1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
|
.. XXX: reference/datamodel and this have quite a few overlaps!
.. _bltin-types:
**************
Built-in Types
**************
The following sections describe the standard types that are built into the
interpreter.
.. index:: pair: built-in; types
The principal built-in types are numerics, sequences, mappings, classes,
instances and exceptions.
Some collection classes are mutable. The methods that add, subtract, or
rearrange their members in place, and don't return a specific item, never return
the collection instance itself but ``None``.
Some operations are supported by several object types; in particular,
practically all objects can be compared for equality, tested for truth
value, and converted to a string (with the :func:`repr` function or the
slightly different :func:`str` function). The latter function is implicitly
used when an object is written by the :func:`print` function.
.. _truth:
Truth Value Testing
===================
.. index::
pair: statement; if
pair: statement; while
pair: truth; value
pair: Boolean; operations
single: false
Any object can be tested for truth value, for use in an :keyword:`if` or
:keyword:`while` condition or as operand of the Boolean operations below.
.. index:: single: true
By default, an object is considered true unless its class defines either a
:meth:`~object.__bool__` method that returns ``False`` or a
:meth:`~object.__len__` method that
returns zero, when called with the object. [1]_ Here are most of the built-in
objects considered false:
.. index::
single: None (Built-in object)
single: False (Built-in object)
* constants defined to be false: ``None`` and ``False``
* zero of any numeric type: ``0``, ``0.0``, ``0j``, ``Decimal(0)``,
``Fraction(0, 1)``
* empty sequences and collections: ``''``, ``()``, ``[]``, ``{}``, ``set()``,
``range(0)``
.. index::
pair: operator; or
pair: operator; and
single: False
single: True
Operations and built-in functions that have a Boolean result always return ``0``
or ``False`` for false and ``1`` or ``True`` for true, unless otherwise stated.
(Important exception: the Boolean operations ``or`` and ``and`` always return
one of their operands.)
.. _boolean:
Boolean Operations --- :keyword:`!and`, :keyword:`!or`, :keyword:`!not`
=======================================================================
.. index:: pair: Boolean; operations
These are the Boolean operations, ordered by ascending priority:
+-------------+---------------------------------+-------+
| Operation | Result | Notes |
+=============+=================================+=======+
| ``x or y`` | if *x* is true, then *x*, else | \(1) |
| | *y* | |
+-------------+---------------------------------+-------+
| ``x and y`` | if *x* is false, then *x*, else | \(2) |
| | *y* | |
+-------------+---------------------------------+-------+
| ``not x`` | if *x* is false, then ``True``, | \(3) |
| | else ``False`` | |
+-------------+---------------------------------+-------+
.. index::
pair: operator; and
pair: operator; or
pair: operator; not
Notes:
(1)
This is a short-circuit operator, so it only evaluates the second
argument if the first one is false.
(2)
This is a short-circuit operator, so it only evaluates the second
argument if the first one is true.
(3)
``not`` has a lower priority than non-Boolean operators, so ``not a == b`` is
interpreted as ``not (a == b)``, and ``a == not b`` is a syntax error.
.. _stdcomparisons:
Comparisons
===========
.. index::
pair: chaining; comparisons
pair: operator; comparison
pair: operator; ==
pair: operator; < (less)
pair: operator; <=
pair: operator; > (greater)
pair: operator; >=
pair: operator; !=
pair: operator; is
pair: operator; is not
There are eight comparison operations in Python. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, ``x < y <= z`` is equivalent to ``x < y and
y <= z``, except that *y* is evaluated only once (but in both cases *z* is not
evaluated at all when ``x < y`` is found to be false).
This table summarizes the comparison operations:
+------------+-------------------------+
| Operation | Meaning |
+============+=========================+
| ``<`` | strictly less than |
+------------+-------------------------+
| ``<=`` | less than or equal |
+------------+-------------------------+
| ``>`` | strictly greater than |
+------------+-------------------------+
| ``>=`` | greater than or equal |
+------------+-------------------------+
| ``==`` | equal |
+------------+-------------------------+
| ``!=`` | not equal |
+------------+-------------------------+
| ``is`` | object identity |
+------------+-------------------------+
| ``is not`` | negated object identity |
+------------+-------------------------+
.. index::
pair: object; numeric
pair: objects; comparing
Objects of different types, except different numeric types, never compare equal.
The ``==`` operator is always defined but for some object types (for example,
class objects) is equivalent to :keyword:`is`. The ``<``, ``<=``, ``>`` and ``>=``
operators are only defined where they make sense; for example, they raise a
:exc:`TypeError` exception when one of the arguments is a complex number.
.. index::
single: __eq__() (instance method)
single: __ne__() (instance method)
single: __lt__() (instance method)
single: __le__() (instance method)
single: __gt__() (instance method)
single: __ge__() (instance method)
Non-identical instances of a class normally compare as non-equal unless the
class defines the :meth:`~object.__eq__` method.
Instances of a class cannot be ordered with respect to other instances of the
same class, or other types of object, unless the class defines enough of the
methods :meth:`~object.__lt__`, :meth:`~object.__le__`, :meth:`~object.__gt__`, and
:meth:`~object.__ge__` (in general, :meth:`~object.__lt__` and
:meth:`~object.__eq__` are sufficient, if you want the conventional meanings of the
comparison operators).
The behavior of the :keyword:`is` and :keyword:`is not` operators cannot be
customized; also they can be applied to any two objects and never raise an
exception.
.. index::
pair: operator; in
pair: operator; not in
Two more operations with the same syntactic priority, :keyword:`in` and
:keyword:`not in`, are supported by types that are :term:`iterable` or
implement the :meth:`~object.__contains__` method.
.. _typesnumeric:
Numeric Types --- :class:`int`, :class:`float`, :class:`complex`
================================================================
.. index::
pair: object; numeric
pair: object; Boolean
pair: object; integer
pair: object; floating-point
pair: object; complex number
pair: C; language
There are three distinct numeric types: :dfn:`integers`, :dfn:`floating-point
numbers`, and :dfn:`complex numbers`. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating-point
numbers are usually implemented using :c:expr:`double` in C; information
about the precision and internal representation of floating-point
numbers for the machine on which your program is running is available
in :data:`sys.float_info`. Complex numbers have a real and imaginary
part, which are each a floating-point number. To extract these parts
from a complex number *z*, use ``z.real`` and ``z.imag``. (The standard
library includes the additional numeric types :mod:`fractions.Fraction`, for
rationals, and :mod:`decimal.Decimal`, for floating-point numbers with
user-definable precision.)
.. index::
pair: numeric; literals
pair: integer; literals
pair: floating-point; literals
pair: complex number; literals
pair: hexadecimal; literals
pair: octal; literals
pair: binary; literals
Numbers are created by numeric literals or as the result of built-in functions
and operators. Unadorned integer literals (including hex, octal and binary
numbers) yield integers. Numeric literals containing a decimal point or an
exponent sign yield floating-point numbers. Appending ``'j'`` or ``'J'`` to a
numeric literal yields an imaginary number (a complex number with a zero real
part) which you can add to an integer or float to get a complex number with real
and imaginary parts.
The constructors :func:`int`, :func:`float`, and
:func:`complex` can be used to produce numbers of a specific type.
.. index::
single: arithmetic
pair: built-in function; int
pair: built-in function; float
pair: built-in function; complex
single: operator; + (plus)
single: + (plus); unary operator
single: + (plus); binary operator
single: operator; - (minus)
single: - (minus); unary operator
single: - (minus); binary operator
pair: operator; * (asterisk)
pair: operator; / (slash)
pair: operator; //
pair: operator; % (percent)
pair: operator; **
Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the "narrower" type is
widened to that of the other, where integer is narrower than floating point.
Arithmetic with complex and real operands is defined by the usual mathematical
formula, for example::
x + complex(u, v) = complex(x + u, v)
x * complex(u, v) = complex(x * u, x * v)
A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared. [2]_
All numeric types (except complex) support the following operations (for priorities of
the operations, see :ref:`operator-summary`):
+---------------------+---------------------------------+---------+--------------------+
| Operation | Result | Notes | Full documentation |
+=====================+=================================+=========+====================+
| ``x + y`` | sum of *x* and *y* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``x - y`` | difference of *x* and *y* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``x * y`` | product of *x* and *y* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``x / y`` | quotient of *x* and *y* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``x // y`` | floored quotient of *x* and | \(1)\(2)| |
| | *y* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``x % y`` | remainder of ``x / y`` | \(2) | |
+---------------------+---------------------------------+---------+--------------------+
| ``-x`` | *x* negated | | |
+---------------------+---------------------------------+---------+--------------------+
| ``+x`` | *x* unchanged | | |
+---------------------+---------------------------------+---------+--------------------+
| ``abs(x)`` | absolute value or magnitude of | | :func:`abs` |
| | *x* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``int(x)`` | *x* converted to integer | \(3)\(6)| :func:`int` |
+---------------------+---------------------------------+---------+--------------------+
| ``float(x)`` | *x* converted to floating point | \(4)\(6)| :func:`float` |
+---------------------+---------------------------------+---------+--------------------+
| ``complex(re, im)`` | a complex number with real part | \(6) | :func:`complex` |
| | *re*, imaginary part *im*. | | |
| | *im* defaults to zero. | | |
+---------------------+---------------------------------+---------+--------------------+
| ``c.conjugate()`` | conjugate of the complex number | | |
| | *c* | | |
+---------------------+---------------------------------+---------+--------------------+
| ``divmod(x, y)`` | the pair ``(x // y, x % y)`` | \(2) | :func:`divmod` |
+---------------------+---------------------------------+---------+--------------------+
| ``pow(x, y)`` | *x* to the power *y* | \(5) | :func:`pow` |
+---------------------+---------------------------------+---------+--------------------+
| ``x ** y`` | *x* to the power *y* | \(5) | |
+---------------------+---------------------------------+---------+--------------------+
.. index::
triple: operations on; numeric; types
single: conjugate() (complex number method)
Notes:
(1)
Also referred to as integer division. For operands of type :class:`int`,
the result has type :class:`int`. For operands of type :class:`float`,
the result has type :class:`float`. In general, the result is a whole
integer, though the result's type is not necessarily :class:`int`. The result is
always rounded towards minus infinity: ``1//2`` is ``0``, ``(-1)//2`` is
``-1``, ``1//(-2)`` is ``-1``, and ``(-1)//(-2)`` is ``0``.
(2)
Not for complex numbers. Instead convert to floats using :func:`abs` if
appropriate.
(3)
.. index::
pair: module; math
single: floor() (in module math)
single: ceil() (in module math)
single: trunc() (in module math)
pair: numeric; conversions
Conversion from :class:`float` to :class:`int` truncates, discarding the
fractional part. See functions :func:`math.floor` and :func:`math.ceil` for
alternative conversions.
(4)
float also accepts the strings "nan" and "inf" with an optional prefix "+"
or "-" for Not a Number (NaN) and positive or negative infinity.
(5)
Python defines ``pow(0, 0)`` and ``0 ** 0`` to be ``1``, as is common for
programming languages.
(6)
The numeric literals accepted include the digits ``0`` to ``9`` or any
Unicode equivalent (code points with the ``Nd`` property).
See `the Unicode Standard <https://unicode.org/Public/UNIDATA/extracted/DerivedNumericType.txt>`_
for a complete list of code points with the ``Nd`` property.
All :class:`numbers.Real` types (:class:`int` and :class:`float`) also include
the following operations:
+--------------------+---------------------------------------------+
| Operation | Result |
+====================+=============================================+
| :func:`math.trunc(\| *x* truncated to :class:`~numbers.Integral` |
| x) <math.trunc>` | |
+--------------------+---------------------------------------------+
| :func:`round(x[, | *x* rounded to *n* digits, |
| n]) <round>` | rounding half to even. If *n* is |
| | omitted, it defaults to 0. |
+--------------------+---------------------------------------------+
| :func:`math.floor(\| the greatest :class:`~numbers.Integral` |
| x) <math.floor>` | <= *x* |
+--------------------+---------------------------------------------+
| :func:`math.ceil(x)| the least :class:`~numbers.Integral` >= *x* |
| <math.ceil>` | |
+--------------------+---------------------------------------------+
For additional numeric operations see the :mod:`math` and :mod:`cmath`
modules.
.. XXXJH exceptions: overflow (when? what operations?) zerodivision
.. _bitstring-ops:
Bitwise Operations on Integer Types
-----------------------------------
.. index::
triple: operations on; integer; types
pair: bitwise; operations
pair: shifting; operations
pair: masking; operations
pair: operator; | (vertical bar)
pair: operator; ^ (caret)
pair: operator; & (ampersand)
pair: operator; <<
pair: operator; >>
pair: operator; ~ (tilde)
Bitwise operations only make sense for integers. The result of bitwise
operations is calculated as though carried out in two's complement with an
infinite number of sign bits.
The priorities of the binary bitwise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation ``~`` has the
same priority as the other unary numeric operations (``+`` and ``-``).
This table lists the bitwise operations sorted in ascending priority:
+------------+--------------------------------+----------+
| Operation | Result | Notes |
+============+================================+==========+
| ``x | y`` | bitwise :dfn:`or` of *x* and | \(4) |
| | *y* | |
+------------+--------------------------------+----------+
| ``x ^ y`` | bitwise :dfn:`exclusive or` of | \(4) |
| | *x* and *y* | |
+------------+--------------------------------+----------+
| ``x & y`` | bitwise :dfn:`and` of *x* and | \(4) |
| | *y* | |
+------------+--------------------------------+----------+
| ``x << n`` | *x* shifted left by *n* bits | (1)(2) |
+------------+--------------------------------+----------+
| ``x >> n`` | *x* shifted right by *n* bits | (1)(3) |
+------------+--------------------------------+----------+
| ``~x`` | the bits of *x* inverted | |
+------------+--------------------------------+----------+
Notes:
(1)
Negative shift counts are illegal and cause a :exc:`ValueError` to be raised.
(2)
A left shift by *n* bits is equivalent to multiplication by ``pow(2, n)``.
(3)
A right shift by *n* bits is equivalent to floor division by ``pow(2, n)``.
(4)
Performing these calculations with at least one extra sign extension bit in
a finite two's complement representation (a working bit-width of
``1 + max(x.bit_length(), y.bit_length())`` or more) is sufficient to get the
same result as if there were an infinite number of sign bits.
Additional Methods on Integer Types
-----------------------------------
The int type implements the :class:`numbers.Integral` :term:`abstract base
class`. In addition, it provides a few more methods:
.. method:: int.bit_length()
Return the number of bits necessary to represent an integer in binary,
excluding the sign and leading zeros::
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
More precisely, if ``x`` is nonzero, then ``x.bit_length()`` is the
unique positive integer ``k`` such that ``2**(k-1) <= abs(x) < 2**k``.
Equivalently, when ``abs(x)`` is small enough to have a correctly
rounded logarithm, then ``k = 1 + int(log(abs(x), 2))``.
If ``x`` is zero, then ``x.bit_length()`` returns ``0``.
Equivalent to::
def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6
.. versionadded:: 3.1
.. method:: int.bit_count()
Return the number of ones in the binary representation of the absolute
value of the integer. This is also known as the population count.
Example::
>>> n = 19
>>> bin(n)
'0b10011'
>>> n.bit_count()
3
>>> (-n).bit_count()
3
Equivalent to::
def bit_count(self):
return bin(self).count("1")
.. versionadded:: 3.10
.. method:: int.to_bytes(length=1, byteorder='big', *, signed=False)
Return an array of bytes representing an integer.
>>> (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
>>> (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
>>> (-1024).to_bytes(10, byteorder='big', signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
>>> x = 1000
>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
The integer is represented using *length* bytes, and defaults to 1. An
:exc:`OverflowError` is raised if the integer is not representable with
the given number of bytes.
The *byteorder* argument determines the byte order used to represent the
integer, and defaults to ``"big"``. If *byteorder* is
``"big"``, the most significant byte is at the beginning of the byte
array. If *byteorder* is ``"little"``, the most significant byte is at
the end of the byte array.
The *signed* argument determines whether two's complement is used to
represent the integer. If *signed* is ``False`` and a negative integer is
given, an :exc:`OverflowError` is raised. The default value for *signed*
is ``False``.
The default values can be used to conveniently turn an integer into a
single byte object::
>>> (65).to_bytes()
b'A'
However, when using the default arguments, don't try
to convert a value greater than 255 or you'll get an :exc:`OverflowError`.
Equivalent to::
def to_bytes(n, length=1, byteorder='big', signed=False):
if byteorder == 'little':
order = range(length)
elif byteorder == 'big':
order = reversed(range(length))
else:
raise ValueError("byteorder must be either 'little' or 'big'")
return bytes((n >> i*8) & 0xff for i in order)
.. versionadded:: 3.2
.. versionchanged:: 3.11
Added default argument values for ``length`` and ``byteorder``.
.. classmethod:: int.from_bytes(bytes, byteorder='big', *, signed=False)
Return the integer represented by the given array of bytes.
>>> int.from_bytes(b'\x00\x10', byteorder='big')
16
>>> int.from_bytes(b'\x00\x10', byteorder='little')
4096
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
-1024
>>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
64512
>>> int.from_bytes([255, 0, 0], byteorder='big')
16711680
The argument *bytes* must either be a :term:`bytes-like object` or an
iterable producing bytes.
The *byteorder* argument determines the byte order used to represent the
integer, and defaults to ``"big"``. If *byteorder* is
``"big"``, the most significant byte is at the beginning of the byte
array. If *byteorder* is ``"little"``, the most significant byte is at
the end of the byte array. To request the native byte order of the host
system, use :data:`sys.byteorder` as the byte order value.
The *signed* argument indicates whether two's complement is used to
represent the integer.
Equivalent to::
def from_bytes(bytes, byteorder='big', signed=False):
if byteorder == 'little':
little_ordered = list(bytes)
elif byteorder == 'big':
little_ordered = list(reversed(bytes))
else:
raise ValueError("byteorder must be either 'little' or 'big'")
n = sum(b << i*8 for i, b in enumerate(little_ordered))
if signed and little_ordered and (little_ordered[-1] & 0x80):
n -= 1 << 8*len(little_ordered)
return n
.. versionadded:: 3.2
.. versionchanged:: 3.11
Added default argument value for ``byteorder``.
.. method:: int.as_integer_ratio()
Return a pair of integers whose ratio is equal to the original
integer and has a positive denominator. The integer ratio of integers
(whole numbers) is always the integer as the numerator and ``1`` as the
denominator.
.. versionadded:: 3.8
.. method:: int.is_integer()
Returns ``True``. Exists for duck type compatibility with :meth:`float.is_integer`.
.. versionadded:: 3.12
Additional Methods on Float
---------------------------
The float type implements the :class:`numbers.Real` :term:`abstract base
class`. float also has the following additional methods.
.. classmethod:: float.from_number(x)
Class method to return a floating-point number constructed from a number *x*.
If the argument is an integer or a floating-point number, a
floating-point number with the same value (within Python's floating-point
precision) is returned. If the argument is outside the range of a Python
float, an :exc:`OverflowError` will be raised.
For a general Python object ``x``, ``float.from_number(x)`` delegates to
``x.__float__()``.
If :meth:`~object.__float__` is not defined then it falls back
to :meth:`~object.__index__`.
.. versionadded:: 3.14
.. method:: float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the
original float. The ratio is in lowest terms and has a positive denominator. Raises
:exc:`OverflowError` on infinities and a :exc:`ValueError` on
NaNs.
.. method:: float.is_integer()
Return ``True`` if the float instance is finite with integral
value, and ``False`` otherwise::
>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False
Two methods support conversion to
and from hexadecimal strings. Since Python's floats are stored
internally as binary numbers, converting a float to or from a
*decimal* string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and
specification of floating-point numbers. This can be useful when
debugging, and in numerical work.
.. method:: float.hex()
Return a representation of a floating-point number as a hexadecimal
string. For finite floating-point numbers, this representation
will always include a leading ``0x`` and a trailing ``p`` and
exponent.
.. classmethod:: float.fromhex(s)
Class method to return the float represented by a hexadecimal
string *s*. The string *s* may have leading and trailing
whitespace.
Note that :meth:`float.hex` is an instance method, while
:meth:`float.fromhex` is a class method.
A hexadecimal string takes the form::
[sign] ['0x'] integer ['.' fraction] ['p' exponent]
where the optional ``sign`` may by either ``+`` or ``-``, ``integer``
and ``fraction`` are strings of hexadecimal digits, and ``exponent``
is a decimal integer with an optional leading sign. Case is not
significant, and there must be at least one hexadecimal digit in
either the integer or the fraction. This syntax is similar to the
syntax specified in section 6.4.4.2 of the C99 standard, and also to
the syntax used in Java 1.5 onwards. In particular, the output of
:meth:`float.hex` is usable as a hexadecimal floating-point literal in
C or Java code, and hexadecimal strings produced by C's ``%a`` format
character or Java's ``Double.toHexString`` are accepted by
:meth:`float.fromhex`.
Note that the exponent is written in decimal rather than hexadecimal,
and that it gives the power of 2 by which to multiply the coefficient.
For example, the hexadecimal string ``0x3.a7p10`` represents the
floating-point number ``(3 + 10./16 + 7./16**2) * 2.0**10``, or
``3740.0``::
>>> float.fromhex('0x3.a7p10')
3740.0
Applying the reverse conversion to ``3740.0`` gives a different
hexadecimal string representing the same number::
>>> float.hex(3740.0)
'0x1.d380000000000p+11'
Additional Methods on Complex
-----------------------------
The :class:`!complex` type implements the :class:`numbers.Complex`
:term:`abstract base class`.
:class:`!complex` also has the following additional methods.
.. classmethod:: complex.from_number(x)
Class method to convert a number to a complex number.
For a general Python object ``x``, ``complex.from_number(x)`` delegates to
``x.__complex__()``. If :meth:`~object.__complex__` is not defined then it falls back
to :meth:`~object.__float__`. If :meth:`!__float__` is not defined then it falls back
to :meth:`~object.__index__`.
.. versionadded:: 3.14
.. _numeric-hash:
Hashing of numeric types
------------------------
For numbers ``x`` and ``y``, possibly of different types, it's a requirement
that ``hash(x) == hash(y)`` whenever ``x == y`` (see the :meth:`~object.__hash__`
method documentation for more details). For ease of implementation and
efficiency across a variety of numeric types (including :class:`int`,
:class:`float`, :class:`decimal.Decimal` and :class:`fractions.Fraction`)
Python's hash for numeric types is based on a single mathematical function
that's defined for any rational number, and hence applies to all instances of
:class:`int` and :class:`fractions.Fraction`, and all finite instances of
:class:`float` and :class:`decimal.Decimal`. Essentially, this function is
given by reduction modulo ``P`` for a fixed prime ``P``. The value of ``P`` is
made available to Python as the :attr:`~sys.hash_info.modulus` attribute of
:data:`sys.hash_info`.
.. impl-detail::
Currently, the prime used is ``P = 2**31 - 1`` on machines with 32-bit C
longs and ``P = 2**61 - 1`` on machines with 64-bit C longs.
Here are the rules in detail:
- If ``x = m / n`` is a nonnegative rational number and ``n`` is not divisible
by ``P``, define ``hash(x)`` as ``m * invmod(n, P) % P``, where ``invmod(n,
P)`` gives the inverse of ``n`` modulo ``P``.
- If ``x = m / n`` is a nonnegative rational number and ``n`` is
divisible by ``P`` (but ``m`` is not) then ``n`` has no inverse
modulo ``P`` and the rule above doesn't apply; in this case define
``hash(x)`` to be the constant value ``sys.hash_info.inf``.
- If ``x = m / n`` is a negative rational number define ``hash(x)``
as ``-hash(-x)``. If the resulting hash is ``-1``, replace it with
``-2``.
- The particular values ``sys.hash_info.inf`` and ``-sys.hash_info.inf``
are used as hash values for positive
infinity or negative infinity (respectively).
- For a :class:`complex` number ``z``, the hash values of the real
and imaginary parts are combined by computing ``hash(z.real) +
sys.hash_info.imag * hash(z.imag)``, reduced modulo
``2**sys.hash_info.width`` so that it lies in
``range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width -
1))``. Again, if the result is ``-1``, it's replaced with ``-2``.
To clarify the above rules, here's some example Python code,
equivalent to the built-in hash, for computing the hash of a rational
number, :class:`float`, or :class:`complex`::
import sys, math
def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.
Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).
"""
P = sys.hash_info.modulus
# Remove common factors of P. (Unnecessary if m and n already coprime.)
while m % P == n % P == 0:
m, n = m // P, n // P
if n % P == 0:
hash_value = sys.hash_info.inf
else:
# Fermat's Little Theorem: pow(n, P-1, P) is 1, so
# pow(n, P-2, P) gives the inverse of n modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < 0:
hash_value = -hash_value
if hash_value == -1:
hash_value = -2
return hash_value
def hash_float(x):
"""Compute the hash of a float x."""
if math.isnan(x):
return object.__hash__(x)
elif math.isinf(x):
return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:
return hash_fraction(*x.as_integer_ratio())
def hash_complex(z):
"""Compute the hash of a complex number z."""
hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
# do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2
return hash_value
.. _bltin-boolean-values:
.. _typebool:
Boolean Type - :class:`bool`
============================
Booleans represent truth values. The :class:`bool` type has exactly two
constant instances: ``True`` and ``False``.
.. index::
single: False
single: True
pair: Boolean; values
The built-in function :func:`bool` converts any value to a boolean, if the
value can be interpreted as a truth value (see section :ref:`truth` above).
For logical operations, use the :ref:`boolean operators <boolean>` ``and``,
``or`` and ``not``.
When applying the bitwise operators ``&``, ``|``, ``^`` to two booleans, they
return a bool equivalent to the logical operations "and", "or", "xor". However,
the logical operators ``and``, ``or`` and ``!=`` should be preferred
over ``&``, ``|`` and ``^``.
.. deprecated:: 3.12
The use of the bitwise inversion operator ``~`` is deprecated and will
raise an error in Python 3.16.
:class:`bool` is a subclass of :class:`int` (see :ref:`typesnumeric`). In
many numeric contexts, ``False`` and ``True`` behave like the integers 0 and 1, respectively.
However, relying on this is discouraged; explicitly convert using :func:`int`
instead.
.. _typeiter:
Iterator Types
==============
.. index::
single: iterator protocol
single: protocol; iterator
single: sequence; iteration
single: container; iteration over
Python supports a concept of iteration over containers. This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration. Sequences, described below in more detail, always support
the iteration methods.
One method needs to be defined for container objects to provide :term:`iterable`
support:
.. XXX duplicated in reference/datamodel!
.. method:: container.__iter__()
Return an :term:`iterator` object. The object is required to support the
iterator protocol described below. If a container supports different types
of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting
multiple forms of iteration would be a tree structure which supports both
breadth-first and depth-first traversal.) This method corresponds to the
:c:member:`~PyTypeObject.tp_iter` slot of the type structure for Python
objects in the Python/C API.
The iterator objects themselves are required to support the following two
methods, which together form the :dfn:`iterator protocol`:
.. method:: iterator.__iter__()
Return the :term:`iterator` object itself. This is required to allow both
containers and iterators to be used with the :keyword:`for` and
:keyword:`in` statements. This method corresponds to the
:c:member:`~PyTypeObject.tp_iter` slot of the type structure for Python
objects in the Python/C API.
.. method:: iterator.__next__()
Return the next item from the :term:`iterator`. If there are no further
items, raise the :exc:`StopIteration` exception. This method corresponds to
the :c:member:`~PyTypeObject.tp_iternext` slot of the type structure for
Python objects in the Python/C API.
Python defines several iterator objects to support iteration over general and
specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator
protocol.
Once an iterator's :meth:`~iterator.__next__` method raises
:exc:`StopIteration`, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.
.. _generator-types:
Generator Types
---------------
Python's :term:`generator`\s provide a convenient way to implement the iterator
protocol. If a container object's :meth:`~object.__iter__` method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the :meth:`~iterator.__iter__` and :meth:`~generator.__next__`
methods.
More information about generators can be found in :ref:`the documentation for
the yield expression <yieldexpr>`.
.. _typesseq:
Sequence Types --- :class:`list`, :class:`tuple`, :class:`range`
================================================================
There are three basic sequence types: lists, tuples, and range objects.
Additional sequence types tailored for processing of
:ref:`binary data <binaryseq>` and :ref:`text strings <textseq>` are
described in dedicated sections.
.. _typesseq-common:
Common Sequence Operations
--------------------------
.. index:: pair: object; sequence
The operations in the following table are supported by most sequence types,
both mutable and immutable. The :class:`collections.abc.Sequence` ABC is
provided to make it easier to correctly implement these operations on
custom sequence types.
This table lists the sequence operations sorted in ascending priority. In the
table, *s* and *t* are sequences of the same type, *n*, *i*, *j* and *k* are
integers and *x* is an arbitrary object that meets any type and value
restrictions imposed by *s*.
The ``in`` and ``not in`` operations have the same priorities as the
comparison operations. The ``+`` (concatenation) and ``*`` (repetition)
operations have the same priority as the corresponding numeric operations. [3]_
.. index::
triple: operations on; sequence; types
pair: built-in function; len
pair: built-in function; min
pair: built-in function; max
pair: concatenation; operation
pair: repetition; operation
pair: subscript; operation
pair: slice; operation
pair: operator; in
pair: operator; not in
single: count() (sequence method)
single: index() (sequence method)
+--------------------------+--------------------------------+----------+
| Operation | Result | Notes |
+==========================+================================+==========+
| ``x in s`` | ``True`` if an item of *s* is | \(1) |
| | equal to *x*, else ``False`` | |
+--------------------------+--------------------------------+----------+
| ``x not in s`` | ``False`` if an item of *s* is | \(1) |
| | equal to *x*, else ``True`` | |
+--------------------------+--------------------------------+----------+
| ``s + t`` | the concatenation of *s* and | (6)(7) |
| | *t* | |
+--------------------------+--------------------------------+----------+
| ``s * n`` or | equivalent to adding *s* to | (2)(7) |
| ``n * s`` | itself *n* times | |
+--------------------------+--------------------------------+----------+
| ``s[i]`` | *i*\ th item of *s*, origin 0 | (3)(9) |
+--------------------------+--------------------------------+----------+
| ``s[i:j]`` | slice of *s* from *i* to *j* | (3)(4) |
+--------------------------+--------------------------------+----------+
| ``s[i:j:k]`` | slice of *s* from *i* to *j* | (3)(5) |
| | with step *k* | |
+--------------------------+--------------------------------+----------+
| ``len(s)`` | length of *s* | |
+--------------------------+--------------------------------+----------+
| ``min(s)`` | smallest item of *s* | |
+--------------------------+--------------------------------+----------+
| ``max(s)`` | largest item of *s* | |
+--------------------------+--------------------------------+----------+
| ``s.index(x[, i[, j]])`` | index of the first occurrence | \(8) |
| | of *x* in *s* (at or after | |
| | index *i* and before index *j*)| |
+--------------------------+--------------------------------+----------+
| ``s.count(x)`` | total number of occurrences of | |
| | *x* in *s* | |
+--------------------------+--------------------------------+----------+
Sequences of the same type also support comparisons. In particular, tuples
and lists are compared lexicographically by comparing corresponding elements.
This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full
details see :ref:`comparisons` in the language reference.)
.. index::
single: loop; over mutable sequence
single: mutable sequence; loop over
Forward and reversed iterators over mutable sequences access values using an
index. That index will continue to march forward (or backward) even if the
underlying sequence is mutated. The iterator terminates only when an
:exc:`IndexError` or a :exc:`StopIteration` is encountered (or when the index
drops below zero).
Notes:
(1)
While the ``in`` and ``not in`` operations are used only for simple
containment testing in the general case, some specialised sequences
(such as :class:`str`, :class:`bytes` and :class:`bytearray`) also use
them for subsequence testing::
>>> "gg" in "eggs"
True
(2)
Values of *n* less than ``0`` are treated as ``0`` (which yields an empty
sequence of the same type as *s*). Note that items in the sequence *s*
are not copied; they are referenced multiple times. This often haunts
new Python programmers; consider::
>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
What has happened is that ``[[]]`` is a one-element list containing an empty
list, so all three elements of ``[[]] * 3`` are references to this single empty
list. Modifying any of the elements of ``lists`` modifies this single list.
You can create a list of different lists this way::
>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]
Further explanation is available in the FAQ entry
:ref:`faq-multidimensional-list`.
(3)
If *i* or *j* is negative, the index is relative to the end of sequence *s*:
``len(s) + i`` or ``len(s) + j`` is substituted. But note that ``-0`` is
still ``0``.
(4)
The slice of *s* from *i* to *j* is defined as the sequence of items with index
*k* such that ``i <= k < j``. If *i* or *j* is greater than ``len(s)``, use
``len(s)``. If *i* is omitted or ``None``, use ``0``. If *j* is omitted or
``None``, use ``len(s)``. If *i* is greater than or equal to *j*, the slice is
empty.
(5)
The slice of *s* from *i* to *j* with step *k* is defined as the sequence of
items with index ``x = i + n*k`` such that ``0 <= n < (j-i)/k``. In other words,
the indices are ``i``, ``i+k``, ``i+2*k``, ``i+3*k`` and so on, stopping when
*j* is reached (but never including *j*). When *k* is positive,
*i* and *j* are reduced to ``len(s)`` if they are greater.
When *k* is negative, *i* and *j* are reduced to ``len(s) - 1`` if
they are greater. If *i* or *j* are omitted or ``None``, they become
"end" values (which end depends on the sign of *k*). Note, *k* cannot be zero.
If *k* is ``None``, it is treated like ``1``.
(6)
Concatenating immutable sequences always results in a new object. This
means that building up a sequence by repeated concatenation will have a
quadratic runtime cost in the total sequence length. To get a linear
runtime cost, you must switch to one of the alternatives below:
* if concatenating :class:`str` objects, you can build a list and use
:meth:`str.join` at the end or else write to an :class:`io.StringIO`
instance and retrieve its value when complete
* if concatenating :class:`bytes` objects, you can similarly use
:meth:`bytes.join` or :class:`io.BytesIO`, or you can do in-place
concatenation with a :class:`bytearray` object. :class:`bytearray`
objects are mutable and have an efficient overallocation mechanism
* if concatenating :class:`tuple` objects, extend a :class:`list` instead
* for other types, investigate the relevant class documentation
(7)
Some sequence types (such as :class:`range`) only support item sequences
that follow specific patterns, and hence don't support sequence
concatenation or repetition.
(8)
``index`` raises :exc:`ValueError` when *x* is not found in *s*.
Not all implementations support passing the additional arguments *i* and *j*.
These arguments allow efficient searching of subsections of the sequence. Passing
the extra arguments is roughly equivalent to using ``s[i:j].index(x)``, only
without copying any data and with the returned index being relative to
the start of the sequence rather than the start of the slice.
(9)
An :exc:`IndexError` is raised if *i* is outside the sequence range.
.. _typesseq-immutable:
Immutable Sequence Types
------------------------
.. index::
triple: immutable; sequence; types
pair: object; tuple
pair: built-in function; hash
The only operation that immutable sequence types generally implement that is
not also implemented by mutable sequence types is support for the :func:`hash`
built-in.
This support allows immutable sequences, such as :class:`tuple` instances, to
be used as :class:`dict` keys and stored in :class:`set` and :class:`frozenset`
instances.
Attempting to hash an immutable sequence that contains unhashable values will
result in :exc:`TypeError`.
.. _typesseq-mutable:
Mutable Sequence Types
----------------------
.. index::
triple: mutable; sequence; types
pair: object; list
pair: object; bytearray
The operations in the following table are defined on mutable sequence types.
The :class:`collections.abc.MutableSequence` ABC is provided to make it
easier to correctly implement these operations on custom sequence types.
In the table *s* is an instance of a mutable sequence type, *t* is any
iterable object and *x* is an arbitrary object that meets any type
and value restrictions imposed by *s* (for example, :class:`bytearray` only
accepts integers that meet the value restriction ``0 <= x <= 255``).
.. index::
triple: operations on; sequence; types
triple: operations on; list; type
pair: subscript; assignment
pair: slice; assignment
pair: statement; del
single: append() (sequence method)
single: clear() (sequence method)
single: copy() (sequence method)
single: extend() (sequence method)
single: insert() (sequence method)
single: pop() (sequence method)
single: remove() (sequence method)
single: reverse() (sequence method)
+------------------------------+--------------------------------+---------------------+
| Operation | Result | Notes |
+==============================+================================+=====================+
| ``s[i] = x`` | item *i* of *s* is replaced by | |
| | *x* | |
+------------------------------+--------------------------------+---------------------+
| ``del s[i]`` | removes item *i* of *s* | |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j] = t`` | slice of *s* from *i* to *j* | |
| | is replaced by the contents of | |
| | the iterable *t* | |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j]`` | removes the elements of | |
| | ``s[i:j]`` from the list | |
| | (same as ``s[i:j] = []``) | |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j:k] = t`` | the elements of ``s[i:j:k]`` | \(1) |
| | are replaced by those of *t* | |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j:k]`` | removes the elements of | |
| | ``s[i:j:k]`` from the list | |
+------------------------------+--------------------------------+---------------------+
| ``s.append(x)`` | appends *x* to the end of the | |
| | sequence (same as | |
| | ``s[len(s):len(s)] = [x]``) | |
+------------------------------+--------------------------------+---------------------+
| ``s.clear()`` | removes all items from *s* | \(5) |
| | (same as ``del s[:]``) | |
+------------------------------+--------------------------------+---------------------+
| ``s.copy()`` | creates a shallow copy of *s* | \(5) |
| | (same as ``s[:]``) | |
+------------------------------+--------------------------------+---------------------+
| ``s.extend(t)`` or | extends *s* with the | |
| ``s += t`` | contents of *t* (for the | |
| | most part the same as | |
| | ``s[len(s):len(s)] = t``) | |
+------------------------------+--------------------------------+---------------------+
| ``s *= n`` | updates *s* with its contents | \(6) |
| | repeated *n* times | |
+------------------------------+--------------------------------+---------------------+
| ``s.insert(i, x)`` | inserts *x* into *s* at the | |
| | index given by *i* | |
| | (same as ``s[i:i] = [x]``) | |
+------------------------------+--------------------------------+---------------------+
| ``s.pop()`` or ``s.pop(i)`` | retrieves the item at *i* and | \(2) |
| | also removes it from *s* | |
+------------------------------+--------------------------------+---------------------+
| ``s.remove(x)`` | removes the first item from | \(3) |
| | *s* where ``s[i]`` is equal to | |
| | *x* | |
+------------------------------+--------------------------------+---------------------+
| ``s.reverse()`` | reverses the items of *s* in | \(4) |
| | place | |
+------------------------------+--------------------------------+---------------------+
Notes:
(1)
If *k* is not equal to ``1``, *t* must have the same length as the slice it is replacing.
(2)
The optional argument *i* defaults to ``-1``, so that by default the last
item is removed and returned.
(3)
:meth:`remove` raises :exc:`ValueError` when *x* is not found in *s*.
(4)
The :meth:`reverse` method modifies the sequence in place for economy of
space when reversing a large sequence. To remind users that it operates by
side effect, it does not return the reversed sequence.
(5)
:meth:`clear` and :meth:`!copy` are included for consistency with the
interfaces of mutable containers that don't support slicing operations
(such as :class:`dict` and :class:`set`). :meth:`!copy` is not part of the
:class:`collections.abc.MutableSequence` ABC, but most concrete
mutable sequence classes provide it.
.. versionadded:: 3.3
:meth:`clear` and :meth:`!copy` methods.
(6)
The value *n* is an integer, or an object implementing
:meth:`~object.__index__`. Zero and negative values of *n* clear
the sequence. Items in the sequence are not copied; they are referenced
multiple times, as explained for ``s * n`` under :ref:`typesseq-common`.
.. _typesseq-list:
Lists
-----
.. index:: pair: object; list
Lists are mutable sequences, typically used to store collections of
homogeneous items (where the precise degree of similarity will vary by
application).
.. class:: list([iterable])
Lists may be constructed in several ways:
* Using a pair of square brackets to denote the empty list: ``[]``
* Using square brackets, separating items with commas: ``[a]``, ``[a, b, c]``
* Using a list comprehension: ``[x for x in iterable]``
* Using the type constructor: ``list()`` or ``list(iterable)``
The constructor builds a list whose items are the same and in the same
order as *iterable*'s items. *iterable* may be either a sequence, a
container that supports iteration, or an iterator object. If *iterable*
is already a list, a copy is made and returned, similar to ``iterable[:]``.
For example, ``list('abc')`` returns ``['a', 'b', 'c']`` and
``list( (1, 2, 3) )`` returns ``[1, 2, 3]``.
If no argument is given, the constructor creates a new empty list, ``[]``.
Many other operations also produce lists, including the :func:`sorted`
built-in.
Lists implement all of the :ref:`common <typesseq-common>` and
:ref:`mutable <typesseq-mutable>` sequence operations. Lists also provide the
following additional method:
.. method:: list.sort(*, key=None, reverse=False)
This method sorts the list in place, using only ``<`` comparisons
between items. Exceptions are not suppressed - if any comparison operations
fail, the entire sort operation will fail (and the list will likely be left
in a partially modified state).
:meth:`sort` accepts two arguments that can only be passed by keyword
(:ref:`keyword-only arguments <keyword-only_parameter>`):
*key* specifies a function of one argument that is used to extract a
comparison key from each list element (for example, ``key=str.lower``).
The key corresponding to each item in the list is calculated once and
then used for the entire sorting process. The default value of ``None``
means that list items are sorted directly without calculating a separate
key value.
The :func:`functools.cmp_to_key` utility is available to convert a 2.x
style *cmp* function to a *key* function.
*reverse* is a boolean value. If set to ``True``, then the list elements
are sorted as if each comparison were reversed.
This method modifies the sequence in place for economy of space when
sorting a large sequence. To remind users that it operates by side
effect, it does not return the sorted sequence (use :func:`sorted` to
explicitly request a new sorted list instance).
The :meth:`sort` method is guaranteed to be stable. A sort is stable if it
guarantees not to change the relative order of elements that compare equal
--- this is helpful for sorting in multiple passes (for example, sort by
department, then by salary grade).
For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.
.. impl-detail::
While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python makes the
list appear empty for the duration, and raises :exc:`ValueError` if it can
detect that the list has been mutated during a sort.
.. _typesseq-tuple:
Tuples
------
.. index:: pair: object; tuple
Tuples are immutable sequences, typically used to store collections of
heterogeneous data (such as the 2-tuples produced by the :func:`enumerate`
built-in). Tuples are also used for cases where an immutable sequence of
homogeneous data is needed (such as allowing storage in a :class:`set` or
:class:`dict` instance).
.. class:: tuple([iterable])
Tuples may be constructed in a number of ways:
* Using a pair of parentheses to denote the empty tuple: ``()``
* Using a trailing comma for a singleton tuple: ``a,`` or ``(a,)``
* Separating items with commas: ``a, b, c`` or ``(a, b, c)``
* Using the :func:`tuple` built-in: ``tuple()`` or ``tuple(iterable)``
The constructor builds a tuple whose items are the same and in the same
order as *iterable*'s items. *iterable* may be either a sequence, a
container that supports iteration, or an iterator object. If *iterable*
is already a tuple, it is returned unchanged. For example,
``tuple('abc')`` returns ``('a', 'b', 'c')`` and
``tuple( [1, 2, 3] )`` returns ``(1, 2, 3)``.
If no argument is given, the constructor creates a new empty tuple, ``()``.
Note that it is actually the comma which makes a tuple, not the parentheses.
The parentheses are optional, except in the empty tuple case, or
when they are needed to avoid syntactic ambiguity. For example,
``f(a, b, c)`` is a function call with three arguments, while
``f((a, b, c))`` is a function call with a 3-tuple as the sole argument.
Tuples implement all of the :ref:`common <typesseq-common>` sequence
operations.
For heterogeneous collections of data where access by name is clearer than
access by index, :func:`collections.namedtuple` may be a more appropriate
choice than a simple tuple object.
.. _typesseq-range:
Ranges
------
.. index:: pair: object; range
The :class:`range` type represents an immutable sequence of numbers and is
commonly used for looping a specific number of times in :keyword:`for`
loops.
.. class:: range(stop)
range(start, stop[, step])
The arguments to the range constructor must be integers (either built-in
:class:`int` or any object that implements the :meth:`~object.__index__` special
method). If the *step* argument is omitted, it defaults to ``1``.
If the *start* argument is omitted, it defaults to ``0``.
If *step* is zero, :exc:`ValueError` is raised.
For a positive *step*, the contents of a range ``r`` are determined by the
formula ``r[i] = start + step*i`` where ``i >= 0`` and
``r[i] < stop``.
For a negative *step*, the contents of the range are still determined by
the formula ``r[i] = start + step*i``, but the constraints are ``i >= 0``
and ``r[i] > stop``.
A range object will be empty if ``r[0]`` does not meet the value
constraint. Ranges do support negative indices, but these are interpreted
as indexing from the end of the sequence determined by the positive
indices.
Ranges containing absolute values larger than :data:`sys.maxsize` are
permitted but some features (such as :func:`len`) may raise
:exc:`OverflowError`.
Range examples::
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(0, -10, -1))
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]
Ranges implement all of the :ref:`common <typesseq-common>` sequence operations
except concatenation and repetition (due to the fact that range objects can
only represent sequences that follow a strict pattern and repetition and
concatenation will usually violate that pattern).
.. attribute:: start
The value of the *start* parameter (or ``0`` if the parameter was
not supplied)
.. attribute:: stop
The value of the *stop* parameter
.. attribute:: step
The value of the *step* parameter (or ``1`` if the parameter was
not supplied)
The advantage of the :class:`range` type over a regular :class:`list` or
:class:`tuple` is that a :class:`range` object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it
only stores the ``start``, ``stop`` and ``step`` values, calculating individual
items and subranges as needed).
Range objects implement the :class:`collections.abc.Sequence` ABC, and provide
features such as containment tests, element index lookup, slicing and
support for negative indices (see :ref:`typesseq`):
>>> r = range(0, 20, 2)
>>> r
range(0, 20, 2)
>>> 11 in r
False
>>> 10 in r
True
>>> r.index(10)
5
>>> r[5]
10
>>> r[:5]
range(0, 10, 2)
>>> r[-1]
18
Testing range objects for equality with ``==`` and ``!=`` compares
them as sequences. That is, two range objects are considered equal if
they represent the same sequence of values. (Note that two range
objects that compare equal might have different :attr:`~range.start`,
:attr:`~range.stop` and :attr:`~range.step` attributes, for example
``range(0) == range(2, 1, 3)`` or ``range(0, 3, 2) == range(0, 4, 2)``.)
.. versionchanged:: 3.2
Implement the Sequence ABC.
Support slicing and negative indices.
Test :class:`int` objects for membership in constant time instead of
iterating through all items.
.. versionchanged:: 3.3
Define '==' and '!=' to compare range objects based on the
sequence of values they define (instead of comparing based on
object identity).
Added the :attr:`~range.start`, :attr:`~range.stop` and :attr:`~range.step`
attributes.
.. seealso::
* The `linspace recipe <https://code.activestate.com/recipes/579000-equally-spaced-numbers-linspace/>`_
shows how to implement a lazy version of range suitable for floating-point
applications.
.. index::
single: string; text sequence type
single: str (built-in class); (see also string)
pair: object; string
.. _text-methods-summary:
Text and Binary Sequence Type Methods Summary
=============================================
The following table summarizes the text and binary sequence types methods by
category.
+--------------------------+-------------------------------------------+---------------------------------------------------+
| Category | :class:`str` methods | :class:`bytes` and :class:`bytearray` methods |
+==========================+===========================================+===================================================+
| Formatting | :meth:`str.format` | |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.format_map` | |
| +-------------------------------------------+---------------------------------------------------+
| | :ref:`f-strings` | |
| +-------------------------------------------+---------------------------------------------------+
| | :ref:`old-string-formatting` | :ref:`bytes-formatting` |
+--------------------------+------------------+------------------------+--------------------+------------------------------+
| Searching and Replacing | :meth:`str.find` | :meth:`str.rfind` | :meth:`bytes.find` | :meth:`bytes.rfind` |
| +------------------+------------------------+--------------------+------------------------------+
| | :meth:`str.index`| :meth:`str.rindex` | :meth:`bytes.index`| :meth:`bytes.rindex` |
| +------------------+------------------------+--------------------+------------------------------+
| | :meth:`str.startswith` | :meth:`bytes.startswith` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.endswith` | :meth:`bytes.endswith` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.count` | :meth:`bytes.count` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.replace` | :meth:`bytes.replace` |
+--------------------------+-------------------+-----------------------+---------------------+-----------------------------+
| Splitting and Joining | :meth:`str.split` | :meth:`str.rsplit` | :meth:`bytes.split` | :meth:`bytes.rsplit` |
| +-------------------+-----------------------+---------------------+-----------------------------+
| | :meth:`str.splitlines` | :meth:`bytes.splitlines` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.partition` | :meth:`bytes.partition` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.rpartition` | :meth:`bytes.rpartition` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.join` | :meth:`bytes.join` |
+--------------------------+-------------------------------------------+---------------------------------------------------+
| String Classification | :meth:`str.isalpha` | :meth:`bytes.isalpha` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isdecimal` | |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isdigit` | :meth:`bytes.isdigit` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isnumeric` | |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isalnum` | :meth:`bytes.isalnum` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isidentifier` | |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.islower` | :meth:`bytes.islower` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isupper` | :meth:`bytes.isupper` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.istitle` | :meth:`bytes.istitle` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isspace` | :meth:`bytes.isspace` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.isprintable` | |
+--------------------------+-------------------------------------------+---------------------------------------------------+
| Case Manipulation | :meth:`str.lower` | :meth:`bytes.lower` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.upper` | :meth:`bytes.upper` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.casefold` | |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.capitalize` | :meth:`bytes.capitalize` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.title` | :meth:`bytes.title` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.swapcase` | :meth:`bytes.swapcase` |
+--------------------------+-------------------+-----------------------+---------------------+-----------------------------+
| Padding and Stripping | :meth:`str.ljust` | :meth:`str.rjust` | :meth:`bytes.ljust` | :meth:`bytes.rjust` |
| +-------------------+-----------------------+---------------------+-----------------------------+
| | :meth:`str.center` | :meth:`bytes.center` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.expandtabs` | :meth:`bytes.expandtabs` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.strip` | :meth:`bytes.strip` |
| +--------------------+----------------------+----------------------+----------------------------+
| | :meth:`str.lstrip` | :meth:`str.rstrip` | :meth:`bytes.lstrip` | :meth:`bytes.rstrip` |
+--------------------------+--------------------+----------------------+----------------------+----------------------------+
| Translation and Encoding | :meth:`str.translate` | :meth:`bytes.translate` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.maketrans` | :meth:`bytes.maketrans` |
| +-------------------------------------------+---------------------------------------------------+
| | :meth:`str.encode` | |
| +-------------------------------------------+---------------------------------------------------+
| | | :meth:`bytes.decode` |
+--------------------------+-------------------------------------------+---------------------------------------------------+
.. _textseq:
Text Sequence Type --- :class:`str`
===================================
Textual data in Python is handled with :class:`str` objects, or :dfn:`strings`.
Strings are immutable
:ref:`sequences <typesseq>` of Unicode code points. String literals are
written in a variety of ways:
* Single quotes: ``'allows embedded "double" quotes'``
* Double quotes: ``"allows embedded 'single' quotes"``
* Triple quoted: ``'''Three single quotes'''``, ``"""Three double quotes"""``
Triple quoted strings may span multiple lines - all associated whitespace will
be included in the string literal.
String literals that are part of a single expression and have only whitespace
between them will be implicitly converted to a single string literal. That
is, ``("spam " "eggs") == "spam eggs"``.
See :ref:`strings` for more about the various forms of string literal,
including supported :ref:`escape sequences <escape-sequences>`, and the ``r`` ("raw") prefix that
disables most escape sequence processing.
Strings may also be created from other objects using the :class:`str`
constructor.
Since there is no separate "character" type, indexing a string produces
strings of length 1. That is, for a non-empty string *s*, ``s[0] == s[0:1]``.
.. index::
pair: object; io.StringIO
There is also no mutable string type, but :meth:`str.join` or
:class:`io.StringIO` can be used to efficiently construct strings from
multiple fragments.
.. versionchanged:: 3.3
For backwards compatibility with the Python 2 series, the ``u`` prefix is
once again permitted on string literals. It has no effect on the meaning
of string literals and cannot be combined with the ``r`` prefix.
.. index::
single: string; str (built-in class)
.. class:: str(object='')
str(object=b'', encoding='utf-8', errors='strict')
Return a :ref:`string <textseq>` version of *object*. If *object* is not
provided, returns the empty string. Otherwise, the behavior of ``str()``
depends on whether *encoding* or *errors* is given, as follows.
If neither *encoding* nor *errors* is given, ``str(object)`` returns
:meth:`type(object).__str__(object) <object.__str__>`,
which is the "informal" or nicely
printable string representation of *object*. For string objects, this is
the string itself. If *object* does not have a :meth:`~object.__str__`
method, then :func:`str` falls back to returning
:func:`repr(object) <repr>`.
.. index::
single: buffer protocol; str (built-in class)
single: bytes; str (built-in class)
If at least one of *encoding* or *errors* is given, *object* should be a
:term:`bytes-like object` (e.g. :class:`bytes` or :class:`bytearray`). In
this case, if *object* is a :class:`bytes` (or :class:`bytearray`) object,
then ``str(bytes, encoding, errors)`` is equivalent to
:meth:`bytes.decode(encoding, errors) <bytes.decode>`. Otherwise, the bytes
object underlying the buffer object is obtained before calling
:meth:`bytes.decode`. See :ref:`binaryseq` and
:ref:`bufferobjects` for information on buffer objects.
Passing a :class:`bytes` object to :func:`str` without the *encoding*
or *errors* arguments falls under the first case of returning the informal
string representation (see also the :option:`-b` command-line option to
Python). For example::
>>> str(b'Zoot!')
"b'Zoot!'"
For more information on the ``str`` class and its methods, see
:ref:`textseq` and the :ref:`string-methods` section below. To output
formatted strings, see the :ref:`f-strings` and :ref:`formatstrings`
sections. In addition, see the :ref:`stringservices` section.
.. index::
pair: string; methods
.. _string-methods:
String Methods
--------------
.. index::
pair: module; re
Strings implement all of the :ref:`common <typesseq-common>` sequence
operations, along with the additional methods described below.
Strings also support two styles of string formatting, one providing a large
degree of flexibility and customization (see :meth:`str.format`,
:ref:`formatstrings` and :ref:`string-formatting`) and the other based on C
``printf`` style formatting that handles a narrower range of types and is
slightly harder to use correctly, but is often faster for the cases it can
handle (:ref:`old-string-formatting`).
The :ref:`textservices` section of the standard library covers a number of
other modules that provide various text related utilities (including regular
expression support in the :mod:`re` module).
.. method:: str.capitalize()
Return a copy of the string with its first character capitalized and the
rest lowercased.
.. versionchanged:: 3.8
The first character is now put into titlecase rather than uppercase.
This means that characters like digraphs will only have their first
letter capitalized, instead of the full character.
.. method:: str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for
caseless matching.
Casefolding is similar to lowercasing but more aggressive because it is
intended to remove all case distinctions in a string. For example, the German
lowercase letter ``'ß'`` is equivalent to ``"ss"``. Since it is already
lowercase, :meth:`lower` would do nothing to ``'ß'``; :meth:`casefold`
converts it to ``"ss"``.
The casefolding algorithm is
`described in section 3.13 'Default Case Folding' of the Unicode Standard
<https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-3/#G33992>`__.
.. versionadded:: 3.3
.. method:: str.center(width[, fillchar])
Return centered in a string of length *width*. Padding is done using the
specified *fillchar* (default is an ASCII space). The original string is
returned if *width* is less than or equal to ``len(s)``. For example::
>>> 'Python'.center(10)
' Python '
>>> 'Python'.center(10, '-')
'--Python--'
>>> 'Python'.center(4)
'Python'
.. method:: str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring *sub* in the
range [*start*, *end*]. Optional arguments *start* and *end* are
interpreted as in slice notation.
If *sub* is empty, returns the number of empty strings between characters
which is the length of the string plus one. For example::
>>> 'spam, spam, spam'.count('spam')
3
>>> 'spam, spam, spam'.count('spam', 5)
2
>>> 'spam, spam, spam'.count('spam', 5, 10)
1
>>> 'spam, spam, spam'.count('eggs')
0
>>> 'spam, spam, spam'.count('')
17
.. method:: str.encode(encoding="utf-8", errors="strict")
Return the string encoded to :class:`bytes`.
*encoding* defaults to ``'utf-8'``;
see :ref:`standard-encodings` for possible values.
*errors* controls how encoding errors are handled.
If ``'strict'`` (the default), a :exc:`UnicodeError` exception is raised.
Other possible values are ``'ignore'``,
``'replace'``, ``'xmlcharrefreplace'``, ``'backslashreplace'`` and any
other name registered via :func:`codecs.register_error`.
See :ref:`error-handlers` for details.
For performance reasons, the value of *errors* is not checked for validity
unless an encoding error actually occurs,
:ref:`devmode` is enabled
or a :ref:`debug build <debug-build>` is used.
For example::
>>> encoded_str_to_bytes = 'Python'.encode()
>>> type(encoded_str_to_bytes)
<class 'bytes'>
>>> encoded_str_to_bytes
b'Python'
.. versionchanged:: 3.1
Added support for keyword arguments.
.. versionchanged:: 3.9
The value of the *errors* argument is now checked in :ref:`devmode` and
in :ref:`debug mode <debug-build>`.
.. method:: str.endswith(suffix[, start[, end]])
Return ``True`` if the string ends with the specified *suffix*, otherwise return
``False``. *suffix* can also be a tuple of suffixes to look for. With optional
*start*, test beginning at that position. With optional *end*, stop comparing
at that position. Using *start* and *end* is equivalent to
``str[start:end].endswith(suffix)``. For example::
>>> 'Python'.endswith('on')
True
>>> 'a tuple of suffixes'.endswith(('at', 'in'))
False
>>> 'a tuple of suffixes'.endswith(('at', 'es'))
True
>>> 'Python is amazing'.endswith('is', 0, 9)
True
See also :meth:`startswith` and :meth:`removesuffix`.
.. method:: str.expandtabs(tabsize=8)
Return a copy of the string where all tab characters are replaced by one or
more spaces, depending on the current column and the given tab size. Tab
positions occur every *tabsize* characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current
column is set to zero and the string is examined character by character. If
the character is a tab (``\t``), one or more space characters are inserted
in the result until the current column is equal to the next tab position.
(The tab character itself is not copied.) If the character is a newline
(``\n``) or return (``\r``), it is copied and the current column is reset to
zero. Any other character is copied unchanged and the current column is
incremented by one regardless of how the character is represented when
printed. For example::
>>> '01\t012\t0123\t01234'.expandtabs()
'01 012 0123 01234'
>>> '01\t012\t0123\t01234'.expandtabs(4)
'01 012 0123 01234'
>>> print('01\t012\n0123\t01234'.expandtabs(4))
01 012
0123 01234
.. method:: str.find(sub[, start[, end]])
Return the lowest index in the string where substring *sub* is found within
the slice ``s[start:end]``. Optional arguments *start* and *end* are
interpreted as in slice notation. Return ``-1`` if *sub* is not found.
.. note::
The :meth:`~str.find` method should be used only if you need to know the
position of *sub*. To check if *sub* is a substring or not, use the
:keyword:`in` operator::
>>> 'Py' in 'Python'
True
.. method:: str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is
called can contain literal text or replacement fields delimited by braces
``{}``. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of
the string where each replacement field is replaced with the string value of
the corresponding argument.
>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'
See :ref:`formatstrings` for a description of the various formatting options
that can be specified in format strings.
.. note::
When formatting a number (:class:`int`, :class:`float`, :class:`complex`,
:class:`decimal.Decimal` and subclasses) with the ``n`` type
(ex: ``'{:n}'.format(1234)``), the function temporarily sets the
``LC_CTYPE`` locale to the ``LC_NUMERIC`` locale to decode
``decimal_point`` and ``thousands_sep`` fields of :c:func:`localeconv` if
they are non-ASCII or longer than 1 byte, and the ``LC_NUMERIC`` locale is
different than the ``LC_CTYPE`` locale. This temporary change affects
other threads.
.. versionchanged:: 3.7
When formatting a number with the ``n`` type, the function sets
temporarily the ``LC_CTYPE`` locale to the ``LC_NUMERIC`` locale in some
cases.
.. method:: str.format_map(mapping, /)
Similar to ``str.format(**mapping)``, except that ``mapping`` is
used directly and not copied to a :class:`dict`. This is useful
if for example ``mapping`` is a dict subclass:
>>> class Default(dict):
... def __missing__(self, key):
... return key
...
>>> '{name} was born in {country}'.format_map(Default(name='Guido'))
'Guido was born in country'
.. versionadded:: 3.2
.. method:: str.index(sub[, start[, end]])
Like :meth:`~str.find`, but raise :exc:`ValueError` when the substring is
not found.
.. method:: str.isalnum()
Return ``True`` if all characters in the string are alphanumeric and there is at
least one character, ``False`` otherwise. A character ``c`` is alphanumeric if one
of the following returns ``True``: ``c.isalpha()``, ``c.isdecimal()``,
``c.isdigit()``, or ``c.isnumeric()``.
.. method:: str.isalpha()
Return ``True`` if all characters in the string are alphabetic and there is at least
one character, ``False`` otherwise. Alphabetic characters are those characters defined
in the Unicode character database as "Letter", i.e., those with general category
property being one of "Lm", "Lt", "Lu", "Ll", or "Lo". Note that this is different
from the `Alphabetic property defined in the section 4.10 'Letters, Alphabetic, and
Ideographic' of the Unicode Standard
<https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-4/#G91002>`_.
.. method:: str.isascii()
Return ``True`` if the string is empty or all characters in the string are ASCII,
``False`` otherwise.
ASCII characters have code points in the range U+0000-U+007F.
.. versionadded:: 3.7
.. method:: str.isdecimal()
Return ``True`` if all characters in the string are decimal
characters and there is at least one character, ``False``
otherwise. Decimal characters are those that can be used to form
numbers in base 10, e.g. U+0660, ARABIC-INDIC DIGIT
ZERO. Formally a decimal character is a character in the Unicode
General Category "Nd".
.. method:: str.isdigit()
Return ``True`` if all characters in the string are digits and there is at least one
character, ``False`` otherwise. Digits include decimal characters and digits that need
special handling, such as the compatibility superscript digits.
This covers digits which cannot be used to form numbers in base 10,
like the Kharosthi numbers. Formally, a digit is a character that has the
property value Numeric_Type=Digit or Numeric_Type=Decimal.
.. method:: str.isidentifier()
Return ``True`` if the string is a valid identifier according to the language
definition, section :ref:`identifiers`.
:func:`keyword.iskeyword` can be used to test whether string ``s`` is a reserved
identifier, such as :keyword:`def` and :keyword:`class`.
Example:
::
>>> from keyword import iskeyword
>>> 'hello'.isidentifier(), iskeyword('hello')
(True, False)
>>> 'def'.isidentifier(), iskeyword('def')
(True, True)
.. method:: str.islower()
Return ``True`` if all cased characters [4]_ in the string are lowercase and
there is at least one cased character, ``False`` otherwise.
.. method:: str.isnumeric()
Return ``True`` if all characters in the string are numeric
characters, and there is at least one character, ``False``
otherwise. Numeric characters include digit characters, and all characters
that have the Unicode numeric value property, e.g. U+2155,
VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property
value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.
.. method:: str.isprintable()
Return ``True`` if all characters in the string are printable, ``False`` if it
contains at least one non-printable character.
Here "printable" means the character is suitable for :func:`repr` to use in
its output; "non-printable" means that :func:`repr` on built-in types will
hex-escape the character. It has no bearing on the handling of strings
written to :data:`sys.stdout` or :data:`sys.stderr`.
The printable characters are those which in the Unicode character database
(see :mod:`unicodedata`) have a general category in group Letter, Mark,
Number, Punctuation, or Symbol (L, M, N, P, or S); plus the ASCII space 0x20.
Nonprintable characters are those in group Separator or Other (Z or C),
except the ASCII space.
.. method:: str.isspace()
Return ``True`` if there are only whitespace characters in the string and there is
at least one character, ``False`` otherwise.
A character is *whitespace* if in the Unicode character database
(see :mod:`unicodedata`), either its general category is ``Zs``
("Separator, space"), or its bidirectional class is one of ``WS``,
``B``, or ``S``.
.. method:: str.istitle()
Return ``True`` if the string is a titlecased string and there is at least one
character, for example uppercase characters may only follow uncased characters
and lowercase characters only cased ones. Return ``False`` otherwise.
.. method:: str.isupper()
Return ``True`` if all cased characters [4]_ in the string are uppercase and
there is at least one cased character, ``False`` otherwise.
>>> 'BANANA'.isupper()
True
>>> 'banana'.isupper()
False
>>> 'baNana'.isupper()
False
>>> ' '.isupper()
False
.. _meth-str-join:
.. method:: str.join(iterable)
Return a string which is the concatenation of the strings in *iterable*.
A :exc:`TypeError` will be raised if there are any non-string values in
*iterable*, including :class:`bytes` objects. The separator between
elements is the string providing this method.
.. method:: str.ljust(width[, fillchar])
Return the string left justified in a string of length *width*. Padding is
done using the specified *fillchar* (default is an ASCII space). The
original string is returned if *width* is less than or equal to ``len(s)``.
.. method:: str.lower()
Return a copy of the string with all the cased characters [4]_ converted to
lowercase.
The lowercasing algorithm used is
`described in section 3.13 'Default Case Folding' of the Unicode Standard
<https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-3/#G33992>`__.
.. method:: str.lstrip([chars])
Return a copy of the string with leading characters removed. The *chars*
argument is a string specifying the set of characters to be removed. If omitted
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
argument is not a prefix; rather, all combinations of its values are stripped::
>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'
See :meth:`str.removeprefix` for a method that will remove a single prefix
string rather than all of a set of characters. For example::
>>> 'Arthur: three!'.lstrip('Arthur: ')
'ee!'
>>> 'Arthur: three!'.removeprefix('Arthur: ')
'three!'
.. staticmethod:: str.maketrans(x[, y[, z]])
This static method returns a translation table usable for :meth:`str.translate`.
If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters (strings of length 1) to Unicode ordinals,
strings (of arbitrary lengths) or ``None``. Character keys will then be
converted to ordinals.
If there are two arguments, they must be strings of equal length, and in the
resulting dictionary, each character in x will be mapped to the character at
the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to ``None`` in the result.
.. method:: str.partition(sep)
Split the string at the first occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.
.. method:: str.removeprefix(prefix, /)
If the string starts with the *prefix* string, return
``string[len(prefix):]``. Otherwise, return a copy of the original
string::
>>> 'TestHook'.removeprefix('Test')
'Hook'
>>> 'BaseTestCase'.removeprefix('Test')
'BaseTestCase'
.. versionadded:: 3.9
.. method:: str.removesuffix(suffix, /)
If the string ends with the *suffix* string and that *suffix* is not empty,
return ``string[:-len(suffix)]``. Otherwise, return a copy of the
original string::
>>> 'MiscTests'.removesuffix('Tests')
'Misc'
>>> 'TmpDirMixin'.removesuffix('Tests')
'TmpDirMixin'
.. versionadded:: 3.9
.. method:: str.replace(old, new, count=-1)
Return a copy of the string with all occurrences of substring *old* replaced by
*new*. If *count* is given, only the first *count* occurrences are replaced.
If *count* is not specified or ``-1``, then all occurrences are replaced.
.. versionchanged:: 3.13
*count* is now supported as a keyword argument.
.. method:: str.rfind(sub[, start[, end]])
Return the highest index in the string where substring *sub* is found, such
that *sub* is contained within ``s[start:end]``. Optional arguments *start*
and *end* are interpreted as in slice notation. Return ``-1`` on failure.
.. method:: str.rindex(sub[, start[, end]])
Like :meth:`rfind` but raises :exc:`ValueError` when the substring *sub* is not
found.
.. method:: str.rjust(width[, fillchar])
Return the string right justified in a string of length *width*. Padding is
done using the specified *fillchar* (default is an ASCII space). The
original string is returned if *width* is less than or equal to ``len(s)``.
.. method:: str.rpartition(sep)
Split the string at the last occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.
.. method:: str.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using *sep* as the delimiter string.
If *maxsplit* is given, at most *maxsplit* splits are done, the *rightmost*
ones. If *sep* is not specified or ``None``, any whitespace string is a
separator. Except for splitting from the right, :meth:`rsplit` behaves like
:meth:`split` which is described in detail below.
.. method:: str.rstrip([chars])
Return a copy of the string with trailing characters removed. The *chars*
argument is a string specifying the set of characters to be removed. If omitted
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
argument is not a suffix; rather, all combinations of its values are stripped::
>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'
See :meth:`str.removesuffix` for a method that will remove a single suffix
string rather than all of a set of characters. For example::
>>> 'Monty Python'.rstrip(' Python')
'M'
>>> 'Monty Python'.removesuffix(' Python')
'Monty'
.. method:: str.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using *sep* as the delimiter
string. If *maxsplit* is given, at most *maxsplit* splits are done (thus,
the list will have at most ``maxsplit+1`` elements). If *maxsplit* is not
specified or ``-1``, then there is no limit on the number of splits
(all possible splits are made).
If *sep* is given, consecutive delimiters are not grouped together and are
deemed to delimit empty strings (for example, ``'1,,2'.split(',')`` returns
``['1', '', '2']``). The *sep* argument may consist of multiple characters
as a single delimiter (to split with multiple delimiters, use
:func:`re.split`). Splitting an empty string with a specified separator
returns ``['']``.
For example::
>>> '1,2,3'.split(',')
['1', '2', '3']
>>> '1,2,3'.split(',', maxsplit=1)
['1', '2,3']
>>> '1,2,,3,'.split(',')
['1', '2', '', '3', '']
>>> '1<>2<>3<4'.split('<>')
['1', '2', '3<4']
If *sep* is not specified or is ``None``, a different splitting algorithm is
applied: runs of consecutive whitespace are regarded as a single separator,
and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty
string or a string consisting of just whitespace with a ``None`` separator
returns ``[]``.
For example::
>>> '1 2 3'.split()
['1', '2', '3']
>>> '1 2 3'.split(maxsplit=1)
['1', '2 3']
>>> ' 1 2 3 '.split()
['1', '2', '3']
If *sep* is not specified or is ``None`` and *maxsplit* is ``0``, only
leading runs of consecutive whitespace are considered.
For example::
>>> "".split(None, 0)
[]
>>> " ".split(None, 0)
[]
>>> " foo ".split(maxsplit=0)
['foo ']
.. index::
single: universal newlines; str.splitlines method
.. method:: str.splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line
breaks are not included in the resulting list unless *keepends* is given and
true.
This method splits on the following line boundaries. In particular, the
boundaries are a superset of :term:`universal newlines`.
+-----------------------+-----------------------------+
| Representation | Description |
+=======================+=============================+
| ``\n`` | Line Feed |
+-----------------------+-----------------------------+
| ``\r`` | Carriage Return |
+-----------------------+-----------------------------+
| ``\r\n`` | Carriage Return + Line Feed |
+-----------------------+-----------------------------+
| ``\v`` or ``\x0b`` | Line Tabulation |
+-----------------------+-----------------------------+
| ``\f`` or ``\x0c`` | Form Feed |
+-----------------------+-----------------------------+
| ``\x1c`` | File Separator |
+-----------------------+-----------------------------+
| ``\x1d`` | Group Separator |
+-----------------------+-----------------------------+
| ``\x1e`` | Record Separator |
+-----------------------+-----------------------------+
| ``\x85`` | Next Line (C1 Control Code) |
+-----------------------+-----------------------------+
| ``\u2028`` | Line Separator |
+-----------------------+-----------------------------+
| ``\u2029`` | Paragraph Separator |
+-----------------------+-----------------------------+
.. versionchanged:: 3.2
``\v`` and ``\f`` added to list of line boundaries.
For example::
>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()
['ab c', '', 'de fg', 'kl']
>>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']
Unlike :meth:`~str.split` when a delimiter string *sep* is given, this
method returns an empty list for the empty string, and a terminal line
break does not result in an extra line::
>>> "".splitlines()
[]
>>> "One line\n".splitlines()
['One line']
For comparison, ``split('\n')`` gives::
>>> ''.split('\n')
['']
>>> 'Two lines\n'.split('\n')
['Two lines', '']
.. method:: str.startswith(prefix[, start[, end]])
Return ``True`` if string starts with the *prefix*, otherwise return ``False``.
*prefix* can also be a tuple of prefixes to look for. With optional *start*,
test string beginning at that position. With optional *end*, stop comparing
string at that position.
.. method:: str.strip([chars])
Return a copy of the string with the leading and trailing characters removed.
The *chars* argument is a string specifying the set of characters to be removed.
If omitted or ``None``, the *chars* argument defaults to removing whitespace.
The *chars* argument is not a prefix or suffix; rather, all combinations of its
values are stripped::
>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'
The outermost leading and trailing *chars* argument values are stripped
from the string. Characters are removed from the leading end until
reaching a string character that is not contained in the set of
characters in *chars*. A similar action takes place on the trailing end.
For example::
>>> comment_string = '#....... Section 3.2.1 Issue #32 .......'
>>> comment_string.strip('.#! ')
'Section 3.2.1 Issue #32'
.. method:: str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and
vice versa. Note that it is not necessarily true that
``s.swapcase().swapcase() == s``.
.. method:: str.title()
Return a titlecased version of the string where words start with an uppercase
character and the remaining characters are lowercase.
For example::
>>> 'Hello world'.title()
'Hello World'
The algorithm uses a simple language-independent definition of a word as
groups of consecutive letters. The definition works in many contexts but
it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result::
>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"
The :func:`string.capwords` function does not have this problem, as it
splits words on spaces only.
Alternatively, a workaround for apostrophes can be constructed using regular
expressions::
>>> import re
>>> def titlecase(s):
... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0).capitalize(),
... s)
...
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."
.. method:: str.translate(table)
Return a copy of the string in which each character has been mapped through
the given translation table. The table must be an object that implements
indexing via :meth:`~object.__getitem__`, typically a :term:`mapping` or
:term:`sequence`. When indexed by a Unicode ordinal (an integer), the
table object can do any of the following: return a Unicode ordinal or a
string, to map the character to one or more other characters; return
``None``, to delete the character from the return string; or raise a
:exc:`LookupError` exception, to map the character to itself.
You can use :meth:`str.maketrans` to create a translation map from
character-to-character mappings in different formats.
See also the :mod:`codecs` module for a more flexible approach to custom
character mappings.
.. method:: str.upper()
Return a copy of the string with all the cased characters [4]_ converted to
uppercase. Note that ``s.upper().isupper()`` might be ``False`` if ``s``
contains uncased characters or if the Unicode category of the resulting
character(s) is not "Lu" (Letter, uppercase), but e.g. "Lt" (Letter,
titlecase).
The uppercasing algorithm used is
`described in section 3.13 'Default Case Folding' of the Unicode Standard
<https://www.unicode.org/versions/Unicode16.0.0/core-spec/chapter-3/#G33992>`__.
.. method:: str.zfill(width)
Return a copy of the string left filled with ASCII ``'0'`` digits to
make a string of length *width*. A leading sign prefix (``'+'``/``'-'``)
is handled by inserting the padding *after* the sign character rather
than before. The original string is returned if *width* is less than
or equal to ``len(s)``.
For example::
>>> "42".zfill(5)
'00042'
>>> "-42".zfill(5)
'-0042'
.. index::
single: ! formatted string literal
single: formatted string literals
single: ! f-string
single: f-strings
single: fstring
single: interpolated string literal
single: string; formatted literal
single: string; interpolated literal
single: {} (curly brackets); in formatted string literal
single: ! (exclamation mark); in formatted string literal
single: : (colon); in formatted string literal
single: = (equals); for help in debugging using string literals
Formatted String Literals (f-strings)
-------------------------------------
.. versionadded:: 3.6
.. versionchanged:: 3.7
The :keyword:`await` and :keyword:`async for` can be used in expressions
within f-strings.
.. versionchanged:: 3.8
Added the debugging operator (``=``)
.. versionchanged:: 3.12
Many restrictions on expressions within f-strings have been removed.
Notably, nested strings, comments, and backslashes are now permitted.
An :dfn:`f-string` (formally a :dfn:`formatted string literal`) is
a string literal that is prefixed with ``f`` or ``F``.
This type of string literal allows embedding arbitrary Python expressions
within *replacement fields*, which are delimited by curly brackets (``{}``).
These expressions are evaluated at runtime, similarly to :meth:`str.format`,
and are converted into regular :class:`str` objects.
For example:
.. doctest::
>>> who = 'nobody'
>>> nationality = 'Spanish'
>>> f'{who.title()} expects the {nationality} Inquisition!'
'Nobody expects the Spanish Inquisition!'
It is also possible to use a multi line f-string:
.. doctest::
>>> f'''This is a string
... on two lines'''
'This is a string\non two lines'
A single opening curly bracket, ``'{'``, marks a *replacement field* that
can contain any Python expression:
.. doctest::
>>> nationality = 'Spanish'
>>> f'The {nationality} Inquisition!'
'The Spanish Inquisition!'
To include a literal ``{`` or ``}``, use a double bracket:
.. doctest::
>>> x = 42
>>> f'{{x}} is {x}'
'{x} is 42'
Functions can also be used, and :ref:`format specifiers <formatstrings>`:
.. doctest::
>>> from math import sqrt
>>> f'√2 \N{ALMOST EQUAL TO} {sqrt(2):.5f}'
'√2 ≈ 1.41421'
Any non-string expression is converted using :func:`str`, by default:
.. doctest::
>>> from fractions import Fraction
>>> f'{Fraction(1, 3)}'
'1/3'
To use an explicit conversion, use the ``!`` (exclamation mark) operator,
followed by any of the valid formats, which are:
========== ==============
Conversion Meaning
========== ==============
``!a`` :func:`ascii`
``!r`` :func:`repr`
``!s`` :func:`str`
========== ==============
For example:
.. doctest::
>>> from fractions import Fraction
>>> f'{Fraction(1, 3)!s}'
'1/3'
>>> f'{Fraction(1, 3)!r}'
'Fraction(1, 3)'
>>> question = '¿Dónde está el Presidente?'
>>> print(f'{question!a}')
'\xbfD\xf3nde est\xe1 el Presidente?'
While debugging it may be helpful to see both the expression and its value,
by using the equals sign (``=``) after the expression.
This preserves spaces within the brackets, and can be used with a converter.
By default, the debugging operator uses the :func:`repr` (``!r``) conversion.
For example:
.. doctest::
>>> from fractions import Fraction
>>> calculation = Fraction(1, 3)
>>> f'{calculation=}'
'calculation=Fraction(1, 3)'
>>> f'{calculation = }'
'calculation = Fraction(1, 3)'
>>> f'{calculation = !s}'
'calculation = 1/3'
Once the output has been evaluated, it can be formatted using a
:ref:`format specifier <formatstrings>` following a colon (``':'``).
After the expression has been evaluated, and possibly converted to a string,
the :meth:`!__format__` method of the result is called with the format specifier,
or the empty string if no format specifier is given.
The formatted result is then used as the final value for the replacement field.
For example:
.. doctest::
>>> from fractions import Fraction
>>> f'{Fraction(1, 7):.6f}'
'0.142857'
>>> f'{Fraction(1, 7):_^+10}'
'___+1/7___'
.. _old-string-formatting:
``printf``-style String Formatting
----------------------------------
.. index::
single: formatting, string (%)
single: interpolation, string (%)
single: string; formatting, printf
single: string; interpolation, printf
single: printf-style formatting
single: sprintf-style formatting
single: % (percent); printf-style formatting
.. note::
The formatting operations described here exhibit a variety of quirks that
lead to a number of common errors (such as failing to display tuples and
dictionaries correctly). Using the newer :ref:`formatted string literals
<f-strings>`, the :meth:`str.format` interface, or :ref:`template strings
($-strings) <template-strings-pep292>` may help avoid these errors.
Each of these alternatives provides their own trade-offs and benefits of
simplicity, flexibility, and/or extensibility.
String objects have one unique built-in operation: the ``%`` operator (modulo).
This is also known as the string *formatting* or *interpolation* operator.
Given ``format % values`` (where *format* is a string), ``%`` conversion
specifications in *format* are replaced with zero or more elements of *values*.
The effect is similar to using the :c:func:`sprintf` function in the C language.
For example:
.. doctest::
>>> print('%s has %d quote types.' % ('Python', 2))
Python has 2 quote types.
If *format* requires a single argument, *values* may be a single non-tuple
object. [5]_ Otherwise, *values* must be a tuple with exactly the number of
items specified by the format string, or a single mapping object (for example, a
dictionary).
.. index::
single: () (parentheses); in printf-style formatting
single: * (asterisk); in printf-style formatting
single: . (dot); in printf-style formatting
A conversion specifier contains two or more characters and has the following
components, which must occur in this order:
#. The ``'%'`` character, which marks the start of the specifier.
#. Mapping key (optional), consisting of a parenthesised sequence of characters
(for example, ``(somename)``).
#. Conversion flags (optional), which affect the result of some conversion
types.
#. Minimum field width (optional). If specified as an ``'*'`` (asterisk), the
actual width is read from the next element of the tuple in *values*, and the
object to convert comes after the minimum field width and optional precision.
#. Precision (optional), given as a ``'.'`` (dot) followed by the precision. If
specified as ``'*'`` (an asterisk), the actual precision is read from the next
element of the tuple in *values*, and the value to convert comes after the
precision.
#. Length modifier (optional).
#. Conversion type.
When the right argument is a dictionary (or other mapping type), then the
formats in the string *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping. For example:
>>> print('%(language)s has %(number)03d quote types.' %
... {'language': "Python", "number": 2})
Python has 002 quote types.
In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).
The conversion flag characters are:
.. index::
single: # (hash); in printf-style formatting
single: - (minus); in printf-style formatting
single: + (plus); in printf-style formatting
single: space; in printf-style formatting
+---------+---------------------------------------------------------------------+
| Flag | Meaning |
+=========+=====================================================================+
| ``'#'`` | The value conversion will use the "alternate form" (where defined |
| | below). |
+---------+---------------------------------------------------------------------+
| ``'0'`` | The conversion will be zero padded for numeric values. |
+---------+---------------------------------------------------------------------+
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'`` |
| | conversion if both are given). |
+---------+---------------------------------------------------------------------+
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
| | string) produced by a signed conversion. |
+---------+---------------------------------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion |
| | (overrides a "space" flag). |
+---------+---------------------------------------------------------------------+
A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python -- so e.g. ``%ld`` is identical to ``%d``.
The conversion types are:
+------------+-----------------------------------------------------+-------+
| Conversion | Meaning | Notes |
+============+=====================================================+=======+
| ``'d'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'i'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'o'`` | Signed octal value. | \(1) |
+------------+-----------------------------------------------------+-------+
| ``'u'`` | Obsolete type -- it is identical to ``'d'``. | \(6) |
+------------+-----------------------------------------------------+-------+
| ``'x'`` | Signed hexadecimal (lowercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'X'`` | Signed hexadecimal (uppercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'e'`` | Floating-point exponential format (lowercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'E'`` | Floating-point exponential format (uppercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'f'`` | Floating-point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'F'`` | Floating-point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'g'`` | Floating-point format. Uses lowercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'G'`` | Floating-point format. Uses uppercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'c'`` | Single character (accepts integer or single | |
| | character string). | |
+------------+-----------------------------------------------------+-------+
| ``'r'`` | String (converts any Python object using | \(5) |
| | :func:`repr`). | |
+------------+-----------------------------------------------------+-------+
| ``'s'`` | String (converts any Python object using | \(5) |
| | :func:`str`). | |
+------------+-----------------------------------------------------+-------+
| ``'a'`` | String (converts any Python object using | \(5) |
| | :func:`ascii`). | |
+------------+-----------------------------------------------------+-------+
| ``'%'`` | No argument is converted, results in a ``'%'`` | |
| | character in the result. | |
+------------+-----------------------------------------------------+-------+
Notes:
(1)
The alternate form causes a leading octal specifier (``'0o'``) to be
inserted before the first digit.
(2)
The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
the ``'x'`` or ``'X'`` format was used) to be inserted before the first digit.
(3)
The alternate form causes the result to always contain a decimal point, even if
no digits follow it.
The precision determines the number of digits after the decimal point and
defaults to 6.
(4)
The alternate form causes the result to always contain a decimal point, and
trailing zeroes are not removed as they would otherwise be.
The precision determines the number of significant digits before and after the
decimal point and defaults to 6.
(5)
If precision is ``N``, the output is truncated to ``N`` characters.
(6)
See :pep:`237`.
Since Python strings have an explicit length, ``%s`` conversions do not assume
that ``'\0'`` is the end of the string.
.. XXX Examples?
.. versionchanged:: 3.1
``%f`` conversions for numbers whose absolute value is over 1e50 are no
longer replaced by ``%g`` conversions.
.. index::
single: buffer protocol; binary sequence types
.. _binaryseq:
Binary Sequence Types --- :class:`bytes`, :class:`bytearray`, :class:`memoryview`
=================================================================================
.. index::
pair: object; bytes
pair: object; bytearray
pair: object; memoryview
pair: module; array
The core built-in types for manipulating binary data are :class:`bytes` and
:class:`bytearray`. They are supported by :class:`memoryview` which uses
the :ref:`buffer protocol <bufferobjects>` to access the memory of other
binary objects without needing to make a copy.
The :mod:`array` module supports efficient storage of basic data types like
32-bit integers and IEEE754 double-precision floating values.
.. _typebytes:
Bytes Objects
-------------
.. index:: pair: object; bytes
Bytes objects are immutable sequences of single bytes. Since many major
binary protocols are based on the ASCII text encoding, bytes objects offer
several methods that are only valid when working with ASCII compatible
data and are closely related to string objects in a variety of other ways.
.. class:: bytes([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string
literals, except that a ``b`` prefix is added:
* Single quotes: ``b'still allows embedded "double" quotes'``
* Double quotes: ``b"still allows embedded 'single' quotes"``
* Triple quoted: ``b'''3 single quotes'''``, ``b"""3 double quotes"""``
Only ASCII characters are permitted in bytes literals (regardless of the
declared source code encoding). Any binary values over 127 must be entered
into bytes literals using the appropriate escape sequence.
As with string literals, bytes literals may also use a ``r`` prefix to disable
processing of escape sequences. See :ref:`strings` for more about the various
forms of bytes literal, including supported escape sequences.
While bytes literals and representations are based on ASCII text, bytes
objects actually behave like immutable sequences of integers, with each
value in the sequence restricted such that ``0 <= x < 256`` (attempts to
violate this restriction will trigger :exc:`ValueError`). This is done
deliberately to emphasise that while many binary formats include ASCII based
elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying
text processing algorithms to binary data formats that are not ASCII
compatible will usually lead to data corruption).
In addition to the literal forms, bytes objects can be created in a number of
other ways:
* A zero-filled bytes object of a specified length: ``bytes(10)``
* From an iterable of integers: ``bytes(range(20))``
* Copying existing binary data via the buffer protocol: ``bytes(obj)``
Also see the :ref:`bytes <func-bytes>` built-in.
Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
numbers are a commonly used format for describing binary data. Accordingly,
the bytes type has an additional class method to read data in that format:
.. classmethod:: fromhex(string)
This :class:`bytes` class method returns a bytes object, decoding the
given string object. The string must contain two hexadecimal digits per
byte, with ASCII whitespace being ignored.
>>> bytes.fromhex('2Ef0 F1f2 ')
b'.\xf0\xf1\xf2'
.. versionchanged:: 3.7
:meth:`bytes.fromhex` now skips all ASCII whitespace in the string,
not just spaces.
.. versionchanged:: 3.14
:meth:`bytes.fromhex` now accepts ASCII :class:`bytes` and
:term:`bytes-like objects <bytes-like object>` as input.
A reverse conversion function exists to transform a bytes object into its
hexadecimal representation.
.. method:: hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each
byte in the instance.
>>> b'\xf0\xf1\xf2'.hex()
'f0f1f2'
If you want to make the hex string easier to read, you can specify a
single character separator *sep* parameter to include in the output.
By default, this separator will be included between each byte.
A second optional *bytes_per_sep* parameter controls the spacing.
Positive values calculate the separator position from the right,
negative values from the left.
>>> value = b'\xf0\xf1\xf2'
>>> value.hex('-')
'f0-f1-f2'
>>> value.hex('_', 2)
'f0_f1f2'
>>> b'UUDDLRLRAB'.hex(' ', -4)
'55554444 4c524c52 4142'
.. versionadded:: 3.5
.. versionchanged:: 3.8
:meth:`bytes.hex` now supports optional *sep* and *bytes_per_sep*
parameters to insert separators between bytes in the hex output.
Since bytes objects are sequences of integers (akin to a tuple), for a bytes
object *b*, ``b[0]`` will be an integer, while ``b[0:1]`` will be a bytes
object of length 1. (This contrasts with text strings, where both indexing
and slicing will produce a string of length 1)
The representation of bytes objects uses the literal format (``b'...'``)
since it is often more useful than e.g. ``bytes([46, 46, 46])``. You can
always convert a bytes object into a list of integers using ``list(b)``.
.. _typebytearray:
Bytearray Objects
-----------------
.. index:: pair: object; bytearray
:class:`bytearray` objects are a mutable counterpart to :class:`bytes`
objects.
.. class:: bytearray([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead
they are always created by calling the constructor:
* Creating an empty instance: ``bytearray()``
* Creating a zero-filled instance with a given length: ``bytearray(10)``
* From an iterable of integers: ``bytearray(range(20))``
* Copying existing binary data via the buffer protocol: ``bytearray(b'Hi!')``
As bytearray objects are mutable, they support the
:ref:`mutable <typesseq-mutable>` sequence operations in addition to the
common bytes and bytearray operations described in :ref:`bytes-methods`.
Also see the :ref:`bytearray <func-bytearray>` built-in.
Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
numbers are a commonly used format for describing binary data. Accordingly,
the bytearray type has an additional class method to read data in that format:
.. classmethod:: fromhex(string)
This :class:`bytearray` class method returns bytearray object, decoding
the given string object. The string must contain two hexadecimal digits
per byte, with ASCII whitespace being ignored.
>>> bytearray.fromhex('2Ef0 F1f2 ')
bytearray(b'.\xf0\xf1\xf2')
.. versionchanged:: 3.7
:meth:`bytearray.fromhex` now skips all ASCII whitespace in the string,
not just spaces.
.. versionchanged:: 3.14
:meth:`bytearray.fromhex` now accepts ASCII :class:`bytes` and
:term:`bytes-like objects <bytes-like object>` as input.
A reverse conversion function exists to transform a bytearray object into its
hexadecimal representation.
.. method:: hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each
byte in the instance.
>>> bytearray(b'\xf0\xf1\xf2').hex()
'f0f1f2'
.. versionadded:: 3.5
.. versionchanged:: 3.8
Similar to :meth:`bytes.hex`, :meth:`bytearray.hex` now supports
optional *sep* and *bytes_per_sep* parameters to insert separators
between bytes in the hex output.
.. method:: resize(size)
Resize the :class:`bytearray` to contain *size* bytes. *size* must be
greater than or equal to 0.
If the :class:`bytearray` needs to shrink, bytes beyond *size* are truncated.
If the :class:`bytearray` needs to grow, all new bytes, those beyond *size*,
will be set to null bytes.
This is equivalent to:
>>> def resize(ba, size):
... if len(ba) > size:
... del ba[size:]
... else:
... ba += b'\0' * (size - len(ba))
Examples:
>>> shrink = bytearray(b'abc')
>>> shrink.resize(1)
>>> (shrink, len(shrink))
(bytearray(b'a'), 1)
>>> grow = bytearray(b'abc')
>>> grow.resize(5)
>>> (grow, len(grow))
(bytearray(b'abc\x00\x00'), 5)
.. versionadded:: 3.14
Since bytearray objects are sequences of integers (akin to a list), for a
bytearray object *b*, ``b[0]`` will be an integer, while ``b[0:1]`` will be
a bytearray object of length 1. (This contrasts with text strings, where
both indexing and slicing will produce a string of length 1)
The representation of bytearray objects uses the bytes literal format
(``bytearray(b'...')``) since it is often more useful than e.g.
``bytearray([46, 46, 46])``. You can always convert a bytearray object into
a list of integers using ``list(b)``.
.. _bytes-methods:
Bytes and Bytearray Operations
------------------------------
.. index:: pair: bytes; methods
pair: bytearray; methods
Both bytes and bytearray objects support the :ref:`common <typesseq-common>`
sequence operations. They interoperate not just with operands of the same
type, but with any :term:`bytes-like object`. Due to this flexibility, they can be
freely mixed in operations without causing errors. However, the return type
of the result may depend on the order of operands.
.. note::
The methods on bytes and bytearray objects don't accept strings as their
arguments, just as the methods on strings don't accept bytes as their
arguments. For example, you have to write::
a = "abc"
b = a.replace("a", "f")
and::
a = b"abc"
b = a.replace(b"a", b"f")
Some bytes and bytearray operations assume the use of ASCII compatible
binary formats, and hence should be avoided when working with arbitrary
binary data. These restrictions are covered below.
.. note::
Using these ASCII based operations to manipulate binary data that is not
stored in an ASCII based format may lead to data corruption.
The following methods on bytes and bytearray objects can be used with
arbitrary binary data.
.. method:: bytes.count(sub[, start[, end]])
bytearray.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence *sub* in
the range [*start*, *end*]. Optional arguments *start* and *end* are
interpreted as in slice notation.
The subsequence to search for may be any :term:`bytes-like object` or an
integer in the range 0 to 255.
If *sub* is empty, returns the number of empty slices between characters
which is the length of the bytes object plus one.
.. versionchanged:: 3.3
Also accept an integer in the range 0 to 255 as the subsequence.
.. method:: bytes.removeprefix(prefix, /)
bytearray.removeprefix(prefix, /)
If the binary data starts with the *prefix* string, return
``bytes[len(prefix):]``. Otherwise, return a copy of the original
binary data::
>>> b'TestHook'.removeprefix(b'Test')
b'Hook'
>>> b'BaseTestCase'.removeprefix(b'Test')
b'BaseTestCase'
The *prefix* may be any :term:`bytes-like object`.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. versionadded:: 3.9
.. method:: bytes.removesuffix(suffix, /)
bytearray.removesuffix(suffix, /)
If the binary data ends with the *suffix* string and that *suffix* is
not empty, return ``bytes[:-len(suffix)]``. Otherwise, return a copy of
the original binary data::
>>> b'MiscTests'.removesuffix(b'Tests')
b'Misc'
>>> b'TmpDirMixin'.removesuffix(b'Tests')
b'TmpDirMixin'
The *suffix* may be any :term:`bytes-like object`.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. versionadded:: 3.9
.. method:: bytes.decode(encoding="utf-8", errors="strict")
bytearray.decode(encoding="utf-8", errors="strict")
Return the bytes decoded to a :class:`str`.
*encoding* defaults to ``'utf-8'``;
see :ref:`standard-encodings` for possible values.
*errors* controls how decoding errors are handled.
If ``'strict'`` (the default), a :exc:`UnicodeError` exception is raised.
Other possible values are ``'ignore'``, ``'replace'``,
and any other name registered via :func:`codecs.register_error`.
See :ref:`error-handlers` for details.
For performance reasons, the value of *errors* is not checked for validity
unless a decoding error actually occurs,
:ref:`devmode` is enabled or a :ref:`debug build <debug-build>` is used.
.. note::
Passing the *encoding* argument to :class:`str` allows decoding any
:term:`bytes-like object` directly, without needing to make a temporary
:class:`!bytes` or :class:`!bytearray` object.
.. versionchanged:: 3.1
Added support for keyword arguments.
.. versionchanged:: 3.9
The value of the *errors* argument is now checked in :ref:`devmode` and
in :ref:`debug mode <debug-build>`.
.. method:: bytes.endswith(suffix[, start[, end]])
bytearray.endswith(suffix[, start[, end]])
Return ``True`` if the binary data ends with the specified *suffix*,
otherwise return ``False``. *suffix* can also be a tuple of suffixes to
look for. With optional *start*, test beginning at that position. With
optional *end*, stop comparing at that position.
The suffix(es) to search for may be any :term:`bytes-like object`.
.. method:: bytes.find(sub[, start[, end]])
bytearray.find(sub[, start[, end]])
Return the lowest index in the data where the subsequence *sub* is found,
such that *sub* is contained in the slice ``s[start:end]``. Optional
arguments *start* and *end* are interpreted as in slice notation. Return
``-1`` if *sub* is not found.
The subsequence to search for may be any :term:`bytes-like object` or an
integer in the range 0 to 255.
.. note::
The :meth:`~bytes.find` method should be used only if you need to know the
position of *sub*. To check if *sub* is a substring or not, use the
:keyword:`in` operator::
>>> b'Py' in b'Python'
True
.. versionchanged:: 3.3
Also accept an integer in the range 0 to 255 as the subsequence.
.. method:: bytes.index(sub[, start[, end]])
bytearray.index(sub[, start[, end]])
Like :meth:`~bytes.find`, but raise :exc:`ValueError` when the
subsequence is not found.
The subsequence to search for may be any :term:`bytes-like object` or an
integer in the range 0 to 255.
.. versionchanged:: 3.3
Also accept an integer in the range 0 to 255 as the subsequence.
.. method:: bytes.join(iterable)
bytearray.join(iterable)
Return a bytes or bytearray object which is the concatenation of the
binary data sequences in *iterable*. A :exc:`TypeError` will be raised
if there are any values in *iterable* that are not :term:`bytes-like
objects <bytes-like object>`, including :class:`str` objects. The
separator between elements is the contents of the bytes or
bytearray object providing this method.
.. staticmethod:: bytes.maketrans(from, to)
bytearray.maketrans(from, to)
This static method returns a translation table usable for
:meth:`bytes.translate` that will map each character in *from* into the
character at the same position in *to*; *from* and *to* must both be
:term:`bytes-like objects <bytes-like object>` and have the same length.
.. versionadded:: 3.1
.. method:: bytes.partition(sep)
bytearray.partition(sep)
Split the sequence at the first occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself or its
bytearray copy, and the part after the separator.
If the separator is not found, return a 3-tuple
containing a copy of the original sequence, followed by two empty bytes or
bytearray objects.
The separator to search for may be any :term:`bytes-like object`.
.. method:: bytes.replace(old, new[, count])
bytearray.replace(old, new[, count])
Return a copy of the sequence with all occurrences of subsequence *old*
replaced by *new*. If the optional argument *count* is given, only the
first *count* occurrences are replaced.
The subsequence to search for and its replacement may be any
:term:`bytes-like object`.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.rfind(sub[, start[, end]])
bytearray.rfind(sub[, start[, end]])
Return the highest index in the sequence where the subsequence *sub* is
found, such that *sub* is contained within ``s[start:end]``. Optional
arguments *start* and *end* are interpreted as in slice notation. Return
``-1`` on failure.
The subsequence to search for may be any :term:`bytes-like object` or an
integer in the range 0 to 255.
.. versionchanged:: 3.3
Also accept an integer in the range 0 to 255 as the subsequence.
.. method:: bytes.rindex(sub[, start[, end]])
bytearray.rindex(sub[, start[, end]])
Like :meth:`~bytes.rfind` but raises :exc:`ValueError` when the
subsequence *sub* is not found.
The subsequence to search for may be any :term:`bytes-like object` or an
integer in the range 0 to 255.
.. versionchanged:: 3.3
Also accept an integer in the range 0 to 255 as the subsequence.
.. method:: bytes.rpartition(sep)
bytearray.rpartition(sep)
Split the sequence at the last occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself or its
bytearray copy, and the part after the separator.
If the separator is not found, return a 3-tuple
containing two empty bytes or bytearray objects, followed by a copy of the
original sequence.
The separator to search for may be any :term:`bytes-like object`.
.. method:: bytes.startswith(prefix[, start[, end]])
bytearray.startswith(prefix[, start[, end]])
Return ``True`` if the binary data starts with the specified *prefix*,
otherwise return ``False``. *prefix* can also be a tuple of prefixes to
look for. With optional *start*, test beginning at that position. With
optional *end*, stop comparing at that position.
The prefix(es) to search for may be any :term:`bytes-like object`.
.. method:: bytes.translate(table, /, delete=b'')
bytearray.translate(table, /, delete=b'')
Return a copy of the bytes or bytearray object where all bytes occurring in
the optional argument *delete* are removed, and the remaining bytes have
been mapped through the given translation table, which must be a bytes
object of length 256.
You can use the :func:`bytes.maketrans` method to create a translation
table.
Set the *table* argument to ``None`` for translations that only delete
characters::
>>> b'read this short text'.translate(None, b'aeiou')
b'rd ths shrt txt'
.. versionchanged:: 3.6
*delete* is now supported as a keyword argument.
The following methods on bytes and bytearray objects have default behaviours
that assume the use of ASCII compatible binary formats, but can still be used
with arbitrary binary data by passing appropriate arguments. Note that all of
the bytearray methods in this section do *not* operate in place, and instead
produce new objects.
.. method:: bytes.center(width[, fillbyte])
bytearray.center(width[, fillbyte])
Return a copy of the object centered in a sequence of length *width*.
Padding is done using the specified *fillbyte* (default is an ASCII
space). For :class:`bytes` objects, the original sequence is returned if
*width* is less than or equal to ``len(s)``.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. method:: bytes.ljust(width[, fillbyte])
bytearray.ljust(width[, fillbyte])
Return a copy of the object left justified in a sequence of length *width*.
Padding is done using the specified *fillbyte* (default is an ASCII
space). For :class:`bytes` objects, the original sequence is returned if
*width* is less than or equal to ``len(s)``.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. method:: bytes.lstrip([chars])
bytearray.lstrip([chars])
Return a copy of the sequence with specified leading bytes removed. The
*chars* argument is a binary sequence specifying the set of byte values to
be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or ``None``, the *chars* argument defaults
to removing ASCII whitespace. The *chars* argument is not a prefix;
rather, all combinations of its values are stripped::
>>> b' spacious '.lstrip()
b'spacious '
>>> b'www.example.com'.lstrip(b'cmowz.')
b'example.com'
The binary sequence of byte values to remove may be any
:term:`bytes-like object`. See :meth:`~bytes.removeprefix` for a method
that will remove a single prefix string rather than all of a set of
characters. For example::
>>> b'Arthur: three!'.lstrip(b'Arthur: ')
b'ee!'
>>> b'Arthur: three!'.removeprefix(b'Arthur: ')
b'three!'
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. method:: bytes.rjust(width[, fillbyte])
bytearray.rjust(width[, fillbyte])
Return a copy of the object right justified in a sequence of length *width*.
Padding is done using the specified *fillbyte* (default is an ASCII
space). For :class:`bytes` objects, the original sequence is returned if
*width* is less than or equal to ``len(s)``.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. method:: bytes.rsplit(sep=None, maxsplit=-1)
bytearray.rsplit(sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using *sep*
as the delimiter string. If *maxsplit* is given, at most *maxsplit* splits
are done, the *rightmost* ones. If *sep* is not specified or ``None``,
any subsequence consisting solely of ASCII whitespace is a separator.
Except for splitting from the right, :meth:`rsplit` behaves like
:meth:`split` which is described in detail below.
.. method:: bytes.rstrip([chars])
bytearray.rstrip([chars])
Return a copy of the sequence with specified trailing bytes removed. The
*chars* argument is a binary sequence specifying the set of byte values to
be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or ``None``, the *chars* argument defaults to
removing ASCII whitespace. The *chars* argument is not a suffix; rather,
all combinations of its values are stripped::
>>> b' spacious '.rstrip()
b' spacious'
>>> b'mississippi'.rstrip(b'ipz')
b'mississ'
The binary sequence of byte values to remove may be any
:term:`bytes-like object`. See :meth:`~bytes.removesuffix` for a method
that will remove a single suffix string rather than all of a set of
characters. For example::
>>> b'Monty Python'.rstrip(b' Python')
b'M'
>>> b'Monty Python'.removesuffix(b' Python')
b'Monty'
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
.. method:: bytes.split(sep=None, maxsplit=-1)
bytearray.split(sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using *sep*
as the delimiter string. If *maxsplit* is given and non-negative, at most
*maxsplit* splits are done (thus, the list will have at most ``maxsplit+1``
elements). If *maxsplit* is not specified or is ``-1``, then there is no
limit on the number of splits (all possible splits are made).
If *sep* is given, consecutive delimiters are not grouped together and are
deemed to delimit empty subsequences (for example, ``b'1,,2'.split(b',')``
returns ``[b'1', b'', b'2']``). The *sep* argument may consist of a
multibyte sequence as a single delimiter. Splitting an empty sequence with
a specified separator returns ``[b'']`` or ``[bytearray(b'')]`` depending
on the type of object being split. The *sep* argument may be any
:term:`bytes-like object`.
For example::
>>> b'1,2,3'.split(b',')
[b'1', b'2', b'3']
>>> b'1,2,3'.split(b',', maxsplit=1)
[b'1', b'2,3']
>>> b'1,2,,3,'.split(b',')
[b'1', b'2', b'', b'3', b'']
>>> b'1<>2<>3<4'.split(b'<>')
[b'1', b'2', b'3<4']
If *sep* is not specified or is ``None``, a different splitting algorithm
is applied: runs of consecutive ASCII whitespace are regarded as a single
separator, and the result will contain no empty strings at the start or
end if the sequence has leading or trailing whitespace. Consequently,
splitting an empty sequence or a sequence consisting solely of ASCII
whitespace without a specified separator returns ``[]``.
For example::
>>> b'1 2 3'.split()
[b'1', b'2', b'3']
>>> b'1 2 3'.split(maxsplit=1)
[b'1', b'2 3']
>>> b' 1 2 3 '.split()
[b'1', b'2', b'3']
.. method:: bytes.strip([chars])
bytearray.strip([chars])
Return a copy of the sequence with specified leading and trailing bytes
removed. The *chars* argument is a binary sequence specifying the set of
byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or ``None``, the *chars*
argument defaults to removing ASCII whitespace. The *chars* argument is
not a prefix or suffix; rather, all combinations of its values are
stripped::
>>> b' spacious '.strip()
b'spacious'
>>> b'www.example.com'.strip(b'cmowz.')
b'example'
The binary sequence of byte values to remove may be any
:term:`bytes-like object`.
.. note::
The bytearray version of this method does *not* operate in place -
it always produces a new object, even if no changes were made.
The following methods on bytes and bytearray objects assume the use of ASCII
compatible binary formats and should not be applied to arbitrary binary data.
Note that all of the bytearray methods in this section do *not* operate in
place, and instead produce new objects.
.. method:: bytes.capitalize()
bytearray.capitalize()
Return a copy of the sequence with each byte interpreted as an ASCII
character, and the first byte capitalized and the rest lowercased.
Non-ASCII byte values are passed through unchanged.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.expandtabs(tabsize=8)
bytearray.expandtabs(tabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced
by one or more ASCII spaces, depending on the current column and the given
tab size. Tab positions occur every *tabsize* bytes (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the
sequence, the current column is set to zero and the sequence is examined
byte by byte. If the byte is an ASCII tab character (``b'\t'``), one or
more space characters are inserted in the result until the current column
is equal to the next tab position. (The tab character itself is not
copied.) If the current byte is an ASCII newline (``b'\n'``) or
carriage return (``b'\r'``), it is copied and the current column is reset
to zero. Any other byte value is copied unchanged and the current column
is incremented by one regardless of how the byte value is represented when
printed::
>>> b'01\t012\t0123\t01234'.expandtabs()
b'01 012 0123 01234'
>>> b'01\t012\t0123\t01234'.expandtabs(4)
b'01 012 0123 01234'
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.isalnum()
bytearray.isalnum()
Return ``True`` if all bytes in the sequence are alphabetical ASCII characters
or ASCII decimal digits and the sequence is not empty, ``False`` otherwise.
Alphabetic ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'``. ASCII decimal
digits are those byte values in the sequence ``b'0123456789'``.
For example::
>>> b'ABCabc1'.isalnum()
True
>>> b'ABC abc1'.isalnum()
False
.. method:: bytes.isalpha()
bytearray.isalpha()
Return ``True`` if all bytes in the sequence are alphabetic ASCII characters
and the sequence is not empty, ``False`` otherwise. Alphabetic ASCII
characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
For example::
>>> b'ABCabc'.isalpha()
True
>>> b'ABCabc1'.isalpha()
False
.. method:: bytes.isascii()
bytearray.isascii()
Return ``True`` if the sequence is empty or all bytes in the sequence are ASCII,
``False`` otherwise.
ASCII bytes are in the range 0-0x7F.
.. versionadded:: 3.7
.. method:: bytes.isdigit()
bytearray.isdigit()
Return ``True`` if all bytes in the sequence are ASCII decimal digits
and the sequence is not empty, ``False`` otherwise. ASCII decimal digits are
those byte values in the sequence ``b'0123456789'``.
For example::
>>> b'1234'.isdigit()
True
>>> b'1.23'.isdigit()
False
.. method:: bytes.islower()
bytearray.islower()
Return ``True`` if there is at least one lowercase ASCII character
in the sequence and no uppercase ASCII characters, ``False`` otherwise.
For example::
>>> b'hello world'.islower()
True
>>> b'Hello world'.islower()
False
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
.. method:: bytes.isspace()
bytearray.isspace()
Return ``True`` if all bytes in the sequence are ASCII whitespace and the
sequence is not empty, ``False`` otherwise. ASCII whitespace characters are
those byte values in the sequence ``b' \t\n\r\x0b\f'`` (space, tab, newline,
carriage return, vertical tab, form feed).
.. method:: bytes.istitle()
bytearray.istitle()
Return ``True`` if the sequence is ASCII titlecase and the sequence is not
empty, ``False`` otherwise. See :meth:`bytes.title` for more details on the
definition of "titlecase".
For example::
>>> b'Hello World'.istitle()
True
>>> b'Hello world'.istitle()
False
.. method:: bytes.isupper()
bytearray.isupper()
Return ``True`` if there is at least one uppercase alphabetic ASCII character
in the sequence and no lowercase ASCII characters, ``False`` otherwise.
For example::
>>> b'HELLO WORLD'.isupper()
True
>>> b'Hello world'.isupper()
False
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
.. method:: bytes.lower()
bytearray.lower()
Return a copy of the sequence with all the uppercase ASCII characters
converted to their corresponding lowercase counterpart.
For example::
>>> b'Hello World'.lower()
b'hello world'
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. index::
single: universal newlines; bytes.splitlines method
single: universal newlines; bytearray.splitlines method
.. method:: bytes.splitlines(keepends=False)
bytearray.splitlines(keepends=False)
Return a list of the lines in the binary sequence, breaking at ASCII
line boundaries. This method uses the :term:`universal newlines` approach
to splitting lines. Line breaks are not included in the resulting list
unless *keepends* is given and true.
For example::
>>> b'ab c\n\nde fg\rkl\r\n'.splitlines()
[b'ab c', b'', b'de fg', b'kl']
>>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']
Unlike :meth:`~bytes.split` when a delimiter string *sep* is given, this
method returns an empty list for the empty string, and a terminal line
break does not result in an extra line::
>>> b"".split(b'\n'), b"Two lines\n".split(b'\n')
([b''], [b'Two lines', b''])
>>> b"".splitlines(), b"One line\n".splitlines()
([], [b'One line'])
.. method:: bytes.swapcase()
bytearray.swapcase()
Return a copy of the sequence with all the lowercase ASCII characters
converted to their corresponding uppercase counterpart and vice-versa.
For example::
>>> b'Hello World'.swapcase()
b'hELLO wORLD'
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
Unlike :func:`str.swapcase`, it is always the case that
``bin.swapcase().swapcase() == bin`` for the binary versions. Case
conversions are symmetrical in ASCII, even though that is not generally
true for arbitrary Unicode code points.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.title()
bytearray.title()
Return a titlecased version of the binary sequence where words start with
an uppercase ASCII character and the remaining characters are lowercase.
Uncased byte values are left unmodified.
For example::
>>> b'Hello world'.title()
b'Hello World'
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
All other byte values are uncased.
The algorithm uses a simple language-independent definition of a word as
groups of consecutive letters. The definition works in many contexts but
it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result::
>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"
A workaround for apostrophes can be constructed using regular expressions::
>>> import re
>>> def titlecase(s):
... return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?",
... lambda mo: mo.group(0)[0:1].upper() +
... mo.group(0)[1:].lower(),
... s)
...
>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.upper()
bytearray.upper()
Return a copy of the sequence with all the lowercase ASCII characters
converted to their corresponding uppercase counterpart.
For example::
>>> b'Hello World'.upper()
b'HELLO WORLD'
Lowercase ASCII characters are those byte values in the sequence
``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. method:: bytes.zfill(width)
bytearray.zfill(width)
Return a copy of the sequence left filled with ASCII ``b'0'`` digits to
make a sequence of length *width*. A leading sign prefix (``b'+'``/
``b'-'``) is handled by inserting the padding *after* the sign character
rather than before. For :class:`bytes` objects, the original sequence is
returned if *width* is less than or equal to ``len(seq)``.
For example::
>>> b"42".zfill(5)
b'00042'
>>> b"-42".zfill(5)
b'-0042'
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. _bytes-formatting:
``printf``-style Bytes Formatting
----------------------------------
.. index::
single: formatting; bytes (%)
single: formatting; bytearray (%)
single: interpolation; bytes (%)
single: interpolation; bytearray (%)
single: bytes; formatting
single: bytearray; formatting
single: bytes; interpolation
single: bytearray; interpolation
single: printf-style formatting
single: sprintf-style formatting
single: % (percent); printf-style formatting
.. note::
The formatting operations described here exhibit a variety of quirks that
lead to a number of common errors (such as failing to display tuples and
dictionaries correctly). If the value being printed may be a tuple or
dictionary, wrap it in a tuple.
Bytes objects (``bytes``/``bytearray``) have one unique built-in operation:
the ``%`` operator (modulo).
This is also known as the bytes *formatting* or *interpolation* operator.
Given ``format % values`` (where *format* is a bytes object), ``%`` conversion
specifications in *format* are replaced with zero or more elements of *values*.
The effect is similar to using the :c:func:`sprintf` in the C language.
If *format* requires a single argument, *values* may be a single non-tuple
object. [5]_ Otherwise, *values* must be a tuple with exactly the number of
items specified by the format bytes object, or a single mapping object (for
example, a dictionary).
.. index::
single: () (parentheses); in printf-style formatting
single: * (asterisk); in printf-style formatting
single: . (dot); in printf-style formatting
A conversion specifier contains two or more characters and has the following
components, which must occur in this order:
#. The ``'%'`` character, which marks the start of the specifier.
#. Mapping key (optional), consisting of a parenthesised sequence of characters
(for example, ``(somename)``).
#. Conversion flags (optional), which affect the result of some conversion
types.
#. Minimum field width (optional). If specified as an ``'*'`` (asterisk), the
actual width is read from the next element of the tuple in *values*, and the
object to convert comes after the minimum field width and optional precision.
#. Precision (optional), given as a ``'.'`` (dot) followed by the precision. If
specified as ``'*'`` (an asterisk), the actual precision is read from the next
element of the tuple in *values*, and the value to convert comes after the
precision.
#. Length modifier (optional).
#. Conversion type.
When the right argument is a dictionary (or other mapping type), then the
formats in the bytes object *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping. For example:
>>> print(b'%(language)s has %(number)03d quote types.' %
... {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'
In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).
The conversion flag characters are:
.. index::
single: # (hash); in printf-style formatting
single: - (minus); in printf-style formatting
single: + (plus); in printf-style formatting
single: space; in printf-style formatting
+---------+---------------------------------------------------------------------+
| Flag | Meaning |
+=========+=====================================================================+
| ``'#'`` | The value conversion will use the "alternate form" (where defined |
| | below). |
+---------+---------------------------------------------------------------------+
| ``'0'`` | The conversion will be zero padded for numeric values. |
+---------+---------------------------------------------------------------------+
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'`` |
| | conversion if both are given). |
+---------+---------------------------------------------------------------------+
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
| | string) produced by a signed conversion. |
+---------+---------------------------------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion |
| | (overrides a "space" flag). |
+---------+---------------------------------------------------------------------+
A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python -- so e.g. ``%ld`` is identical to ``%d``.
The conversion types are:
+------------+-----------------------------------------------------+-------+
| Conversion | Meaning | Notes |
+============+=====================================================+=======+
| ``'d'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'i'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'o'`` | Signed octal value. | \(1) |
+------------+-----------------------------------------------------+-------+
| ``'u'`` | Obsolete type -- it is identical to ``'d'``. | \(8) |
+------------+-----------------------------------------------------+-------+
| ``'x'`` | Signed hexadecimal (lowercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'X'`` | Signed hexadecimal (uppercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'e'`` | Floating-point exponential format (lowercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'E'`` | Floating-point exponential format (uppercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'f'`` | Floating-point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'F'`` | Floating-point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'g'`` | Floating-point format. Uses lowercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'G'`` | Floating-point format. Uses uppercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'c'`` | Single byte (accepts integer or single | |
| | byte objects). | |
+------------+-----------------------------------------------------+-------+
| ``'b'`` | Bytes (any object that follows the | \(5) |
| | :ref:`buffer protocol <bufferobjects>` or has | |
| | :meth:`~object.__bytes__`). | |
+------------+-----------------------------------------------------+-------+
| ``'s'`` | ``'s'`` is an alias for ``'b'`` and should only | \(6) |
| | be used for Python2/3 code bases. | |
+------------+-----------------------------------------------------+-------+
| ``'a'`` | Bytes (converts any Python object using | \(5) |
| | ``repr(obj).encode('ascii', 'backslashreplace')``). | |
+------------+-----------------------------------------------------+-------+
| ``'r'`` | ``'r'`` is an alias for ``'a'`` and should only | \(7) |
| | be used for Python2/3 code bases. | |
+------------+-----------------------------------------------------+-------+
| ``'%'`` | No argument is converted, results in a ``'%'`` | |
| | character in the result. | |
+------------+-----------------------------------------------------+-------+
Notes:
(1)
The alternate form causes a leading octal specifier (``'0o'``) to be
inserted before the first digit.
(2)
The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
the ``'x'`` or ``'X'`` format was used) to be inserted before the first digit.
(3)
The alternate form causes the result to always contain a decimal point, even if
no digits follow it.
The precision determines the number of digits after the decimal point and
defaults to 6.
(4)
The alternate form causes the result to always contain a decimal point, and
trailing zeroes are not removed as they would otherwise be.
The precision determines the number of significant digits before and after the
decimal point and defaults to 6.
(5)
If precision is ``N``, the output is truncated to ``N`` characters.
(6)
``b'%s'`` is deprecated, but will not be removed during the 3.x series.
(7)
``b'%r'`` is deprecated, but will not be removed during the 3.x series.
(8)
See :pep:`237`.
.. note::
The bytearray version of this method does *not* operate in place - it
always produces a new object, even if no changes were made.
.. seealso::
:pep:`461` - Adding % formatting to bytes and bytearray
.. versionadded:: 3.5
.. _typememoryview:
Memory Views
------------
:class:`memoryview` objects allow Python code to access the internal data
of an object that supports the :ref:`buffer protocol <bufferobjects>` without
copying.
.. class:: memoryview(object)
Create a :class:`memoryview` that references *object*. *object* must
support the buffer protocol. Built-in objects that support the buffer
protocol include :class:`bytes` and :class:`bytearray`.
A :class:`memoryview` has the notion of an *element*, which is the
atomic memory unit handled by the originating *object*. For many simple
types such as :class:`bytes` and :class:`bytearray`, an element is a single
byte, but other types such as :class:`array.array` may have bigger elements.
``len(view)`` is equal to the length of :class:`~memoryview.tolist`, which
is the nested list representation of the view. If ``view.ndim = 1``,
this is equal to the number of elements in the view.
.. versionchanged:: 3.12
If ``view.ndim == 0``, ``len(view)`` now raises :exc:`TypeError` instead of returning 1.
The :class:`~memoryview.itemsize` attribute will give you the number of
bytes in a single element.
A :class:`memoryview` supports slicing and indexing to expose its data.
One-dimensional slicing will result in a subview::
>>> v = memoryview(b'abcefg')
>>> v[1]
98
>>> v[-1]
103
>>> v[1:4]
<memory at 0x7f3ddc9f4350>
>>> bytes(v[1:4])
b'bce'
If :class:`~memoryview.format` is one of the native format specifiers
from the :mod:`struct` module, indexing with an integer or a tuple of
integers is also supported and returns a single *element* with
the correct type. One-dimensional memoryviews can be indexed
with an integer or a one-integer tuple. Multi-dimensional memoryviews
can be indexed with tuples of exactly *ndim* integers where *ndim* is
the number of dimensions. Zero-dimensional memoryviews can be indexed
with the empty tuple.
Here is an example with a non-byte format::
>>> import array
>>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
>>> m = memoryview(a)
>>> m[0]
-11111111
>>> m[-1]
44444444
>>> m[::2].tolist()
[-11111111, -33333333]
If the underlying object is writable, the memoryview supports
one-dimensional slice assignment. Resizing is not allowed::
>>> data = bytearray(b'abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = ord(b'z')
>>> data
bytearray(b'zbcefg')
>>> v[1:4] = b'123'
>>> data
bytearray(b'z123fg')
>>> v[2:3] = b'spam'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray(b'z1spam')
One-dimensional memoryviews of :term:`hashable` (read-only) types with formats
'B', 'b' or 'c' are also hashable. The hash is defined as
``hash(m) == hash(m.tobytes())``::
>>> v = memoryview(b'abcefg')
>>> hash(v) == hash(b'abcefg')
True
>>> hash(v[2:4]) == hash(b'ce')
True
>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True
.. versionchanged:: 3.3
One-dimensional memoryviews can now be sliced.
One-dimensional memoryviews with formats 'B', 'b' or 'c' are now :term:`hashable`.
.. versionchanged:: 3.4
memoryview is now registered automatically with
:class:`collections.abc.Sequence`
.. versionchanged:: 3.5
memoryviews can now be indexed with tuple of integers.
.. versionchanged:: 3.14
memoryview is now a :term:`generic type`.
:class:`memoryview` has several methods:
.. method:: __eq__(exporter)
A memoryview and a :pep:`3118` exporter are equal if their shapes are
equivalent and if all corresponding values are equal when the operands'
respective format codes are interpreted using :mod:`struct` syntax.
For the subset of :mod:`struct` format strings currently supported by
:meth:`tolist`, ``v`` and ``w`` are equal if ``v.tolist() == w.tolist()``::
>>> import array
>>> a = array.array('I', [1, 2, 3, 4, 5])
>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> c = array.array('b', [5, 3, 1])
>>> x = memoryview(a)
>>> y = memoryview(b)
>>> x == a == y == b
True
>>> x.tolist() == a.tolist() == y.tolist() == b.tolist()
True
>>> z = y[::-2]
>>> z == c
True
>>> z.tolist() == c.tolist()
True
If either format string is not supported by the :mod:`struct` module,
then the objects will always compare as unequal (even if the format
strings and buffer contents are identical)::
>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint(BigEndianStructure):
... _fields_ = [("x", c_long), ("y", c_long)]
...
>>> point = BEPoint(100, 200)
>>> a = memoryview(point)
>>> b = memoryview(point)
>>> a == point
False
>>> a == b
False
Note that, as with floating-point numbers, ``v is w`` does *not* imply
``v == w`` for memoryview objects.
.. versionchanged:: 3.3
Previous versions compared the raw memory disregarding the item format
and the logical array structure.
.. method:: tobytes(order='C')
Return the data in the buffer as a bytestring. This is equivalent to
calling the :class:`bytes` constructor on the memoryview. ::
>>> m = memoryview(b"abc")
>>> m.tobytes()
b'abc'
>>> bytes(m)
b'abc'
For non-contiguous arrays the result is equal to the flattened list
representation with all elements converted to bytes. :meth:`tobytes`
supports all format strings, including those that are not in
:mod:`struct` module syntax.
.. versionadded:: 3.8
*order* can be {'C', 'F', 'A'}. When *order* is 'C' or 'F', the data
of the original array is converted to C or Fortran order. For contiguous
views, 'A' returns an exact copy of the physical memory. In particular,
in-memory Fortran order is preserved. For non-contiguous views, the
data is converted to C first. *order=None* is the same as *order='C'*.
.. method:: hex([sep[, bytes_per_sep]])
Return a string object containing two hexadecimal digits for each
byte in the buffer. ::
>>> m = memoryview(b"abc")
>>> m.hex()
'616263'
.. versionadded:: 3.5
.. versionchanged:: 3.8
Similar to :meth:`bytes.hex`, :meth:`memoryview.hex` now supports
optional *sep* and *bytes_per_sep* parameters to insert separators
between bytes in the hex output.
.. method:: tolist()
Return the data in the buffer as a list of elements. ::
>>> memoryview(b'abc').tolist()
[97, 98, 99]
>>> import array
>>> a = array.array('d', [1.1, 2.2, 3.3])
>>> m = memoryview(a)
>>> m.tolist()
[1.1, 2.2, 3.3]
.. versionchanged:: 3.3
:meth:`tolist` now supports all single character native formats in
:mod:`struct` module syntax as well as multi-dimensional
representations.
.. method:: toreadonly()
Return a readonly version of the memoryview object. The original
memoryview object is unchanged. ::
>>> m = memoryview(bytearray(b'abc'))
>>> mm = m.toreadonly()
>>> mm.tolist()
[97, 98, 99]
>>> mm[0] = 42
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> m[0] = 43
>>> mm.tolist()
[43, 98, 99]
.. versionadded:: 3.8
.. method:: release()
Release the underlying buffer exposed by the memoryview object. Many
objects take special actions when a view is held on them (for example,
a :class:`bytearray` would temporarily forbid resizing); therefore,
calling release() is handy to remove these restrictions (and free any
dangling resources) as soon as possible.
After this method has been called, any further operation on the view
raises a :class:`ValueError` (except :meth:`release` itself which can
be called multiple times)::
>>> m = memoryview(b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object
The context management protocol can be used for a similar effect,
using the ``with`` statement::
>>> with memoryview(b'abc') as m:
... m[0]
...
97
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object
.. versionadded:: 3.2
.. method:: cast(format[, shape])
Cast a memoryview to a new format or shape. *shape* defaults to
``[byte_length//new_itemsize]``, which means that the result view
will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-:term:`contiguous`
and C-contiguous -> 1D.
The destination format is restricted to a single element native format in
:mod:`struct` syntax. One of the formats must be a byte format
('B', 'b' or 'c'). The byte length of the result must be the same
as the original length.
Note that all byte lengths may depend on the operating system.
Cast 1D/long to 1D/unsigned bytes::
>>> import array
>>> a = array.array('l', [1,2,3])
>>> x = memoryview(a)
>>> x.format
'l'
>>> x.itemsize
8
>>> len(x)
3
>>> x.nbytes
24
>>> y = x.cast('B')
>>> y.format
'B'
>>> y.itemsize
1
>>> len(y)
24
>>> y.nbytes
24
Cast 1D/unsigned bytes to 1D/char::
>>> b = bytearray(b'zyz')
>>> x = memoryview(b)
>>> x[0] = b'a'
Traceback (most recent call last):
...
TypeError: memoryview: invalid type for format 'B'
>>> y = x.cast('c')
>>> y[0] = b'a'
>>> b
bytearray(b'ayz')
Cast 1D/bytes to 3D/ints to 1D/signed char::
>>> import struct
>>> buf = struct.pack("i"*12, *list(range(12)))
>>> x = memoryview(buf)
>>> y = x.cast('i', shape=[2,2,3])
>>> y.tolist()
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
>>> y.format
'i'
>>> y.itemsize
4
>>> len(y)
2
>>> y.nbytes
48
>>> z = y.cast('b')
>>> z.format
'b'
>>> z.itemsize
1
>>> len(z)
48
>>> z.nbytes
48
Cast 1D/unsigned long to 2D/unsigned long::
>>> buf = struct.pack("L"*6, *list(range(6)))
>>> x = memoryview(buf)
>>> y = x.cast('L', shape=[2,3])
>>> len(y)
2
>>> y.nbytes
48
>>> y.tolist()
[[0, 1, 2], [3, 4, 5]]
.. versionadded:: 3.3
.. versionchanged:: 3.5
The source format is no longer restricted when casting to a byte view.
.. method:: count(value, /)
Count the number of occurrences of *value*.
.. versionadded:: 3.14
.. method:: index(value, start=0, stop=sys.maxsize, /)
Return the index of the first occurrence of *value* (at or after
index *start* and before index *stop*).
Raises a :exc:`ValueError` if *value* cannot be found.
.. versionadded:: 3.14
There are also several readonly attributes available:
.. attribute:: obj
The underlying object of the memoryview::
>>> b = bytearray(b'xyz')
>>> m = memoryview(b)
>>> m.obj is b
True
.. versionadded:: 3.3
.. attribute:: nbytes
``nbytes == product(shape) * itemsize == len(m.tobytes())``. This is
the amount of space in bytes that the array would use in a contiguous
representation. It is not necessarily equal to ``len(m)``::
>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len(m)
5
>>> m.nbytes
20
>>> y = m[::2]
>>> len(y)
3
>>> y.nbytes
12
>>> len(y.tobytes())
12
Multi-dimensional arrays::
>>> import struct
>>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])
>>> x = memoryview(buf)
>>> y = x.cast('d', shape=[3,4])
>>> y.tolist()
[[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)
3
>>> y.nbytes
96
.. versionadded:: 3.3
.. attribute:: readonly
A bool indicating whether the memory is read only.
.. attribute:: format
A string containing the format (in :mod:`struct` module style) for each
element in the view. A memoryview can be created from exporters with
arbitrary format strings, but some methods (e.g. :meth:`tolist`) are
restricted to native single element formats.
.. versionchanged:: 3.3
format ``'B'`` is now handled according to the struct module syntax.
This means that ``memoryview(b'abc')[0] == b'abc'[0] == 97``.
.. attribute:: itemsize
The size in bytes of each element of the memoryview::
>>> import array, struct
>>> m = memoryview(array.array('H', [32000, 32001, 32002]))
>>> m.itemsize
2
>>> m[0]
32000
>>> struct.calcsize('H') == m.itemsize
True
.. attribute:: ndim
An integer indicating how many dimensions of a multi-dimensional array the
memory represents.
.. attribute:: shape
A tuple of integers the length of :attr:`ndim` giving the shape of the
memory as an N-dimensional array.
.. versionchanged:: 3.3
An empty tuple instead of ``None`` when ndim = 0.
.. attribute:: strides
A tuple of integers the length of :attr:`ndim` giving the size in bytes to
access each element for each dimension of the array.
.. versionchanged:: 3.3
An empty tuple instead of ``None`` when ndim = 0.
.. attribute:: suboffsets
Used internally for PIL-style arrays. The value is informational only.
.. attribute:: c_contiguous
A bool indicating whether the memory is C-:term:`contiguous`.
.. versionadded:: 3.3
.. attribute:: f_contiguous
A bool indicating whether the memory is Fortran :term:`contiguous`.
.. versionadded:: 3.3
.. attribute:: contiguous
A bool indicating whether the memory is :term:`contiguous`.
.. versionadded:: 3.3
.. _types-set:
Set Types --- :class:`set`, :class:`frozenset`
==============================================
.. index:: pair: object; set
A :dfn:`set` object is an unordered collection of distinct :term:`hashable` objects.
Common uses include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference.
(For other containers see the built-in :class:`dict`, :class:`list`,
and :class:`tuple` classes, and the :mod:`collections` module.)
Like other collections, sets support ``x in set``, ``len(set)``, and ``for x in
set``. Being an unordered collection, sets do not record element position or
order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.
There are currently two built-in set types, :class:`set` and :class:`frozenset`.
The :class:`set` type is mutable --- the contents can be changed using methods
like :meth:`~set.add` and :meth:`~set.remove`. Since it is mutable, it has no
hash value and cannot be used as either a dictionary key or as an element of
another set. The :class:`frozenset` type is immutable and :term:`hashable` ---
its contents cannot be altered after it is created; it can therefore be used as
a dictionary key or as an element of another set.
Non-empty sets (not frozensets) can be created by placing a comma-separated list
of elements within braces, for example: ``{'jack', 'sjoerd'}``, in addition to the
:class:`set` constructor.
The constructors for both classes work the same:
.. class:: set([iterable])
frozenset([iterable])
Return a new set or frozenset object whose elements are taken from
*iterable*. The elements of a set must be :term:`hashable`. To
represent sets of sets, the inner sets must be :class:`frozenset`
objects. If *iterable* is not specified, a new empty set is
returned.
Sets can be created by several means:
* Use a comma-separated list of elements within braces: ``{'jack', 'sjoerd'}``
* Use a set comprehension: ``{c for c in 'abracadabra' if c not in 'abc'}``
* Use the type constructor: ``set()``, ``set('foobar')``, ``set(['a', 'b', 'foo'])``
Instances of :class:`set` and :class:`frozenset` provide the following
operations:
.. describe:: len(s)
Return the number of elements in set *s* (cardinality of *s*).
.. describe:: x in s
Test *x* for membership in *s*.
.. describe:: x not in s
Test *x* for non-membership in *s*.
.. method:: isdisjoint(other)
Return ``True`` if the set has no elements in common with *other*. Sets are
disjoint if and only if their intersection is the empty set.
.. method:: issubset(other)
set <= other
Test whether every element in the set is in *other*.
.. method:: set < other
Test whether the set is a proper subset of *other*, that is,
``set <= other and set != other``.
.. method:: issuperset(other)
set >= other
Test whether every element in *other* is in the set.
.. method:: set > other
Test whether the set is a proper superset of *other*, that is, ``set >=
other and set != other``.
.. method:: union(*others)
set | other | ...
Return a new set with elements from the set and all others.
.. method:: intersection(*others)
set & other & ...
Return a new set with elements common to the set and all others.
.. method:: difference(*others)
set - other - ...
Return a new set with elements in the set that are not in the others.
.. method:: symmetric_difference(other)
set ^ other
Return a new set with elements in either the set or *other* but not both.
.. method:: copy()
Return a shallow copy of the set.
Note, the non-operator versions of :meth:`union`, :meth:`intersection`,
:meth:`difference`, :meth:`symmetric_difference`, :meth:`issubset`, and
:meth:`issuperset` methods will accept any iterable as an argument. In
contrast, their operator based counterparts require their arguments to be
sets. This precludes error-prone constructions like ``set('abc') & 'cbs'``
in favor of the more readable ``set('abc').intersection('cbs')``.
Both :class:`set` and :class:`frozenset` support set to set comparisons. Two
sets are equal if and only if every element of each set is contained in the
other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but
is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).
Instances of :class:`set` are compared to instances of :class:`frozenset`
based on their members. For example, ``set('abc') == frozenset('abc')``
returns ``True`` and so does ``set('abc') in set([frozenset('abc')])``.
The subset and equality comparisons do not generalize to a total ordering
function. For example, any two nonempty disjoint sets are not equal and are not
subsets of each other, so *all* of the following return ``False``: ``a<b``,
``a==b``, or ``a>b``.
Since sets only define partial ordering (subset relationships), the output of
the :meth:`list.sort` method is undefined for lists of sets.
Set elements, like dictionary keys, must be :term:`hashable`.
Binary operations that mix :class:`set` instances with :class:`frozenset`
return the type of the first operand. For example: ``frozenset('ab') |
set('bc')`` returns an instance of :class:`frozenset`.
The following table lists operations available for :class:`set` that do not
apply to immutable instances of :class:`frozenset`:
.. method:: update(*others)
set |= other | ...
Update the set, adding elements from all others.
.. method:: intersection_update(*others)
set &= other & ...
Update the set, keeping only elements found in it and all others.
.. method:: difference_update(*others)
set -= other | ...
Update the set, removing elements found in others.
.. method:: symmetric_difference_update(other)
set ^= other
Update the set, keeping only elements found in either set, but not in both.
.. method:: add(elem)
Add element *elem* to the set.
.. method:: remove(elem)
Remove element *elem* from the set. Raises :exc:`KeyError` if *elem* is
not contained in the set.
.. method:: discard(elem)
Remove element *elem* from the set if it is present.
.. method:: pop()
Remove and return an arbitrary element from the set. Raises
:exc:`KeyError` if the set is empty.
.. method:: clear()
Remove all elements from the set.
Note, the non-operator versions of the :meth:`update`,
:meth:`intersection_update`, :meth:`difference_update`, and
:meth:`symmetric_difference_update` methods will accept any iterable as an
argument.
Note, the *elem* argument to the :meth:`~object.__contains__`,
:meth:`remove`, and
:meth:`discard` methods may be a set. To support searching for an equivalent
frozenset, a temporary one is created from *elem*.
.. _typesmapping:
Mapping Types --- :class:`dict`
===============================
.. index::
pair: object; mapping
pair: object; dictionary
triple: operations on; mapping; types
triple: operations on; dictionary; type
pair: statement; del
pair: built-in function; len
A :term:`mapping` object maps :term:`hashable` values to arbitrary objects.
Mappings are mutable objects. There is currently only one standard mapping
type, the :dfn:`dictionary`. (For other containers see the built-in
:class:`list`, :class:`set`, and :class:`tuple` classes, and the
:mod:`collections` module.)
A dictionary's keys are *almost* arbitrary values. Values that are not
:term:`hashable`, that is, values containing lists, dictionaries or other
mutable types (that are compared by value rather than by object identity) may
not be used as keys.
Values that compare equal (such as ``1``, ``1.0``, and ``True``)
can be used interchangeably to index the same dictionary entry.
.. class:: dict(**kwargs)
dict(mapping, **kwargs)
dict(iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument
and a possibly empty set of keyword arguments.
Dictionaries can be created by several means:
* Use a comma-separated list of ``key: value`` pairs within braces:
``{'jack': 4098, 'sjoerd': 4127}`` or ``{4098: 'jack', 4127: 'sjoerd'}``
* Use a dict comprehension: ``{}``, ``{x: x ** 2 for x in range(10)}``
* Use the type constructor: ``dict()``,
``dict([('foo', 100), ('bar', 200)])``, ``dict(foo=100, bar=200)``
If no positional argument is given, an empty dictionary is created.
If a positional argument is given and it defines a ``keys()`` method, a
dictionary is created by calling :meth:`~object.__getitem__` on the argument with
each returned key from the method. Otherwise, the positional argument must be an
:term:`iterable` object. Each item in the iterable must itself be an iterable
with exactly two elements. The first element of each item becomes a key in the
new dictionary, and the second element the corresponding value. If a key occurs
more than once, the last value for that key becomes the corresponding value in
the new dictionary.
If keyword arguments are given, the keyword arguments and their values are
added to the dictionary created from the positional argument. If a key
being added is already present, the value from the keyword argument
replaces the value from the positional argument.
Providing keyword arguments as in the first example only works for keys that
are valid Python identifiers. Otherwise, any valid keys can be used.
Dictionaries compare equal if and only if they have the same ``(key,
value)`` pairs (regardless of ordering). Order comparisons ('<', '<=', '>=', '>') raise
:exc:`TypeError`. To illustrate dictionary creation and equality,
the following examples all return a dictionary equal to
``{"one": 1, "two": 2, "three": 3}``::
>>> a = dict(one=1, two=2, three=3)
>>> b = {'one': 1, 'two': 2, 'three': 3}
>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> f = dict({'one': 1, 'three': 3}, two=2)
>>> a == b == c == d == e == f
True
Providing keyword arguments as in the first example only works for keys that
are valid Python identifiers. Otherwise, any valid keys can be used.
Dictionaries preserve insertion order. Note that updating a key does not
affect the order. Keys added after deletion are inserted at the end. ::
>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}
>>> list(d)
['one', 'two', 'three', 'four']
>>> list(d.values())
[1, 2, 3, 4]
>>> d["one"] = 42
>>> d
{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]
>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}
.. versionchanged:: 3.7
Dictionary order is guaranteed to be insertion order. This behavior was
an implementation detail of CPython from 3.6.
These are the operations that dictionaries support (and therefore, custom
mapping types should support too):
.. describe:: list(d)
Return a list of all the keys used in the dictionary *d*.
.. describe:: len(d)
Return the number of items in the dictionary *d*.
.. describe:: d[key]
Return the item of *d* with key *key*. Raises a :exc:`KeyError` if *key* is
not in the map.
.. index:: __missing__()
If a subclass of dict defines a method :meth:`__missing__` and *key*
is not present, the ``d[key]`` operation calls that method with the key *key*
as argument. The ``d[key]`` operation then returns or raises whatever is
returned or raised by the ``__missing__(key)`` call.
No other operations or methods invoke :meth:`__missing__`. If
:meth:`__missing__` is not defined, :exc:`KeyError` is raised.
:meth:`__missing__` must be a method; it cannot be an instance variable::
>>> class Counter(dict):
... def __missing__(self, key):
... return 0
...
>>> c = Counter()
>>> c['red']
0
>>> c['red'] += 1
>>> c['red']
1
The example above shows part of the implementation of
:class:`collections.Counter`. A different ``__missing__`` method is used
by :class:`collections.defaultdict`.
.. describe:: d[key] = value
Set ``d[key]`` to *value*.
.. describe:: del d[key]
Remove ``d[key]`` from *d*. Raises a :exc:`KeyError` if *key* is not in the
map.
.. describe:: key in d
Return ``True`` if *d* has a key *key*, else ``False``.
.. describe:: key not in d
Equivalent to ``not key in d``.
.. describe:: iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut
for ``iter(d.keys())``.
.. method:: clear()
Remove all items from the dictionary.
.. method:: copy()
Return a shallow copy of the dictionary.
.. classmethod:: fromkeys(iterable, value=None, /)
Create a new dictionary with keys from *iterable* and values set to *value*.
:meth:`fromkeys` is a class method that returns a new dictionary. *value*
defaults to ``None``. All of the values refer to just a single instance,
so it generally doesn't make sense for *value* to be a mutable object
such as an empty list. To get distinct values, use a :ref:`dict
comprehension <dict>` instead.
.. method:: get(key, default=None, /)
Return the value for *key* if *key* is in the dictionary, else *default*.
If *default* is not given, it defaults to ``None``, so that this method
never raises a :exc:`KeyError`.
.. method:: items()
Return a new view of the dictionary's items (``(key, value)`` pairs).
See the :ref:`documentation of view objects <dict-views>`.
.. method:: keys()
Return a new view of the dictionary's keys. See the :ref:`documentation
of view objects <dict-views>`.
.. method:: pop(key[, default])
If *key* is in the dictionary, remove it and return its value, else return
*default*. If *default* is not given and *key* is not in the dictionary,
a :exc:`KeyError` is raised.
.. method:: popitem()
Remove and return a ``(key, value)`` pair from the dictionary.
Pairs are returned in :abbr:`LIFO (last-in, first-out)` order.
:meth:`popitem` is useful to destructively iterate over a dictionary, as
often used in set algorithms. If the dictionary is empty, calling
:meth:`popitem` raises a :exc:`KeyError`.
.. versionchanged:: 3.7
LIFO order is now guaranteed. In prior versions, :meth:`popitem` would
return an arbitrary key/value pair.
.. describe:: reversed(d)
Return a reverse iterator over the keys of the dictionary. This is a
shortcut for ``reversed(d.keys())``.
.. versionadded:: 3.8
.. method:: setdefault(key, default=None, /)
If *key* is in the dictionary, return its value. If not, insert *key*
with a value of *default* and return *default*. *default* defaults to
``None``.
.. method:: update([other])
Update the dictionary with the key/value pairs from *other*, overwriting
existing keys. Return ``None``.
:meth:`update` accepts either another object with a ``keys()`` method (in
which case :meth:`~object.__getitem__` is called with every key returned from
the method) or an iterable of key/value pairs (as tuples or other iterables
of length two). If keyword arguments are specified, the dictionary is then
updated with those key/value pairs: ``d.update(red=1, blue=2)``.
.. method:: values()
Return a new view of the dictionary's values. See the
:ref:`documentation of view objects <dict-views>`.
An equality comparison between one ``dict.values()`` view and another
will always return ``False``. This also applies when comparing
``dict.values()`` to itself::
>>> d = {'a': 1}
>>> d.values() == d.values()
False
.. describe:: d | other
Create a new dictionary with the merged keys and values of *d* and
*other*, which must both be dictionaries. The values of *other* take
priority when *d* and *other* share keys.
.. versionadded:: 3.9
.. describe:: d |= other
Update the dictionary *d* with keys and values from *other*, which may be
either a :term:`mapping` or an :term:`iterable` of key/value pairs. The
values of *other* take priority when *d* and *other* share keys.
.. versionadded:: 3.9
Dictionaries and dictionary views are reversible. ::
>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}
>>> list(reversed(d))
['four', 'three', 'two', 'one']
>>> list(reversed(d.values()))
[4, 3, 2, 1]
>>> list(reversed(d.items()))
[('four', 4), ('three', 3), ('two', 2), ('one', 1)]
.. versionchanged:: 3.8
Dictionaries are now reversible.
.. seealso::
:class:`types.MappingProxyType` can be used to create a read-only view
of a :class:`dict`.
.. _dict-views:
Dictionary view objects
-----------------------
The objects returned by :meth:`dict.keys`, :meth:`dict.values` and
:meth:`dict.items` are *view objects*. They provide a dynamic view on the
dictionary's entries, which means that when the dictionary changes, the view
reflects these changes.
Dictionary views can be iterated over to yield their respective data, and
support membership tests:
.. describe:: len(dictview)
Return the number of entries in the dictionary.
.. describe:: iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of
``(key, value)``) in the dictionary.
Keys and values are iterated over in insertion order.
This allows the creation of ``(value, key)`` pairs
using :func:`zip`: ``pairs = zip(d.values(), d.keys())``. Another way to
create the same list is ``pairs = [(v, k) for (k, v) in d.items()]``.
Iterating views while adding or deleting entries in the dictionary may raise
a :exc:`RuntimeError` or fail to iterate over all entries.
.. versionchanged:: 3.7
Dictionary order is guaranteed to be insertion order.
.. describe:: x in dictview
Return ``True`` if *x* is in the underlying dictionary's keys, values or
items (in the latter case, *x* should be a ``(key, value)`` tuple).
.. describe:: reversed(dictview)
Return a reverse iterator over the keys, values or items of the dictionary.
The view will be iterated in reverse order of the insertion.
.. versionchanged:: 3.8
Dictionary views are now reversible.
.. describe:: dictview.mapping
Return a :class:`types.MappingProxyType` that wraps the original
dictionary to which the view refers.
.. versionadded:: 3.10
Keys views are set-like since their entries are unique and :term:`hashable`.
Items views also have set-like operations since the (key, value) pairs
are unique and the keys are hashable.
If all values in an items view are hashable as well,
then the items view can interoperate with other sets.
(Values views are not treated as set-like
since the entries are generally not unique.) For set-like views, all of the
operations defined for the abstract base class :class:`collections.abc.Set` are
available (for example, ``==``, ``<``, or ``^``). While using set operators,
set-like views accept any iterable as the other operand,
unlike sets which only accept sets as the input.
An example of dictionary view usage::
>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()
>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
...
>>> print(n)
504
>>> # keys and values are iterated over in the same order (insertion order)
>>> list(keys)
['eggs', 'sausage', 'bacon', 'spam']
>>> list(values)
[2, 1, 1, 500]
>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['bacon', 'spam']
>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
>>> keys ^ {'sausage', 'juice'} == {'juice', 'sausage', 'bacon', 'spam'}
True
>>> keys | ['juice', 'juice', 'juice'] == {'bacon', 'spam', 'juice'}
True
>>> # get back a read-only proxy for the original dictionary
>>> values.mapping
mappingproxy({'bacon': 1, 'spam': 500})
>>> values.mapping['spam']
500
.. _typecontextmanager:
Context Manager Types
=====================
.. index::
single: context manager
single: context management protocol
single: protocol; context management
Python's :keyword:`with` statement supports the concept of a runtime context
defined by a context manager. This is implemented using a pair of methods
that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends:
.. method:: contextmanager.__enter__()
Enter the runtime context and return either this object or another object
related to the runtime context. The value returned by this method is bound to
the identifier in the :keyword:`!as` clause of :keyword:`with` statements using
this context manager.
An example of a context manager that returns itself is a :term:`file object`.
File objects return themselves from __enter__() to allow :func:`open` to be
used as the context expression in a :keyword:`with` statement.
An example of a context manager that returns a related object is the one
returned by :func:`decimal.localcontext`. These managers set the active
decimal context to a copy of the original decimal context and then return the
copy. This allows changes to be made to the current decimal context in the body
of the :keyword:`with` statement without affecting code outside the
:keyword:`!with` statement.
.. method:: contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception
that occurred should be suppressed. If an exception occurred while executing the
body of the :keyword:`with` statement, the arguments contain the exception type,
value and traceback information. Otherwise, all three arguments are ``None``.
Returning a true value from this method will cause the :keyword:`with` statement
to suppress the exception and continue execution with the statement immediately
following the :keyword:`!with` statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur
during execution of this method will replace any exception that occurred in the
body of the :keyword:`!with` statement.
The exception passed in should never be reraised explicitly - instead, this
method should return a false value to indicate that the method completed
successfully and does not want to suppress the raised exception. This allows
context management code to easily detect whether or not an :meth:`~object.__exit__`
method has actually failed.
Python defines several context managers to support easy thread synchronisation,
prompt closure of files or other objects, and simpler manipulation of the active
decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the
:mod:`contextlib` module for some examples.
Python's :term:`generator`\s and the :class:`contextlib.contextmanager` decorator
provide a convenient way to implement these protocols. If a generator function is
decorated with the :class:`contextlib.contextmanager` decorator, it will return a
context manager implementing the necessary :meth:`~contextmanager.__enter__` and
:meth:`~contextmanager.__exit__` methods, rather than the iterator produced by an
undecorated generator function.
Note that there is no specific slot for any of these methods in the type
structure for Python objects in the Python/C API. Extension types wanting to
define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a
single class dictionary lookup is negligible.
Type Annotation Types --- :ref:`Generic Alias <types-genericalias>`, :ref:`Union <types-union>`
===============================================================================================
.. index::
single: annotation; type annotation; type hint
The core built-in types for :term:`type annotations <annotation>` are
:ref:`Generic Alias <types-genericalias>` and :ref:`Union <types-union>`.
.. _types-genericalias:
Generic Alias Type
------------------
.. index::
pair: object; GenericAlias
pair: Generic; Alias
``GenericAlias`` objects are generally created by
:ref:`subscripting <subscriptions>` a class. They are most often used with
:ref:`container classes <sequence-types>`, such as :class:`list` or
:class:`dict`. For example, ``list[int]`` is a ``GenericAlias`` object created
by subscripting the ``list`` class with the argument :class:`int`.
``GenericAlias`` objects are intended primarily for use with
:term:`type annotations <annotation>`.
.. note::
It is generally only possible to subscript a class if the class implements
the special method :meth:`~object.__class_getitem__`.
A ``GenericAlias`` object acts as a proxy for a :term:`generic type`,
implementing *parameterized generics*.
For a container class, the
argument(s) supplied to a :ref:`subscription <subscriptions>` of the class may
indicate the type(s) of the elements an object contains. For example,
``set[bytes]`` can be used in type annotations to signify a :class:`set` in
which all the elements are of type :class:`bytes`.
For a class which defines :meth:`~object.__class_getitem__` but is not a
container, the argument(s) supplied to a subscription of the class will often
indicate the return type(s) of one or more methods defined on an object. For
example, :mod:`regular expressions <re>` can be used on both the :class:`str` data
type and the :class:`bytes` data type:
* If ``x = re.search('foo', 'foo')``, ``x`` will be a
:ref:`re.Match <match-objects>` object where the return values of
``x.group(0)`` and ``x[0]`` will both be of type :class:`str`. We can
represent this kind of object in type annotations with the ``GenericAlias``
``re.Match[str]``.
* If ``y = re.search(b'bar', b'bar')``, (note the ``b`` for :class:`bytes`),
``y`` will also be an instance of ``re.Match``, but the return
values of ``y.group(0)`` and ``y[0]`` will both be of type
:class:`bytes`. In type annotations, we would represent this
variety of :ref:`re.Match <match-objects>` objects with ``re.Match[bytes]``.
``GenericAlias`` objects are instances of the class
:class:`types.GenericAlias`, which can also be used to create ``GenericAlias``
objects directly.
.. describe:: T[X, Y, ...]
Creates a ``GenericAlias`` representing a type ``T`` parameterized by types
*X*, *Y*, and more depending on the ``T`` used.
For example, a function expecting a :class:`list` containing
:class:`float` elements::
def average(values: list[float]) -> float:
return sum(values) / len(values)
Another example for :term:`mapping` objects, using a :class:`dict`, which
is a generic type expecting two type parameters representing the key type
and the value type. In this example, the function expects a ``dict`` with
keys of type :class:`str` and values of type :class:`int`::
def send_post_request(url: str, body: dict[str, int]) -> None:
...
The builtin functions :func:`isinstance` and :func:`issubclass` do not accept
``GenericAlias`` types for their second argument::
>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance() argument 2 cannot be a parameterized generic
The Python runtime does not enforce :term:`type annotations <annotation>`.
This extends to generic types and their type parameters. When creating
a container object from a ``GenericAlias``, the elements in the container are not checked
against their type. For example, the following code is discouraged, but will
run without errors::
>>> t = list[str]
>>> t([1, 2, 3])
[1, 2, 3]
Furthermore, parameterized generics erase type parameters during object
creation::
>>> t = list[str]
>>> type(t)
<class 'types.GenericAlias'>
>>> l = t()
>>> type(l)
<class 'list'>
Calling :func:`repr` or :func:`str` on a generic shows the parameterized type::
>>> repr(list[int])
'list[int]'
>>> str(list[int])
'list[int]'
The :meth:`~object.__getitem__` method of generic containers will raise an
exception to disallow mistakes like ``dict[str][str]``::
>>> dict[str][str]
Traceback (most recent call last):
...
TypeError: dict[str] is not a generic class
However, such expressions are valid when :ref:`type variables <generics>` are
used. The index must have as many elements as there are type variable items
in the ``GenericAlias`` object's :attr:`~genericalias.__args__`. ::
>>> from typing import TypeVar
>>> Y = TypeVar('Y')
>>> dict[str, Y][int]
dict[str, int]
Standard Generic Classes
^^^^^^^^^^^^^^^^^^^^^^^^
The following standard library classes support parameterized generics. This
list is non-exhaustive.
* :class:`tuple`
* :class:`list`
* :class:`dict`
* :class:`set`
* :class:`frozenset`
* :class:`type`
* :class:`asyncio.Future`
* :class:`asyncio.Task`
* :class:`collections.deque`
* :class:`collections.defaultdict`
* :class:`collections.OrderedDict`
* :class:`collections.Counter`
* :class:`collections.ChainMap`
* :class:`collections.abc.Awaitable`
* :class:`collections.abc.Coroutine`
* :class:`collections.abc.AsyncIterable`
* :class:`collections.abc.AsyncIterator`
* :class:`collections.abc.AsyncGenerator`
* :class:`collections.abc.Iterable`
* :class:`collections.abc.Iterator`
* :class:`collections.abc.Generator`
* :class:`collections.abc.Reversible`
* :class:`collections.abc.Container`
* :class:`collections.abc.Collection`
* :class:`collections.abc.Callable`
* :class:`collections.abc.Set`
* :class:`collections.abc.MutableSet`
* :class:`collections.abc.Mapping`
* :class:`collections.abc.MutableMapping`
* :class:`collections.abc.Sequence`
* :class:`collections.abc.MutableSequence`
* :class:`collections.abc.MappingView`
* :class:`collections.abc.KeysView`
* :class:`collections.abc.ItemsView`
* :class:`collections.abc.ValuesView`
* :class:`contextlib.AbstractContextManager`
* :class:`contextlib.AbstractAsyncContextManager`
* :class:`dataclasses.Field`
* :class:`functools.cached_property`
* :class:`functools.partialmethod`
* :class:`os.PathLike`
* :class:`queue.LifoQueue`
* :class:`queue.Queue`
* :class:`queue.PriorityQueue`
* :class:`queue.SimpleQueue`
* :ref:`re.Pattern <re-objects>`
* :ref:`re.Match <match-objects>`
* :class:`shelve.BsdDbShelf`
* :class:`shelve.DbfilenameShelf`
* :class:`shelve.Shelf`
* :class:`types.MappingProxyType`
* :class:`weakref.WeakKeyDictionary`
* :class:`weakref.WeakMethod`
* :class:`weakref.WeakSet`
* :class:`weakref.WeakValueDictionary`
Special Attributes of ``GenericAlias`` objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All parameterized generics implement special read-only attributes.
.. attribute:: genericalias.__origin__
This attribute points at the non-parameterized generic class::
>>> list[int].__origin__
<class 'list'>
.. attribute:: genericalias.__args__
This attribute is a :class:`tuple` (possibly of length 1) of generic
types passed to the original :meth:`~object.__class_getitem__` of the
generic class::
>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])
.. attribute:: genericalias.__parameters__
This attribute is a lazily computed tuple (possibly empty) of unique type
variables found in ``__args__``::
>>> from typing import TypeVar
>>> T = TypeVar('T')
>>> list[T].__parameters__
(~T,)
.. note::
A ``GenericAlias`` object with :class:`typing.ParamSpec` parameters may not
have correct ``__parameters__`` after substitution because
:class:`typing.ParamSpec` is intended primarily for static type checking.
.. attribute:: genericalias.__unpacked__
A boolean that is true if the alias has been unpacked using the
``*`` operator (see :data:`~typing.TypeVarTuple`).
.. versionadded:: 3.11
.. seealso::
:pep:`484` - Type Hints
Introducing Python's framework for type annotations.
:pep:`585` - Type Hinting Generics In Standard Collections
Introducing the ability to natively parameterize standard-library
classes, provided they implement the special class method
:meth:`~object.__class_getitem__`.
:ref:`Generics`, :ref:`user-defined generics <user-defined-generics>` and :class:`typing.Generic`
Documentation on how to implement generic classes that can be
parameterized at runtime and understood by static type-checkers.
.. versionadded:: 3.9
.. _types-union:
Union Type
----------
.. index::
pair: object; Union
pair: union; type
A union object holds the value of the ``|`` (bitwise or) operation on
multiple :ref:`type objects <bltin-type-objects>`. These types are intended
primarily for :term:`type annotations <annotation>`. The union type expression
enables cleaner type hinting syntax compared to subscripting :class:`typing.Union`.
.. describe:: X | Y | ...
Defines a union object which holds types *X*, *Y*, and so forth. ``X | Y``
means either X or Y. It is equivalent to ``typing.Union[X, Y]``.
For example, the following function expects an argument of type
:class:`int` or :class:`float`::
def square(number: int | float) -> int | float:
return number ** 2
.. note::
The ``|`` operand cannot be used at runtime to define unions where one or
more members is a forward reference. For example, ``int | "Foo"``, where
``"Foo"`` is a reference to a class not yet defined, will fail at
runtime. For unions which include forward references, present the
whole expression as a string, e.g. ``"int | Foo"``.
.. describe:: union_object == other
Union objects can be tested for equality with other union objects. Details:
* Unions of unions are flattened::
(int | str) | float == int | str | float
* Redundant types are removed::
int | str | int == int | str
* When comparing unions, the order is ignored::
int | str == str | int
* It creates instances of :class:`typing.Union`::
int | str == typing.Union[int, str]
type(int | str) is typing.Union
* Optional types can be spelled as a union with ``None``::
str | None == typing.Optional[str]
.. describe:: isinstance(obj, union_object)
.. describe:: issubclass(obj, union_object)
Calls to :func:`isinstance` and :func:`issubclass` are also supported with a
union object::
>>> isinstance("", int | str)
True
However, :ref:`parameterized generics <types-genericalias>` in
union objects cannot be checked::
>>> isinstance(1, int | list[int]) # short-circuit evaluation
True
>>> isinstance([1], int | list[int])
Traceback (most recent call last):
...
TypeError: isinstance() argument 2 cannot be a parameterized generic
The user-exposed type for the union object can be accessed from
:class:`typing.Union` and used for :func:`isinstance` checks::
>>> import typing
>>> isinstance(int | str, typing.Union)
True
>>> typing.Union()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'typing.Union' instances
.. note::
The :meth:`!__or__` method for type objects was added to support the syntax
``X | Y``. If a metaclass implements :meth:`!__or__`, the Union may
override it:
.. doctest::
>>> class M(type):
... def __or__(self, other):
... return "Hello"
...
>>> class C(metaclass=M):
... pass
...
>>> C | int
'Hello'
>>> int | C
int | C
.. seealso::
:pep:`604` -- PEP proposing the ``X | Y`` syntax and the Union type.
.. versionadded:: 3.10
.. versionchanged:: 3.14
Union objects are now instances of :class:`typing.Union`. Previously, they were instances
of :class:`types.UnionType`, which remains an alias for :class:`typing.Union`.
.. _typesother:
Other Built-in Types
====================
The interpreter supports several other kinds of objects. Most of these support
only one or two operations.
.. _typesmodules:
Modules
-------
The only special operation on a module is attribute access: ``m.name``, where
*m* is a module and *name* accesses a name defined in *m*'s symbol table.
Module attributes can be assigned to. (Note that the :keyword:`import`
statement is not, strictly speaking, an operation on a module object; ``import
foo`` does not require a module object named *foo* to exist, rather it requires
an (external) *definition* for a module named *foo* somewhere.)
A special attribute of every module is :attr:`~object.__dict__`. This is the
dictionary containing the module's symbol table. Modifying this dictionary will
actually change the module's symbol table, but direct assignment to the
:attr:`~object.__dict__` attribute is not possible (you can write
``m.__dict__['a'] = 1``, which defines ``m.a`` to be ``1``, but you can't write
``m.__dict__ = {}``). Modifying :attr:`~object.__dict__` directly is
not recommended.
Modules built into the interpreter are written like this: ``<module 'sys'
(built-in)>``. If loaded from a file, they are written as ``<module 'os' from
'/usr/local/lib/pythonX.Y/os.pyc'>``.
.. _typesobjects:
Classes and Class Instances
---------------------------
See :ref:`objects` and :ref:`class` for these.
.. _typesfunctions:
Functions
---------
Function objects are created by function definitions. The only operation on a
function object is to call it: ``func(argument-list)``.
There are really two flavors of function objects: built-in functions and
user-defined functions. Both support the same operation (to call the function),
but the implementation is different, hence the different object types.
See :ref:`function` for more information.
.. _typesmethods:
Methods
-------
.. index:: pair: object; method
Methods are functions that are called using the attribute notation. There are
two flavors: :ref:`built-in methods <builtin-methods>` (such as :meth:`append`
on lists) and :ref:`class instance method <instance-methods>`.
Built-in methods are described with the types that support them.
If you access a method (a function defined in a class namespace) through an
instance, you get a special object: a :dfn:`bound method` (also called
:ref:`instance method <instance-methods>`) object. When called, it will add
the ``self`` argument
to the argument list. Bound methods have two special read-only attributes:
:attr:`m.__self__ <method.__self__>` is the object on which the method
operates, and :attr:`m.__func__ <method.__func__>` is
the function implementing the method. Calling ``m(arg-1, arg-2, ..., arg-n)``
is completely equivalent to calling ``m.__func__(m.__self__, arg-1, arg-2, ...,
arg-n)``.
Like :ref:`function objects <user-defined-funcs>`, bound method objects support
getting arbitrary
attributes. However, since method attributes are actually stored on the
underlying function object (:attr:`method.__func__`), setting method attributes on
bound methods is disallowed. Attempting to set an attribute on a method
results in an :exc:`AttributeError` being raised. In order to set a method
attribute, you need to explicitly set it on the underlying function object:
.. doctest::
>>> class C:
... def method(self):
... pass
...
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.__func__.whoami = 'my name is method'
>>> c.method.whoami
'my name is method'
See :ref:`instance-methods` for more information.
.. index:: object; code, code object
.. _bltin-code-objects:
Code Objects
------------
.. index::
pair: built-in function; compile
single: __code__ (function object attribute)
Code objects are used by the implementation to represent "pseudo-compiled"
executable Python code such as a function body. They differ from function
objects because they don't contain a reference to their global execution
environment. Code objects are returned by the built-in :func:`compile` function
and can be extracted from function objects through their
:attr:`~function.__code__` attribute. See also the :mod:`code` module.
Accessing :attr:`~function.__code__` raises an :ref:`auditing event <auditing>`
``object.__getattr__`` with arguments ``obj`` and ``"__code__"``.
.. index::
pair: built-in function; exec
pair: built-in function; eval
A code object can be executed or evaluated by passing it (instead of a source
string) to the :func:`exec` or :func:`eval` built-in functions.
See :ref:`types` for more information.
.. _bltin-type-objects:
Type Objects
------------
.. index::
pair: built-in function; type
pair: module; types
Type objects represent the various object types. An object's type is accessed
by the built-in function :func:`type`. There are no special operations on
types. The standard module :mod:`types` defines names for all standard built-in
types.
Types are written like this: ``<class 'int'>``.
.. _bltin-null-object:
The Null Object
---------------
This object is returned by functions that don't explicitly return a value. It
supports no special operations. There is exactly one null object, named
``None`` (a built-in name). ``type(None)()`` produces the same singleton.
It is written as ``None``.
.. index:: single: ...; ellipsis literal
.. _bltin-ellipsis-object:
The Ellipsis Object
-------------------
This object is commonly used by slicing (see :ref:`slicings`). It supports no
special operations. There is exactly one ellipsis object, named
:const:`Ellipsis` (a built-in name). ``type(Ellipsis)()`` produces the
:const:`Ellipsis` singleton.
It is written as ``Ellipsis`` or ``...``.
.. _bltin-notimplemented-object:
The NotImplemented Object
-------------------------
This object is returned from comparisons and binary operations when they are
asked to operate on types they don't support. See :ref:`comparisons` for more
information. There is exactly one :data:`NotImplemented` object.
:code:`type(NotImplemented)()` produces the singleton instance.
It is written as :code:`NotImplemented`.
.. _typesinternal:
Internal Objects
----------------
See :ref:`types` for this information. It describes
:ref:`stack frame objects <frame-objects>`,
:ref:`traceback objects <traceback-objects>`, and slice objects.
.. _specialattrs:
Special Attributes
==================
The implementation adds a few special read-only attributes to several object
types, where they are relevant. Some of these are not reported by the
:func:`dir` built-in function.
.. attribute:: definition.__name__
The name of the class, function, method, descriptor, or
generator instance.
.. attribute:: definition.__qualname__
The :term:`qualified name` of the class, function, method, descriptor,
or generator instance.
.. versionadded:: 3.3
.. attribute:: definition.__module__
The name of the module in which a class or function was defined.
.. attribute:: definition.__doc__
The documentation string of a class or function, or ``None`` if undefined.
.. attribute:: definition.__type_params__
The :ref:`type parameters <type-params>` of generic classes, functions,
and :ref:`type aliases <type-aliases>`. For classes and functions that
are not generic, this will be an empty tuple.
.. versionadded:: 3.12
.. _int_max_str_digits:
Integer string conversion length limitation
===========================================
CPython has a global limit for converting between :class:`int` and :class:`str`
to mitigate denial of service attacks. This limit *only* applies to decimal or
other non-power-of-two number bases. Hexadecimal, octal, and binary conversions
are unlimited. The limit can be configured.
The :class:`int` type in CPython is an arbitrary length number stored in binary
form (commonly known as a "bignum"). There exists no algorithm that can convert
a string to a binary integer or a binary integer to a string in linear time,
*unless* the base is a power of 2. Even the best known algorithms for base 10
have sub-quadratic complexity. Converting a large value such as ``int('1' *
500_000)`` can take over a second on a fast CPU.
Limiting conversion size offers a practical way to avoid :cve:`2020-10735`.
The limit is applied to the number of digit characters in the input or output
string when a non-linear conversion algorithm would be involved. Underscores
and the sign are not counted towards the limit.
When an operation would exceed the limit, a :exc:`ValueError` is raised:
.. doctest::
>>> import sys
>>> sys.set_int_max_str_digits(4300) # Illustrative, this is the default.
>>> _ = int('2' * 5432)
Traceback (most recent call last):
...
ValueError: Exceeds the limit (4300 digits) for integer string conversion: value has 5432 digits; use sys.set_int_max_str_digits() to increase the limit
>>> i = int('2' * 4300)
>>> len(str(i))
4300
>>> i_squared = i*i
>>> len(str(i_squared))
Traceback (most recent call last):
...
ValueError: Exceeds the limit (4300 digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit
>>> len(hex(i_squared))
7144
>>> assert int(hex(i_squared), base=16) == i*i # Hexadecimal is unlimited.
The default limit is 4300 digits as provided in
:data:`sys.int_info.default_max_str_digits <sys.int_info>`.
The lowest limit that can be configured is 640 digits as provided in
:data:`sys.int_info.str_digits_check_threshold <sys.int_info>`.
Verification:
.. doctest::
>>> import sys
>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info
>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info
>>> msg = int('578966293710682886880994035146873798396722250538762761564'
... '9252925514383915483333812743580549779436104706260696366600'
... '571186405732').to_bytes(53, 'big')
...
.. versionadded:: 3.11
Affected APIs
-------------
The limitation only applies to potentially slow conversions between :class:`int`
and :class:`str` or :class:`bytes`:
* ``int(string)`` with default base 10.
* ``int(string, base)`` for all bases that are not a power of 2.
* ``str(integer)``.
* ``repr(integer)``.
* any other string conversion to base 10, for example ``f"{integer}"``,
``"{}".format(integer)``, or ``b"%d" % integer``.
The limitations do not apply to functions with a linear algorithm:
* ``int(string, base)`` with base 2, 4, 8, 16, or 32.
* :func:`int.from_bytes` and :func:`int.to_bytes`.
* :func:`hex`, :func:`oct`, :func:`bin`.
* :ref:`formatspec` for hex, octal, and binary numbers.
* :class:`str` to :class:`float`.
* :class:`str` to :class:`decimal.Decimal`.
Configuring the limit
---------------------
Before Python starts up you can use an environment variable or an interpreter
command line flag to configure the limit:
* :envvar:`PYTHONINTMAXSTRDIGITS`, e.g.
``PYTHONINTMAXSTRDIGITS=640 python3`` to set the limit to 640 or
``PYTHONINTMAXSTRDIGITS=0 python3`` to disable the limitation.
* :option:`-X int_max_str_digits <-X>`, e.g.
``python3 -X int_max_str_digits=640``
* :data:`sys.flags.int_max_str_digits` contains the value of
:envvar:`PYTHONINTMAXSTRDIGITS` or :option:`-X int_max_str_digits <-X>`.
If both the env var and the ``-X`` option are set, the ``-X`` option takes
precedence. A value of *-1* indicates that both were unset, thus a value of
:data:`sys.int_info.default_max_str_digits` was used during initialization.
From code, you can inspect the current limit and set a new one using these
:mod:`sys` APIs:
* :func:`sys.get_int_max_str_digits` and :func:`sys.set_int_max_str_digits` are
a getter and setter for the interpreter-wide limit. Subinterpreters have
their own limit.
Information about the default and minimum can be found in :data:`sys.int_info`:
* :data:`sys.int_info.default_max_str_digits <sys.int_info>` is the compiled-in
default limit.
* :data:`sys.int_info.str_digits_check_threshold <sys.int_info>` is the lowest
accepted value for the limit (other than 0 which disables it).
.. versionadded:: 3.11
.. caution::
Setting a low limit *can* lead to problems. While rare, code exists that
contains integer constants in decimal in their source that exceed the
minimum threshold. A consequence of setting the limit is that Python source
code containing decimal integer literals longer than the limit will
encounter an error during parsing, usually at startup time or import time or
even at installation time - anytime an up to date ``.pyc`` does not already
exist for the code. A workaround for source that contains such large
constants is to convert them to ``0x`` hexadecimal form as it has no limit.
Test your application thoroughly if you use a low limit. Ensure your tests
run with the limit set early via the environment or flag so that it applies
during startup and even during any installation step that may invoke Python
to precompile ``.py`` sources to ``.pyc`` files.
Recommended configuration
-------------------------
The default :data:`sys.int_info.default_max_str_digits` is expected to be
reasonable for most applications. If your application requires a different
limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.12.
Example::
>>> import sys
>>> if hasattr(sys, "set_int_max_str_digits"):
... upper_bound = 68000
... lower_bound = 4004
... current_limit = sys.get_int_max_str_digits()
... if current_limit == 0 or current_limit > upper_bound:
... sys.set_int_max_str_digits(upper_bound)
... elif current_limit < lower_bound:
... sys.set_int_max_str_digits(lower_bound)
If you need to disable it entirely, set it to ``0``.
.. rubric:: Footnotes
.. [1] Additional information on these special methods may be found in the Python
Reference Manual (:ref:`customization`).
.. [2] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
similarly for tuples.
.. [3] They must have since the parser can't tell the type of the operands.
.. [4] Cased characters are those with general category property being one of
"Lu" (Letter, uppercase), "Ll" (Letter, lowercase), or "Lt" (Letter, titlecase).
.. [5] To format only a tuple you should therefore provide a singleton tuple whose only
element is the tuple to be formatted.
|