. attribute:: colno
The column corresponding to *pos* (may be ``None``).
.. versionchanged:: 3.5
Added additional attributes.
.. versionchanged:: 3.13
``PatternError`` was originally named ``error``; the latter is kept as an alias for
backward compatibility.
.. _re-objects:
Regular Expression Objects
--------------------------
.. class:: Pattern
Compiled regular expression object returned by :func:`re.compile`.
.. versionchanged:: 3.9
:py:class:`re.Pattern` supports ``[]`` to indicate a Unicode (str) or bytes pattern.
See :ref:`types-genericalias`.
.. method:: Pattern.search(string[, pos[, endpos]])
Scan through *string* looking for the first location where this regular
expression produces a match, and return a corresponding :class:`~re.Match`.
Return ``None`` if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.
The optional second parameter *pos* gives an index in the string where the
search is to start; it defaults to ``0``. This is not completely equivalent to
slicing the string; the ``'^'`` pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the
index where the search is to start.
The optional parameter *endpos* limits how far the string will be searched; it
will be as if the string is *endpos* characters long, so only the characters
from *pos* to ``endpos - 1`` will be searched for a match. If *endpos* is less
than *pos*, no match will be found; otherwise, if *rx* is a compiled regular
expression object, ``rx.search(string, 0, 50)`` is equivalent to
``rx.search(string[:50], 0)``. ::
>>> pattern = re.compile("d")
>>> pattern.search("dog") # Match at index 0
<re.Match object; span=(0, 1), match='d'>
>>> pattern.search("dog", 1) # No match; search doesn't include the "d"
.. method:: Pattern.match(string[, pos[, endpos]])
If zero or more characters at the *beginning* of *string* match this regular
expression, return a corresponding :class:`~re.Match`. Return ``None`` if the
string does not match the pattern; note that this is different from a
zero-length match.
The optional *pos* and *endpos* parameters have the same meaning as for the
:meth:`~Pattern.search` method. ::
>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<re.Match object; span=(1, 2), match='o'>
If you want to locate a match anywhere in *string*, use
:meth:`~Pattern.search` instead (see also :ref:`search-vs-match`).
.. method:: Pattern.fullmatch(string[, pos[, endpos]])
If the whole *string* matches this regular expression, return a corresponding
:class:`~re.Match`. Return ``None`` if the string does not match the pattern;
note that this is different from a zero-length match.
The optional *pos* and *endpos* parameters have the same meaning as for the
:meth:`~Pattern.search` method. ::
>>> pattern = re.compile("o[gh]")
>>> pattern.fullmatch("dog") # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre") # No match as not the full string matches.
>>> pattern.fullmatch("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>
.. versionadded:: 3.4
.. method:: Pattern.split(string, maxsplit=0)
Identical to the :func:`split` function, using the compiled pattern.
.. method:: Pattern.findall(string[, pos[, endpos]])
Similar to the :func:`findall` function, using the compiled pattern, but
also accepts optional *pos* and *endpos* parameters that limit the search
region like for :meth:`search`.
.. method:: Pattern.finditer(string[, pos[, endpos]])
Similar to the :func:`finditer` function, using the compiled pattern, but
also accepts optional *pos* and *endpos* parameters that limit the search
region like for :meth:`search`.
.. method:: Pattern.sub(repl, string, count=0)
Identical to the :func:`sub` function, using the compiled pattern.
.. method:: Pattern.subn(repl, string, count=0)
Identical to the :func:`subn` function, using the compiled pattern.
.. attribute:: Pattern.flags
The regex matching flags. This is a combination of the flags given to
:func:`.compile`, any ``(?...)`` inline flags in the pattern, and implicit
flags such as :py:const:`~re.UNICODE` if the pattern is a Unicode string.
.. attribute:: Pattern.groups
The number of capturing groups in the pattern.
.. attribute:: Pattern.groupindex
A dictionary mapping any symbolic group names defined by ``(?P<id>)`` to group
numbers. The dictionary is empty if no symbolic groups were used in the
pattern.
.. attribute:: Pattern.pattern
The pattern string from which the pattern object was compiled.
.. versionchanged:: 3.7
Added support of :func:`copy.copy` and :func:`copy.deepcopy`. Compiled
regular expression objects are considered atomic.
.. _match-objects:
Match Objects
-------------
Match objects always have a boolean value of ``True``.
Since :meth:`~Pattern.match` and :meth:`~Pattern.search` return ``None``
when there is no match, you can test whether there was a match with a simple
``if`` statement::
match = re.search(pattern, string)
if match:
process(match)
.. class:: Match
Match object returned by successful ``match``\ es and ``search``\ es.
.. versionchanged:: 3.9
:py:class:`re.Match` supports ``[]`` to indicate a Unicode (str) or bytes match.
See :ref:`types-genericalias`.
.. method:: Match.expand(template)
Return the string obtained by doing backslash substitution on the template
string *template*, as done by the :meth:`~Pattern.sub` method.
Escapes such as ``\n`` are converted to the appropriate characters,
and numeric backreferences (``\1``, ``\2``) and named backreferences
(``\g<1>``, ``\g<name>``) are replaced by the contents of the
corresponding group. The backreference ``\g<0>`` will be
replaced by the entire match.
.. versionchanged:: 3.5
Unmatched groups are replaced with an empty string.
.. method:: Match.group([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the
result is a single string; if there are multiple arguments, the result is a
tuple with one item per argument. Without arguments, *group1* defaults to zero
(the whole match is returned). If a *groupN* argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the corresponding parenthesized group. If a
group number is negative or larger than the number of groups defined in the
pattern, an :exc:`IndexError` exception is raised. If a group is contained in a
part of the pattern that did not match, the corresponding result is ``None``.
If a group is contained in a part of the pattern that matched multiple times,
the last match is returned. ::
>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0) # The entire match
'Isaac Newton'
>>> m.group(1) # The first parenthesized subgroup.
'Isaac'
>>> m.group(2) # The second parenthesized subgroup.
'Newton'
>>> m.group(1, 2) # Multiple arguments give us a tuple.
('Isaac', 'Newton')
If the regular expression uses the ``(?P<name>...)`` syntax, the *groupN*
arguments may also be strings identifying groups by their group name. If a
string argument is not used as a group name in the pattern, an :exc:`IndexError`
exception is raised.
A moderately complicated example::
>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')
'Malcolm'
>>> m.group('last_name')
'Reynolds'
Named groups can also be referred to by their index::
>>> m.group(1)
'Malcolm'
>>> m.group(2)
'Reynolds'
If a group matches multiple times, only the last match is accessible::
>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
'c3'
.. method:: Match.__getitem__(g)
This is identical to ``m.group(g)``. This allows easier access to
an individual group from a match::
>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match
'Isaac Newton'
>>> m[1] # The first parenthesized subgroup.
'Isaac'
>>> m[2] # The second parenthesized subgroup.
'Newton'
Named groups are supported as well::
>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Isaac Newton")
>>> m['first_name']
'Isaac'
>>> m['last_name']
'Newton'
.. versionadded:: 3.6
.. method:: Match.groups(default=None)
Return a tuple containing all the subgroups of the match, from 1 up to however
many groups are in the pattern. The *default* argument is used for groups that
did not participate in the match; it defaults to ``None``.
For example::
>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
('24', '1632')
If we make the decimal place and everything after it optional, not all groups
might participate in the match. These groups will default to ``None`` unless
the *default* argument is given::
>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups() # Second group defaults to None.
('24', None)
>>> m.groups('0') # Now, the second group defaults to '0'.
('24', '0')
.. method:: Match.groupdict(default=None)
Return a dictionary containing all the *named* subgroups of the match, keyed by
the subgroup name. The *default* argument is used for groups that did not
participate in the match; it defaults to ``None``. For example::
>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}
.. method:: Match.start([group])
Match.end([group])
Return the indices of the start and end of the substring matched by *group*;
*group* defaults to zero (meaning the whole matched substring). Return ``-1`` if
*group* exists but did not contribute to the match. For a match object *m*, and
a group *g* that did contribute to the match, the substring matched by group *g*
(equivalent to ``m.group(g)``) is ::
m.string[m.start(g):m.end(g)]
Note that ``m.start(group)`` will equal ``m.end(group)`` if *group* matched a
null string. For example, after ``m = re.search('b(c?)', 'cba')``,
``m.start(0)`` is 1, ``m.end(0)`` is 2, ``m.start(1)`` and ``m.end(1)`` are both
2, and ``m.start(2)`` raises an :exc:`IndexError` exception.
An example that will remove *remove_this* from email addresses::
>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
'tony@tiger.net'
.. method:: Match.span([group])
For a match *m*, return the 2-tuple ``(m.start(group), m.end(group))``. Note
that if *group* did not contribute to the match, this is ``(-1, -1)``.
*group* defaults to zero, the entire match.
.. attribute:: Match.pos
The value of *pos* which was passed to the :meth:`~Pattern.search` or
:meth:`~Pattern.match` method of a :ref:`regex object <re-objects>`. This is
the index into the string at which the RE engine started looking for a match.
.. attribute:: Match.endpos
The value of *endpos* which was passed to the :meth:`~Pattern.search` or
:meth:`~Pattern.match` method of a :ref:`regex object <re-objects>`. This is
the index into the string beyond which the RE engine will not go.
.. attribute:: Match.lastindex
The integer index of the last matched capturing group, or ``None`` if no group
was matched at all. For example, the expressions ``(a)b``, ``((a)(b))``, and
``((ab))`` will have ``lastindex == 1`` if applied to the string ``'ab'``, while
the expression ``(a)(b)`` will have ``lastindex == 2``, if applied to the same
string.
.. attribute:: Match.lastgroup
The name of the last matched capturing group, or ``None`` if the group didn't
have a name, or if no group was matched at all.
.. attribute:: Match.re
The :ref:`regular expression object <re-objects>` whose :meth:`~Pattern.match` or
:meth:`~Pattern.search` method produced this match instance.
.. attribute:: Match.string
The string passed to :meth:`~Pattern.match` or :meth:`~Pattern.search`.
.. versionchanged:: 3.7
Added support of :func:`copy.copy` and :func:`copy.deepcopy`. Match objects
are considered atomic.
.. _re-examples:
Regular Expression Examples
---------------------------
Checking for a Pair
^^^^^^^^^^^^^^^^^^^
In this example, we'll use the following helper function to display match
objects a little more gracefully::
def displaymatch(match):
if match is None:
return None
return '<Match: %r, groups=%r>' % (match.group(), match.groups())
Suppose you are writing a poker program where a player's hand is represented as
a 5-character string with each character representing a card, "a" for ace, "k"
for king, "q" for queen, "j" for jack, "t" for 10, and "2" through "9"
representing the card with that value.
To see if a given string is a valid hand, one could do the following::
>>> valid = re.compile(r"^[a2-9tjqk]{5}$")
>>> displaymatch(valid.match("akt5q")) # Valid.
"<Match: 'akt5q', groups=()>"
>>> displaymatch(valid.match("akt5e")) # Invalid.
>>> displaymatch(valid.match("akt")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: '727ak', groups=()>"
That last hand, ``"727ak"``, contained a pair, or two of the same valued cards.
To match this with a regular expression, one could use backreferences as such::
>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"
>>> displaymatch(pair.match("718ak")) # No pairs.
>>> displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"
To find out what card the pair consists of, one could use the
:meth:`~Match.group` method of the match object in the following manner::
>>> pair = re.compile(r".*(.).*\1")
>>> pair.match("717ak").group(1)
'7'
# Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak").group(1)
AttributeError: 'NoneType' object has no attribute 'group'
>>> pair.match("354aa").group(1)
'a'
Simulating scanf()
^^^^^^^^^^^^^^^^^^
.. index:: single: scanf (C function)
Python does not currently have an equivalent to :c:func:`!scanf`. Regular
expressions are generally more powerful, though also more verbose, than
:c:func:`!scanf` format strings. The table below offers some more-or-less
equivalent mappings between :c:func:`!scanf` format tokens and regular
expressions.
+--------------------------------+---------------------------------------------+
| :c:func:`!scanf` Token | Regular Expression |
+================================+=============================================+
| ``%c`` | ``.`` |
+--------------------------------+---------------------------------------------+
| ``%5c`` | ``.{5}`` |
+--------------------------------+---------------------------------------------+
| ``%d`` | ``[-+]?\d+`` |
+--------------------------------+---------------------------------------------+
| ``%e``, ``%E``, ``%f``, ``%g`` | ``[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?`` |
+--------------------------------+---------------------------------------------+
| ``%i`` | ``[-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)`` |
+--------------------------------+---------------------------------------------+
| ``%o`` | ``[-+]?[0-7]+`` |
+--------------------------------+---------------------------------------------+
| ``%s`` | ``\S+`` |
+--------------------------------+---------------------------------------------+
| ``%u`` | ``\d+`` |
+--------------------------------+---------------------------------------------+
| ``%x``, ``%X`` | ``[-+]?(0[xX])?[\dA-Fa-f]+`` |
+--------------------------------+---------------------------------------------+
To extract the filename and numbers from a string like ::
/usr/sbin/sendmail - 0 errors, 4 warnings
you would use a :c:func:`!scanf` format like ::
%s - %d errors, %d warnings
The equivalent regular expression would be ::
(\S+) - (\d+) errors, (\d+) warnings
.. _search-vs-match:
search() vs. match()
^^^^^^^^^^^^^^^^^^^^
.. sectionauthor:: Fred L. Drake, Jr. <fdrake@acm.org>
Python offers different primitive operations based on regular expressions:
+ :func:`re.match` checks for a match only at the beginning of the string
+ :func:`re.search` checks for a match anywhere in the string
(this is what Perl does by default)
+ :func:`re.fullmatch` checks for entire string to be a match
For example::
>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>
>>> re.fullmatch("p.*n", "python") # Match
<re.Match object; span=(0, 6), match='python'>
>>> re.fullmatch("r.*n", "python") # No match
Regular expressions beginning with ``'^'`` can be used with :func:`search` to
restrict the match at the beginning of the string::
>>> re.match("c", "abcdef") # No match
>>> re.search("^c", "abcdef") # No match
>>> re.search("^a", "abcdef") # Match
<re.Match object; span=(0, 1), match='a'>
Note however that in :const:`MULTILINE` mode :func:`match` only matches at the
beginning of the string, whereas using :func:`search` with a regular expression
beginning with ``'^'`` will match at the beginning of each line. ::
>>> re.match("X", "A\nB\nX", re.MULTILINE) # No match
>>> re.search("^X", "A\nB\nX", re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X'>
Making a Phonebook
^^^^^^^^^^^^^^^^^^
:func:`split` splits a string into a list delimited by the passed pattern. The
method is invaluable for converting textual data into data structures that can be
easily read and modified by Python as demonstrated in the following example that
creates a phonebook.
First, here is the input. Normally it may come from a file, here we are using
triple-quoted string syntax
.. doctest::
>>> text = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""
The entries are separated by one or more newlines. Now we convert the string
into a list with each nonempty line having its own entry:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> entries = re.split("\n+", text)
>>> entries
['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']
Finally, split each entry into a list with first name, last name, telephone
number, and address. We use the ``maxsplit`` parameter of :func:`split`
because the address has spaces, our splitting pattern, in it:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> [re.split(":? ", entry, maxsplit=3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]
The ``:?`` pattern matches the colon after the last name, so that it does not
occur in the result list. With a ``maxsplit`` of ``4``, we could separate the
house number from the street name:
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> [re.split(":? ", entry, maxsplit=4) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]
Text Munging
^^^^^^^^^^^^
:func:`sub` replaces every occurrence of a pattern with a string or the
result of a function. This example demonstrates using :func:`sub` with
a function to "munge" text, or randomize the order of all the characters
in each word of a sentence except for the first and last characters::
>>> def repl(m):
... inner_word = list(m.group(2))
... random.shuffle(inner_word)
... return m.group(1) + "".join(inner_word) + m.group(3)
...
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'
Finding all Adverbs
^^^^^^^^^^^^^^^^^^^
:func:`findall` matches *all* occurrences of a pattern, not just the first
one as :func:`search` does. For example, if a writer wanted to
find all of the adverbs in some text, they might use :func:`findall` in
the following manner::
>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly\b", text)
['carefully', 'quickly']
Finding all Adverbs and their Positions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If one wants more information about all matches of a pattern than the matched
text, :func:`finditer` is useful as it provides :class:`~re.Match` objects
instead of strings. Continuing with the previous example, if a writer wanted
to find all of the adverbs *and their positions* in some text, they would use
:func:`finditer` in the following manner::
>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly\b", text):
... print('%02d-%02d: %s' % (m.start(), m.end(), m.group(0)))
07-16: carefully
40-47: quickly
Raw String Notation
^^^^^^^^^^^^^^^^^^^
Raw string notation (``r"text"``) keeps regular expressions sane. Without it,
every backslash (``'\'``) in a regular expression would have to be prefixed with
another one to escape it. For example, the two following lines of code are
functionally identical::
>>> re.match(r"\W(.)\1\W", " ff ")
<re.Match object; span=(0, 4), match=' ff '>
>>> re.match("\\W(.)\\1\\W", " ff ")
<re.Match object; span=(0, 4), match=' ff '>
When one wants to match a literal backslash, it must be escaped in the regular
expression. With raw string notation, this means ``r"\\"``. Without raw string
notation, one must use ``"\\\\"``, making the following lines of code
functionally identical::
>>> re.match(r"\\", r"\\")
<re.Match object; span=(0, 1), match='\\'>
>>> re.match("\\\\", r"\\")
<re.Match object; span=(0, 1), match='\\'>
Writing a Tokenizer
^^^^^^^^^^^^^^^^^^^
A `tokenizer or scanner <https://en.wikipedia.org/wiki/Lexical_analysis>`_
analyzes a string to categorize groups of characters. This is a useful first
step in writing a compiler or interpreter.
The text categories are specified with regular expressions. The technique is
to combine those into a single master regular expression and to loop over
successive matches::
from typing import NamedTuple
import re
class Token(NamedTuple):
type: str
value: str
line: int
column: int
def tokenize(code):
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
('NUMBER', r'\d+(\.\d*)?'), # Integer or decimal number
('ASSIGN', r':='), # Assignment operator
('END', r';'), # Statement terminator
('ID', r'[A-Za-z]+'), # Identifiers
('OP', r'[+\-*/]'), # Arithmetic operators
('NEWLINE', r'\n'), # Line endings
('SKIP', r'[ \t]+'), # Skip over spaces and tabs
('MISMATCH', r'.'), # Any other character
]
tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
line_num = 1
line_start = 0
for mo in re.finditer(tok_regex, code):
kind = mo.lastgroup
value = mo.group()
column = mo.start() - line_start
if kind == 'NUMBER':
value = float(value) if '.' in value else int(value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':
line_start = mo.end()
line_num += 1
continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError(f'{value!r} unexpected on line {line_num}')
yield Token(kind, value, line_num, column)
statements = '''
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;
'''
for token in tokenize(statements):
print(token)
The tokenizer produces the following output::
Token(type='IF', value='IF', line=2, column=4)
Token(type='ID', value='quantity', line=2, column=7)
Token(type='THEN', value='THEN', line=2, column=16)
Token(type='ID', value='total', line=3, column=8)
Token(type='ASSIGN', value=':=', line=3, column=14)
Token(type='ID', value='total', line=3, column=17)
Token(type='OP', value='+', line=3, column=23)
Token(type='ID', value='price', line=3, column=25)
Token(type='OP', value='*', line=3, column=31)
Token(type='ID', value='quantity', line=3, column=33)
Token(type='END', value=';', line=3, column=41)
Token(type='ID', value='tax', line=4, column=8)
Token(type='ASSIGN', value=':=', line=4, column=12)
Token(type='ID', value='price', line=4, column=15)
Token(type='OP', value='*', line=4, column=21)
Token(type='NUMBER', value=0.05, line=4, column=23)
Token(type='END', value=';', line=4, column=27)
Token(type='ENDIF', value='ENDIF', line=5, column=4)
Token(type='END', value=';', line=5, column=9)
.. [Frie09] Friedl, Jeffrey. Mastering Regular Expressions. 3rd ed., O'Reilly
Media, 2009. The third edition of the book no longer covers Python at all,
but the first edition covered writing good regular expression patterns in
great detail.
|