1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
|
=========================================
:mod:`!typing` --- Support for type hints
=========================================
.. testsetup:: *
import typing
from dataclasses import dataclass
from typing import *
.. module:: typing
:synopsis: Support for type hints (see :pep:`484`).
.. versionadded:: 3.5
**Source code:** :source:`Lib/typing.py`
.. note::
The Python runtime does not enforce function and variable type annotations.
They can be used by third party tools such as :term:`type checkers <static type checker>`,
IDEs, linters, etc.
--------------
This module provides runtime support for type hints.
Consider the function below::
def surface_area_of_cube(edge_length: float) -> str:
return f"The surface area of the cube is {6 * edge_length ** 2}."
The function ``surface_area_of_cube`` takes an argument expected to
be an instance of :class:`float`, as indicated by the :term:`type hint`
``edge_length: float``. The function is expected to return an instance
of :class:`str`, as indicated by the ``-> str`` hint.
While type hints can be simple classes like :class:`float` or :class:`str`,
they can also be more complex. The :mod:`typing` module provides a vocabulary of
more advanced type hints.
New features are frequently added to the ``typing`` module.
The :pypi:`typing_extensions` package
provides backports of these new features to older versions of Python.
.. seealso::
`"Typing cheat sheet" <https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html>`_
A quick overview of type hints (hosted at the mypy docs)
"Type System Reference" section of `the mypy docs <https://mypy.readthedocs.io/en/stable/index.html>`_
The Python typing system is standardised via PEPs, so this reference
should broadly apply to most Python type checkers. (Some parts may still
be specific to mypy.)
`"Static Typing with Python" <https://typing.python.org/en/latest/>`_
Type-checker-agnostic documentation written by the community detailing
type system features, useful typing related tools and typing best
practices.
.. _relevant-peps:
Specification for the Python Type System
========================================
The canonical, up-to-date specification of the Python type system can be
found at `"Specification for the Python type system" <https://typing.python.org/en/latest/spec/index.html>`_.
.. _type-aliases:
Type aliases
============
A type alias is defined using the :keyword:`type` statement, which creates
an instance of :class:`TypeAliasType`. In this example,
``Vector`` and ``list[float]`` will be treated equivalently by static type
checkers::
type Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
Type aliases are useful for simplifying complex type signatures. For example::
from collections.abc import Sequence
type ConnectionOptions = dict[str, str]
type Address = tuple[str, int]
type Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]
) -> None:
...
The :keyword:`type` statement is new in Python 3.12. For backwards
compatibility, type aliases can also be created through simple assignment::
Vector = list[float]
Or marked with :data:`TypeAlias` to make it explicit that this is a type alias,
not a normal variable assignment::
from typing import TypeAlias
Vector: TypeAlias = list[float]
.. _distinct:
NewType
=======
Use the :class:`NewType` helper to create distinct types::
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
The static type checker will treat the new type as if it were a subclass
of the original type. This is useful in helping catch logical errors::
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
You may still perform all ``int`` operations on a variable of type ``UserId``,
but the result will always be of type ``int``. This lets you pass in a
``UserId`` wherever an ``int`` might be expected, but will prevent you from
accidentally creating a ``UserId`` in an invalid way::
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Note that these checks are enforced only by the static type checker. At runtime,
the statement ``Derived = NewType('Derived', Base)`` will make ``Derived`` a
callable that immediately returns whatever parameter you pass it. That means
the expression ``Derived(some_value)`` does not create a new class or introduce
much overhead beyond that of a regular function call.
More precisely, the expression ``some_value is Derived(some_value)`` is always
true at runtime.
It is invalid to create a subtype of ``Derived``::
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
However, it is possible to create a :class:`NewType` based on a 'derived' ``NewType``::
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
and typechecking for ``ProUserId`` will work as expected.
See :pep:`484` for more details.
.. note::
Recall that the use of a type alias declares two types to be *equivalent* to
one another. Doing ``type Alias = Original`` will make the static type checker
treat ``Alias`` as being *exactly equivalent* to ``Original`` in all cases.
This is useful when you want to simplify complex type signatures.
In contrast, ``NewType`` declares one type to be a *subtype* of another.
Doing ``Derived = NewType('Derived', Original)`` will make the static type
checker treat ``Derived`` as a *subclass* of ``Original``, which means a
value of type ``Original`` cannot be used in places where a value of type
``Derived`` is expected. This is useful when you want to prevent logic
errors with minimal runtime cost.
.. versionadded:: 3.5.2
.. versionchanged:: 3.10
``NewType`` is now a class rather than a function. As a result, there is
some additional runtime cost when calling ``NewType`` over a regular
function.
.. versionchanged:: 3.11
The performance of calling ``NewType`` has been restored to its level in
Python 3.9.
.. _annotating-callables:
Annotating callable objects
===========================
Functions -- or other :term:`callable` objects -- can be annotated using
:class:`collections.abc.Callable` or deprecated :data:`typing.Callable`.
``Callable[[int], str]`` signifies a function that takes a single parameter
of type :class:`int` and returns a :class:`str`.
For example:
.. testcode::
from collections.abc import Callable, Awaitable
def feeder(get_next_item: Callable[[], str]) -> None:
... # Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
... # Body
async def on_update(value: str) -> None:
... # Body
callback: Callable[[str], Awaitable[None]] = on_update
The subscription syntax must always be used with exactly two values: the
argument list and the return type. The argument list must be a list of types,
a :class:`ParamSpec`, :data:`Concatenate`, or an ellipsis. The return type must
be a single type.
If a literal ellipsis ``...`` is given as the argument list, it indicates that
a callable with any arbitrary parameter list would be acceptable:
.. testcode::
def concat(x: str, y: str) -> str:
return x + y
x: Callable[..., str]
x = str # OK
x = concat # Also OK
``Callable`` cannot express complex signatures such as functions that take a
variadic number of arguments, :ref:`overloaded functions <overload>`, or
functions that have keyword-only parameters. However, these signatures can be
expressed by defining a :class:`Protocol` class with a
:meth:`~object.__call__` method:
.. testcode::
from collections.abc import Iterable
from typing import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
...
def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
Callables which take other callables as arguments may indicate that their
parameter types are dependent on each other using :class:`ParamSpec`.
Additionally, if that callable adds or removes arguments from other
callables, the :data:`Concatenate` operator may be used. They
take the form ``Callable[ParamSpecVariable, ReturnType]`` and
``Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]``
respectively.
.. versionchanged:: 3.10
``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
See :pep:`612` for more details.
.. seealso::
The documentation for :class:`ParamSpec` and :class:`Concatenate` provides
examples of usage in ``Callable``.
.. _generics:
Generics
========
Since type information about objects kept in containers cannot be statically
inferred in a generic way, many container classes in the standard library support
subscription to denote the expected types of container elements.
.. testcode::
from collections.abc import Mapping, Sequence
class Employee: ...
# Sequence[Employee] indicates that all elements in the sequence
# must be instances of "Employee".
# Mapping[str, str] indicates that all keys and all values in the mapping
# must be strings.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generic functions and classes can be parameterized by using
:ref:`type parameter syntax <type-params>`::
from collections.abc import Sequence
def first[T](l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"
return l[0]
Or by using the :class:`TypeVar` factory directly::
from collections.abc import Sequence
from typing import TypeVar
U = TypeVar('U') # Declare type variable "U"
def second(l: Sequence[U]) -> U: # Function is generic over the TypeVar "U"
return l[1]
.. versionchanged:: 3.12
Syntactic support for generics is new in Python 3.12.
.. _annotating-tuples:
Annotating tuples
=================
For most containers in Python, the typing system assumes that all elements in
the container will be of the same type. For example::
from collections.abc import Mapping
# Type checker will infer that all elements in ``x`` are meant to be ints
x: list[int] = []
# Type checker error: ``list`` only accepts a single type argument:
y: list[int, str] = [1, 'foo']
# Type checker will infer that all keys in ``z`` are meant to be strings,
# and that all values in ``z`` are meant to be either strings or ints
z: Mapping[str, str | int] = {}
:class:`list` only accepts one type argument, so a type checker would emit an
error on the ``y`` assignment above. Similarly,
:class:`~collections.abc.Mapping` only accepts two type arguments: the first
indicates the type of the keys, and the second indicates the type of the
values.
Unlike most other Python containers, however, it is common in idiomatic Python
code for tuples to have elements which are not all of the same type. For this
reason, tuples are special-cased in Python's typing system. :class:`tuple`
accepts *any number* of type arguments::
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
x: tuple[int] = (5,)
# OK: ``y`` is assigned to a tuple of length 2;
# element 1 is an int, element 2 is a str
y: tuple[int, str] = (5, "foo")
# Error: the type annotation indicates a tuple of length 1,
# but ``z`` has been assigned to a tuple of length 3
z: tuple[int] = (1, 2, 3)
To denote a tuple which could be of *any* length, and in which all elements are
of the same type ``T``, use ``tuple[T, ...]``. To denote an empty tuple, use
``tuple[()]``. Using plain ``tuple`` as an annotation is equivalent to using
``tuple[Any, ...]``::
x: tuple[int, ...] = (1, 2)
# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
x = (1, 2, 3)
x = ()
# This reassignment is an error: all elements in ``x`` must be ints
x = ("foo", "bar")
# ``y`` can only ever be assigned to an empty tuple
y: tuple[()] = ()
z: tuple = ("foo", "bar")
# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
z = (1, 2, 3)
z = ()
.. _type-of-class-objects:
The type of class objects
=========================
A variable annotated with ``C`` may accept a value of type ``C``. In
contrast, a variable annotated with ``type[C]`` (or deprecated
:class:`typing.Type[C] <Type>`) may accept values that are classes
themselves -- specifically, it will accept the *class object* of ``C``. For
example::
a = 3 # Has type ``int``
b = int # Has type ``type[int]``
c = type(a) # Also has type ``type[int]``
Note that ``type[C]`` is covariant::
class User: ...
class ProUser(User): ...
class TeamUser(User): ...
def make_new_user(user_class: type[User]) -> User:
# ...
return user_class()
make_new_user(User) # OK
make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
make_new_user(TeamUser) # Still fine
make_new_user(User()) # Error: expected ``type[User]`` but got ``User``
make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters for :class:`type` are classes, :data:`Any`,
:ref:`type variables <generics>`, and unions of any of these types.
For example::
def new_non_team_user(user_class: type[BasicUser | ProUser]): ...
new_non_team_user(BasicUser) # OK
new_non_team_user(ProUser) # OK
new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype
# of ``type[BasicUser | ProUser]``
new_non_team_user(User) # Also an error
``type[Any]`` is equivalent to :class:`type`, which is the root of Python's
:ref:`metaclass hierarchy <metaclasses>`.
.. _annotating-generators-and-coroutines:
Annotating generators and coroutines
====================================
A generator can be annotated using the generic type
:class:`Generator[YieldType, SendType, ReturnType] <collections.abc.Generator>`.
For example::
def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:
sent = yield round(sent)
return 'Done'
Note that unlike many other generic classes in the standard library,
the ``SendType`` of :class:`~collections.abc.Generator` behaves
contravariantly, not covariantly or invariantly.
The ``SendType`` and ``ReturnType`` parameters default to :const:`!None`::
def infinite_stream(start: int) -> Generator[int]:
while True:
yield start
start += 1
It is also possible to set these types explicitly::
def infinite_stream(start: int) -> Generator[int, None, None]:
while True:
yield start
start += 1
Simple generators that only ever yield values can also be annotated
as having a return type of either
:class:`Iterable[YieldType] <collections.abc.Iterable>`
or :class:`Iterator[YieldType] <collections.abc.Iterator>`::
def infinite_stream(start: int) -> Iterator[int]:
while True:
yield start
start += 1
Async generators are handled in a similar fashion, but don't
expect a ``ReturnType`` type argument
(:class:`AsyncGenerator[YieldType, SendType] <collections.abc.AsyncGenerator>`).
The ``SendType`` argument defaults to :const:`!None`, so the following definitions
are equivalent::
async def infinite_stream(start: int) -> AsyncGenerator[int]:
while True:
yield start
start = await increment(start)
async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
while True:
yield start
start = await increment(start)
As in the synchronous case,
:class:`AsyncIterable[YieldType] <collections.abc.AsyncIterable>`
and :class:`AsyncIterator[YieldType] <collections.abc.AsyncIterator>` are
available as well::
async def infinite_stream(start: int) -> AsyncIterator[int]:
while True:
yield start
start = await increment(start)
Coroutines can be annotated using
:class:`Coroutine[YieldType, SendType, ReturnType] <collections.abc.Coroutine>`.
Generic arguments correspond to those of :class:`~collections.abc.Generator`,
for example::
from collections.abc import Coroutine
c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere
x = c.send('hi') # Inferred type of 'x' is list[str]
async def bar() -> None:
y = await c # Inferred type of 'y' is int
.. _user-defined-generics:
User-defined generic types
==========================
A user-defined class can be defined as a generic class.
::
from logging import Logger
class LoggedVar[T]:
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
This syntax indicates that the class ``LoggedVar`` is parameterised around a
single :ref:`type variable <typevar>` ``T`` . This also makes ``T`` valid as
a type within the class body.
Generic classes implicitly inherit from :class:`Generic`. For compatibility
with Python 3.11 and lower, it is also possible to inherit explicitly from
:class:`Generic` to indicate a generic class::
from typing import TypeVar, Generic
T = TypeVar('T')
class LoggedVar(Generic[T]):
...
Generic classes have :meth:`~object.__class_getitem__` methods, meaning they
can be parameterised at runtime (e.g. ``LoggedVar[int]`` below)::
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
A generic type can have any number of type variables. All varieties of
:class:`TypeVar` are permissible as parameters for a generic type::
from typing import TypeVar, Generic, Sequence
class WeirdTrio[T, B: Sequence[bytes], S: (int, str)]:
...
OldT = TypeVar('OldT', contravariant=True)
OldB = TypeVar('OldB', bound=Sequence[bytes], covariant=True)
OldS = TypeVar('OldS', int, str)
class OldWeirdTrio(Generic[OldT, OldB, OldS]):
...
Each type variable argument to :class:`Generic` must be distinct.
This is thus invalid::
from typing import TypeVar, Generic
...
class Pair[M, M]: # SyntaxError
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
Generic classes can also inherit from other classes::
from collections.abc import Sized
class LinkedList[T](Sized):
...
When inheriting from generic classes, some type parameters could be fixed::
from collections.abc import Mapping
class MyDict[T](Mapping[str, T]):
...
In this case ``MyDict`` has a single parameter, ``T``.
Using a generic class without specifying type parameters assumes
:data:`Any` for each position. In the following example, ``MyIterable`` is
not generic but implicitly inherits from ``Iterable[Any]``:
.. testcode::
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
...
User-defined generic type aliases are also supported. Examples::
from collections.abc import Iterable
type Response[S] = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
type Vec[T] = Iterable[tuple[T, T]]
def inproduct[T: (int, float, complex)](v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
For backward compatibility, generic type aliases can also be created
through a simple assignment::
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar("S")
Response = Iterable[S] | int
.. versionchanged:: 3.7
:class:`Generic` no longer has a custom metaclass.
.. versionchanged:: 3.12
Syntactic support for generics and type aliases is new in version 3.12.
Previously, generic classes had to explicitly inherit from :class:`Generic`
or contain a type variable in one of their bases.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form ``[**P]``. The behavior is consistent
with type variables' described above as parameter specification variables are
treated by the :mod:`!typing` module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a :class:`ParamSpec`::
>>> class Z[T, **P]: ... # T is a TypeVar; P is a ParamSpec
...
>>> Z[int, [dict, float]]
__main__.Z[int, [dict, float]]
Classes generic over a :class:`ParamSpec` can also be created using explicit
inheritance from :class:`Generic`. In this case, ``**`` is not used::
from typing import ParamSpec, Generic
P = ParamSpec('P')
class Z(Generic[P]):
...
Another difference between :class:`TypeVar` and :class:`ParamSpec` is that a
generic with only one parameter specification variable will accept
parameter lists in the forms ``X[[Type1, Type2, ...]]`` and also
``X[Type1, Type2, ...]`` for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent::
>>> class X[**P]: ...
...
>>> X[int, str]
__main__.X[[int, str]]
>>> X[[int, str]]
__main__.X[[int, str]]
Note that generics with :class:`ParamSpec` may not have correct
``__parameters__`` after substitution in some cases because they
are intended primarily for static type checking.
.. versionchanged:: 3.10
:class:`Generic` can now be parameterized over parameter expressions.
See :class:`ParamSpec` and :pep:`612` for more details.
A user-defined generic class can have ABCs as base classes without a metaclass
conflict. Generic metaclasses are not supported. The outcome of parameterizing
generics is cached, and most types in the :mod:`!typing` module are :term:`hashable` and
comparable for equality.
The :data:`Any` type
====================
A special kind of type is :data:`Any`. A static type checker will treat
every type as being compatible with :data:`Any` and :data:`Any` as being
compatible with every type.
This means that it is possible to perform any operation or method call on a
value of type :data:`Any` and assign it to any variable::
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Notice that no type checking is performed when assigning a value of type
:data:`Any` to a more precise type. For example, the static type checker did
not report an error when assigning ``a`` to ``s`` even though ``s`` was
declared to be of type :class:`str` and receives an :class:`int` value at
runtime!
Furthermore, all functions without a return type or parameter types will
implicitly default to using :data:`Any`::
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
This behavior allows :data:`Any` to be used as an *escape hatch* when you
need to mix dynamically and statically typed code.
Contrast the behavior of :data:`Any` with the behavior of :class:`object`.
Similar to :data:`Any`, every type is a subtype of :class:`object`. However,
unlike :data:`Any`, the reverse is not true: :class:`object` is *not* a
subtype of every other type.
That means when the type of a value is :class:`object`, a type checker will
reject almost all operations on it, and assigning it to a variable (or using
it as a return value) of a more specialized type is a type error. For example::
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
Use :class:`object` to indicate that a value could be any type in a typesafe
manner. Use :data:`Any` to indicate that a value is dynamically typed.
Nominal vs structural subtyping
===============================
Initially :pep:`484` defined the Python static type system as using
*nominal subtyping*. This means that a class ``A`` is allowed where
a class ``B`` is expected if and only if ``A`` is a subclass of ``B``.
This requirement previously also applied to abstract base classes, such as
:class:`~collections.abc.Iterable`. The problem with this approach is that a class had
to be explicitly marked to support them, which is unpythonic and unlike
what one would normally do in idiomatic dynamically typed Python code.
For example, this conforms to :pep:`484`::
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
:pep:`544` allows to solve this problem by allowing users to write
the above code without explicit base classes in the class definition,
allowing ``Bucket`` to be implicitly considered a subtype of both ``Sized``
and ``Iterable[int]`` by static type checkers. This is known as
*structural subtyping* (or static duck-typing)::
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
Moreover, by subclassing a special class :class:`Protocol`, a user
can define new custom protocols to fully enjoy structural subtyping
(see examples below).
Module contents
===============
The ``typing`` module defines the following classes, functions and decorators.
Special typing primitives
-------------------------
Special types
"""""""""""""
These can be used as types in annotations. They do not support subscription
using ``[]``.
.. data:: Any
Special type indicating an unconstrained type.
* Every type is compatible with :data:`Any`.
* :data:`Any` is compatible with every type.
.. versionchanged:: 3.11
:data:`Any` can now be used as a base class. This can be useful for
avoiding type checker errors with classes that can duck type anywhere or
are highly dynamic.
.. data:: AnyStr
A :ref:`constrained type variable <typing-constrained-typevar>`.
Definition::
AnyStr = TypeVar('AnyStr', str, bytes)
``AnyStr`` is meant to be used for functions that may accept :class:`str` or
:class:`bytes` arguments but cannot allow the two to mix.
For example::
def concat(a: AnyStr, b: AnyStr) -> AnyStr:
return a + b
concat("foo", "bar") # OK, output has type 'str'
concat(b"foo", b"bar") # OK, output has type 'bytes'
concat("foo", b"bar") # Error, cannot mix str and bytes
Note that, despite its name, ``AnyStr`` has nothing to do with the
:class:`Any` type, nor does it mean "any string". In particular, ``AnyStr``
and ``str | bytes`` are different from each other and have different use
cases::
# Invalid use of AnyStr:
# The type variable is used only once in the function signature,
# so cannot be "solved" by the type checker
def greet_bad(cond: bool) -> AnyStr:
return "hi there!" if cond else b"greetings!"
# The better way of annotating this function:
def greet_proper(cond: bool) -> str | bytes:
return "hi there!" if cond else b"greetings!"
.. deprecated-removed:: 3.13 3.18
Deprecated in favor of the new :ref:`type parameter syntax <type-params>`.
Use ``class A[T: (str, bytes)]: ...`` instead of importing ``AnyStr``. See
:pep:`695` for more details.
In Python 3.16, ``AnyStr`` will be removed from ``typing.__all__``, and
deprecation warnings will be emitted at runtime when it is accessed or
imported from ``typing``. ``AnyStr`` will be removed from ``typing``
in Python 3.18.
.. data:: LiteralString
Special type that includes only literal strings.
Any string
literal is compatible with ``LiteralString``, as is another
``LiteralString``. However, an object typed as just ``str`` is not.
A string created by composing ``LiteralString``-typed objects
is also acceptable as a ``LiteralString``.
Example:
.. testcode::
def run_query(sql: LiteralString) -> None:
...
def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
run_query("SELECT * FROM students") # OK
run_query(literal_string) # OK
run_query("SELECT * FROM " + literal_string) # OK
run_query(arbitrary_string) # type checker error
run_query( # type checker error
f"SELECT * FROM students WHERE name = {arbitrary_string}"
)
``LiteralString`` is useful for sensitive APIs where arbitrary user-generated
strings could generate problems. For example, the two cases above
that generate type checker errors could be vulnerable to an SQL
injection attack.
See :pep:`675` for more details.
.. versionadded:: 3.11
.. data:: Never
NoReturn
:data:`!Never` and :data:`!NoReturn` represent the
`bottom type <https://en.wikipedia.org/wiki/Bottom_type>`_,
a type that has no members.
They can be used to indicate that a function never returns,
such as :func:`sys.exit`::
from typing import Never # or NoReturn
def stop() -> Never:
raise RuntimeError('no way')
Or to define a function that should never be
called, as there are no valid arguments, such as
:func:`assert_never`::
from typing import Never # or NoReturn
def never_call_me(arg: Never) -> None:
pass
def int_or_str(arg: int | str) -> None:
never_call_me(arg) # type checker error
match arg:
case int():
print("It's an int")
case str():
print("It's a str")
case _:
never_call_me(arg) # OK, arg is of type Never (or NoReturn)
:data:`!Never` and :data:`!NoReturn` have the same meaning in the type system
and static type checkers treat both equivalently.
.. versionadded:: 3.6.2
Added :data:`NoReturn`.
.. versionadded:: 3.11
Added :data:`Never`.
.. data:: Self
Special type to represent the current enclosed class.
For example::
from typing import Self, reveal_type
class Foo:
def return_self(self) -> Self:
...
return self
class SubclassOfFoo(Foo): pass
reveal_type(Foo().return_self()) # Revealed type is "Foo"
reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"
This annotation is semantically equivalent to the following,
albeit in a more succinct fashion::
from typing import TypeVar
Self = TypeVar("Self", bound="Foo")
class Foo:
def return_self(self: Self) -> Self:
...
return self
In general, if something returns ``self``, as in the above examples, you
should use ``Self`` as the return annotation. If ``Foo.return_self`` was
annotated as returning ``"Foo"``, then the type checker would infer the
object returned from ``SubclassOfFoo.return_self`` as being of type ``Foo``
rather than ``SubclassOfFoo``.
Other common use cases include:
- :class:`classmethod`\s that are used as alternative constructors and return instances
of the ``cls`` parameter.
- Annotating an :meth:`~object.__enter__` method which returns self.
You should not use ``Self`` as the return annotation if the method is not
guaranteed to return an instance of a subclass when the class is
subclassed::
class Eggs:
# Self would be an incorrect return annotation here,
# as the object returned is always an instance of Eggs,
# even in subclasses
def returns_eggs(self) -> "Eggs":
return Eggs()
See :pep:`673` for more details.
.. versionadded:: 3.11
.. data:: TypeAlias
Special annotation for explicitly declaring a :ref:`type alias <type-aliases>`.
For example::
from typing import TypeAlias
Factors: TypeAlias = list[int]
``TypeAlias`` is particularly useful on older Python versions for annotating
aliases that make use of forward references, as it can be hard for type
checkers to distinguish these from normal variable assignments:
.. testcode::
from typing import Generic, TypeAlias, TypeVar
T = TypeVar("T")
# "Box" does not exist yet,
# so we have to use quotes for the forward reference on Python <3.12.
# Using ``TypeAlias`` tells the type checker that this is a type alias declaration,
# not a variable assignment to a string.
BoxOfStrings: TypeAlias = "Box[str]"
class Box(Generic[T]):
@classmethod
def make_box_of_strings(cls) -> BoxOfStrings: ...
See :pep:`613` for more details.
.. versionadded:: 3.10
.. deprecated:: 3.12
:data:`TypeAlias` is deprecated in favor of the :keyword:`type` statement,
which creates instances of :class:`TypeAliasType`
and which natively supports forward references.
Note that while :data:`TypeAlias` and :class:`TypeAliasType` serve
similar purposes and have similar names, they are distinct and the
latter is not the type of the former.
Removal of :data:`TypeAlias` is not currently planned, but users
are encouraged to migrate to :keyword:`type` statements.
Special forms
"""""""""""""
These can be used as types in annotations. They all support subscription using
``[]``, but each has a unique syntax.
.. class:: Union
Union type; ``Union[X, Y]`` is equivalent to ``X | Y`` and means either X or Y.
To define a union, use e.g. ``Union[int, str]`` or the shorthand ``int | str``. Using that shorthand is recommended. Details:
* The arguments must be types and there must be at least one.
* Unions of unions are flattened, e.g.::
Union[Union[int, str], float] == Union[int, str, float]
However, this does not apply to unions referenced through a type
alias, to avoid forcing evaluation of the underlying :class:`TypeAliasType`::
type A = Union[int, str]
Union[A, float] != Union[int, str, float]
* Unions of a single argument vanish, e.g.::
Union[int] == int # The constructor actually returns int
* Redundant arguments are skipped, e.g.::
Union[int, str, int] == Union[int, str] == int | str
* When comparing unions, the argument order is ignored, e.g.::
Union[int, str] == Union[str, int]
* You cannot subclass or instantiate a ``Union``.
* You cannot write ``Union[X][Y]``.
.. versionchanged:: 3.7
Don't remove explicit subclasses from unions at runtime.
.. versionchanged:: 3.10
Unions can now be written as ``X | Y``. See
:ref:`union type expressions<types-union>`.
.. versionchanged:: 3.14
:class:`types.UnionType` is now an alias for :class:`Union`, and both
``Union[int, str]`` and ``int | str`` create instances of the same class.
To check whether an object is a ``Union`` at runtime, use
``isinstance(obj, Union)``. For compatibility with earlier versions of
Python, use
``get_origin(obj) is typing.Union or get_origin(obj) is types.UnionType``.
.. data:: Optional
``Optional[X]`` is equivalent to ``X | None`` (or ``Union[X, None]``).
Note that this is not the same concept as an optional argument,
which is one that has a default. An optional argument with a
default does not require the ``Optional`` qualifier on its type
annotation just because it is optional. For example::
def foo(arg: int = 0) -> None:
...
On the other hand, if an explicit value of ``None`` is allowed, the
use of ``Optional`` is appropriate, whether the argument is optional
or not. For example::
def foo(arg: Optional[int] = None) -> None:
...
.. versionchanged:: 3.10
Optional can now be written as ``X | None``. See
:ref:`union type expressions<types-union>`.
.. data:: Concatenate
Special form for annotating higher-order functions.
``Concatenate`` can be used in conjunction with :ref:`Callable <annotating-callables>` and
:class:`ParamSpec` to annotate a higher-order callable which adds, removes,
or transforms parameters of another
callable. Usage is in the form
``Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]``. ``Concatenate``
is currently only valid when used as the first argument to a :ref:`Callable <annotating-callables>`.
The last parameter to ``Concatenate`` must be a :class:`ParamSpec` or
ellipsis (``...``).
For example, to annotate a decorator ``with_lock`` which provides a
:class:`threading.Lock` to the decorated function, ``Concatenate`` can be
used to indicate that ``with_lock`` expects a callable which takes in a
``Lock`` as the first argument, and returns a callable with a different type
signature. In this case, the :class:`ParamSpec` indicates that the returned
callable's parameter types are dependent on the parameter types of the
callable being passed in::
from collections.abc import Callable
from threading import Lock
from typing import Concatenate
# Use this lock to ensure that only one thread is executing a function
# at any time.
my_lock = Lock()
def with_lock[**P, R](f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]:
'''A type-safe decorator which provides a lock.'''
def inner(*args: P.args, **kwargs: P.kwargs) -> R:
# Provide the lock as the first argument.
return f(my_lock, *args, **kwargs)
return inner
@with_lock
def sum_threadsafe(lock: Lock, numbers: list[float]) -> float:
'''Add a list of numbers together in a thread-safe manner.'''
with lock:
return sum(numbers)
# We don't need to pass in the lock ourselves thanks to the decorator.
sum_threadsafe([1.1, 2.2, 3.3])
.. versionadded:: 3.10
.. seealso::
* :pep:`612` -- Parameter Specification Variables (the PEP which introduced
``ParamSpec`` and ``Concatenate``)
* :class:`ParamSpec`
* :ref:`annotating-callables`
.. data:: Literal
Special typing form to define "literal types".
``Literal`` can be used to indicate to type checkers that the
annotated object has a value equivalent to one of the
provided literals.
For example::
def validate_simple(data: Any) -> Literal[True]: # always returns True
...
type Mode = Literal['r', 'rb', 'w', 'wb']
def open_helper(file: str, mode: Mode) -> str:
...
open_helper('/some/path', 'r') # Passes type check
open_helper('/other/path', 'typo') # Error in type checker
``Literal[...]`` cannot be subclassed. At runtime, an arbitrary value
is allowed as type argument to ``Literal[...]``, but type checkers may
impose restrictions. See :pep:`586` for more details about literal types.
Additional details:
* The arguments must be literal values and there must be at least one.
* Nested ``Literal`` types are flattened, e.g.::
assert Literal[Literal[1, 2], 3] == Literal[1, 2, 3]
However, this does not apply to ``Literal`` types referenced through a type
alias, to avoid forcing evaluation of the underlying :class:`TypeAliasType`::
type A = Literal[1, 2]
assert Literal[A, 3] != Literal[1, 2, 3]
* Redundant arguments are skipped, e.g.::
assert Literal[1, 2, 1] == Literal[1, 2]
* When comparing literals, the argument order is ignored, e.g.::
assert Literal[1, 2] == Literal[2, 1]
* You cannot subclass or instantiate a ``Literal``.
* You cannot write ``Literal[X][Y]``.
.. versionadded:: 3.8
.. versionchanged:: 3.9.1
``Literal`` now de-duplicates parameters. Equality comparisons of
``Literal`` objects are no longer order dependent. ``Literal`` objects
will now raise a :exc:`TypeError` exception during equality comparisons
if one of their parameters are not :term:`hashable`.
.. data:: ClassVar
Special type construct to mark class variables.
As introduced in :pep:`526`, a variable annotation wrapped in ClassVar
indicates that a given attribute is intended to be used as a class variable
and should not be set on instances of that class. Usage::
class Starship:
stats: ClassVar[dict[str, int]] = {} # class variable
damage: int = 10 # instance variable
:data:`ClassVar` accepts only types and cannot be further subscribed.
:data:`ClassVar` is not a class itself, and should not
be used with :func:`isinstance` or :func:`issubclass`.
:data:`ClassVar` does not change Python runtime behavior, but
it can be used by third-party type checkers. For example, a type checker
might flag the following code as an error::
enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {} # This is OK
.. versionadded:: 3.5.3
.. versionchanged:: 3.13
:data:`ClassVar` can now be nested in :data:`Final` and vice versa.
.. data:: Final
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in class
scopes cannot be overridden in subclasses.
For example::
MAX_SIZE: Final = 9000
MAX_SIZE += 1 # Error reported by type checker
class Connection:
TIMEOUT: Final[int] = 10
class FastConnector(Connection):
TIMEOUT = 1 # Error reported by type checker
There is no runtime checking of these properties. See :pep:`591` for
more details.
.. versionadded:: 3.8
.. versionchanged:: 3.13
:data:`Final` can now be nested in :data:`ClassVar` and vice versa.
.. data:: Required
Special typing construct to mark a :class:`TypedDict` key as required.
This is mainly useful for ``total=False`` TypedDicts. See :class:`TypedDict`
and :pep:`655` for more details.
.. versionadded:: 3.11
.. data:: NotRequired
Special typing construct to mark a :class:`TypedDict` key as potentially
missing.
See :class:`TypedDict` and :pep:`655` for more details.
.. versionadded:: 3.11
.. data:: ReadOnly
A special typing construct to mark an item of a :class:`TypedDict` as read-only.
For example::
class Movie(TypedDict):
title: ReadOnly[str]
year: int
def mutate_movie(m: Movie) -> None:
m["year"] = 1999 # allowed
m["title"] = "The Matrix" # typechecker error
There is no runtime checking for this property.
See :class:`TypedDict` and :pep:`705` for more details.
.. versionadded:: 3.13
.. data:: Annotated
Special typing form to add context-specific metadata to an annotation.
Add metadata ``x`` to a given type ``T`` by using the annotation
``Annotated[T, x]``. Metadata added using ``Annotated`` can be used by
static analysis tools or at runtime. At runtime, the metadata is stored
in a :attr:`!__metadata__` attribute.
If a library or tool encounters an annotation ``Annotated[T, x]`` and has
no special logic for the metadata, it should ignore the metadata and simply
treat the annotation as ``T``. As such, ``Annotated`` can be useful for code
that wants to use annotations for purposes outside Python's static typing
system.
Using ``Annotated[T, x]`` as an annotation still allows for static
typechecking of ``T``, as type checkers will simply ignore the metadata ``x``.
In this way, ``Annotated`` differs from the
:func:`@no_type_check <no_type_check>` decorator, which can also be used for
adding annotations outside the scope of the typing system, but
completely disables typechecking for a function or class.
The responsibility of how to interpret the metadata
lies with the tool or library encountering an
``Annotated`` annotation. A tool or library encountering an ``Annotated`` type
can scan through the metadata elements to determine if they are of interest
(e.g., using :func:`isinstance`).
.. describe:: Annotated[<type>, <metadata>]
Here is an example of how you might use ``Annotated`` to add metadata to
type annotations if you were doing range analysis:
.. testcode::
@dataclass
class ValueRange:
lo: int
hi: int
T1 = Annotated[int, ValueRange(-10, 5)]
T2 = Annotated[T1, ValueRange(-20, 3)]
The first argument to ``Annotated`` must be a valid type. Multiple metadata
elements can be supplied as ``Annotated`` supports variadic arguments. The
order of the metadata elements is preserved and matters for equality checks::
@dataclass
class ctype:
kind: str
a1 = Annotated[int, ValueRange(3, 10), ctype("char")]
a2 = Annotated[int, ctype("char"), ValueRange(3, 10)]
assert a1 != a2 # Order matters
It is up to the tool consuming the annotations to decide whether the
client is allowed to add multiple metadata elements to one annotation and how to
merge those annotations.
Nested ``Annotated`` types are flattened. The order of the metadata elements
starts with the innermost annotation::
assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[
int, ValueRange(3, 10), ctype("char")
]
However, this does not apply to ``Annotated`` types referenced through a type
alias, to avoid forcing evaluation of the underlying :class:`TypeAliasType`::
type From3To10[T] = Annotated[T, ValueRange(3, 10)]
assert Annotated[From3To10[int], ctype("char")] != Annotated[
int, ValueRange(3, 10), ctype("char")
]
Duplicated metadata elements are not removed::
assert Annotated[int, ValueRange(3, 10)] != Annotated[
int, ValueRange(3, 10), ValueRange(3, 10)
]
``Annotated`` can be used with nested and generic aliases:
.. testcode::
@dataclass
class MaxLen:
value: int
type Vec[T] = Annotated[list[tuple[T, T]], MaxLen(10)]
# When used in a type annotation, a type checker will treat "V" the same as
# ``Annotated[list[tuple[int, int]], MaxLen(10)]``:
type V = Vec[int]
``Annotated`` cannot be used with an unpacked :class:`TypeVarTuple`::
type Variadic[*Ts] = Annotated[*Ts, Ann1] = Annotated[T1, T2, T3, ..., Ann1] # NOT valid
where ``T1``, ``T2``, ... are :class:`TypeVars <TypeVar>`. This is invalid as
only one type should be passed to Annotated.
By default, :func:`get_type_hints` strips the metadata from annotations.
Pass ``include_extras=True`` to have the metadata preserved:
.. doctest::
>>> from typing import Annotated, get_type_hints
>>> def func(x: Annotated[int, "metadata"]) -> None: pass
...
>>> get_type_hints(func)
{'x': <class 'int'>, 'return': <class 'NoneType'>}
>>> get_type_hints(func, include_extras=True)
{'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an ``Annotated`` type can be
retrieved via the :attr:`!__metadata__` attribute:
.. doctest::
>>> from typing import Annotated
>>> X = Annotated[int, "very", "important", "metadata"]
>>> X
typing.Annotated[int, 'very', 'important', 'metadata']
>>> X.__metadata__
('very', 'important', 'metadata')
If you want to retrieve the original type wrapped by ``Annotated``, use the
:attr:`!__origin__` attribute:
.. doctest::
>>> from typing import Annotated, get_origin
>>> Password = Annotated[str, "secret"]
>>> Password.__origin__
<class 'str'>
Note that using :func:`get_origin` will return ``Annotated`` itself:
.. doctest::
>>> get_origin(Password)
typing.Annotated
.. seealso::
:pep:`593` - Flexible function and variable annotations
The PEP introducing ``Annotated`` to the standard library.
.. versionadded:: 3.9
.. data:: TypeIs
Special typing construct for marking user-defined type predicate functions.
``TypeIs`` can be used to annotate the return type of a user-defined
type predicate function. ``TypeIs`` only accepts a single type argument.
At runtime, functions marked this way should return a boolean and take at
least one positional argument.
``TypeIs`` aims to benefit *type narrowing* -- a technique used by static
type checkers to determine a more precise type of an expression within a
program's code flow. Usually type narrowing is done by analyzing
conditional code flow and applying the narrowing to a block of code. The
conditional expression here is sometimes referred to as a "type predicate"::
def is_str(val: str | float):
# "isinstance" type predicate
if isinstance(val, str):
# Type of ``val`` is narrowed to ``str``
...
else:
# Else, type of ``val`` is narrowed to ``float``.
...
Sometimes it would be convenient to use a user-defined boolean function
as a type predicate. Such a function should use ``TypeIs[...]`` or
:data:`TypeGuard` as its return type to alert static type checkers to
this intention. ``TypeIs`` usually has more intuitive behavior than
``TypeGuard``, but it cannot be used when the input and output types
are incompatible (e.g., ``list[object]`` to ``list[int]``) or when the
function does not return ``True`` for all instances of the narrowed type.
Using ``-> TypeIs[NarrowedType]`` tells the static type checker that for a given
function:
1. The return value is a boolean.
2. If the return value is ``True``, the type of its argument
is the intersection of the argument's original type and ``NarrowedType``.
3. If the return value is ``False``, the type of its argument
is narrowed to exclude ``NarrowedType``.
For example::
from typing import assert_type, final, TypeIs
class Parent: pass
class Child(Parent): pass
@final
class Unrelated: pass
def is_parent(val: object) -> TypeIs[Parent]:
return isinstance(val, Parent)
def run(arg: Child | Unrelated):
if is_parent(arg):
# Type of ``arg`` is narrowed to the intersection
# of ``Parent`` and ``Child``, which is equivalent to
# ``Child``.
assert_type(arg, Child)
else:
# Type of ``arg`` is narrowed to exclude ``Parent``,
# so only ``Unrelated`` is left.
assert_type(arg, Unrelated)
The type inside ``TypeIs`` must be consistent with the type of the
function's argument; if it is not, static type checkers will raise
an error. An incorrectly written ``TypeIs`` function can lead to
unsound behavior in the type system; it is the user's responsibility
to write such functions in a type-safe manner.
If a ``TypeIs`` function is a class or instance method, then the type in
``TypeIs`` maps to the type of the second parameter (after ``cls`` or
``self``).
In short, the form ``def foo(arg: TypeA) -> TypeIs[TypeB]: ...``,
means that if ``foo(arg)`` returns ``True``, then ``arg`` is an instance
of ``TypeB``, and if it returns ``False``, it is not an instance of ``TypeB``.
``TypeIs`` also works with type variables. For more information, see
:pep:`742` (Narrowing types with ``TypeIs``).
.. versionadded:: 3.13
.. data:: TypeGuard
Special typing construct for marking user-defined type predicate functions.
Type predicate functions are user-defined functions that return whether their
argument is an instance of a particular type.
``TypeGuard`` works similarly to :data:`TypeIs`, but has subtly different
effects on type checking behavior (see below).
Using ``-> TypeGuard`` tells the static type checker that for a given
function:
1. The return value is a boolean.
2. If the return value is ``True``, the type of its argument
is the type inside ``TypeGuard``.
``TypeGuard`` also works with type variables. See :pep:`647` for more details.
For example::
def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
'''Determines whether all objects in the list are strings'''
return all(isinstance(x, str) for x in val)
def func1(val: list[object]):
if is_str_list(val):
# Type of ``val`` is narrowed to ``list[str]``.
print(" ".join(val))
else:
# Type of ``val`` remains as ``list[object]``.
print("Not a list of strings!")
``TypeIs`` and ``TypeGuard`` differ in the following ways:
* ``TypeIs`` requires the narrowed type to be a subtype of the input type, while
``TypeGuard`` does not. The main reason is to allow for things like
narrowing ``list[object]`` to ``list[str]`` even though the latter
is not a subtype of the former, since ``list`` is invariant.
* When a ``TypeGuard`` function returns ``True``, type checkers narrow the type of the
variable to exactly the ``TypeGuard`` type. When a ``TypeIs`` function returns ``True``,
type checkers can infer a more precise type combining the previously known type of the
variable with the ``TypeIs`` type. (Technically, this is known as an intersection type.)
* When a ``TypeGuard`` function returns ``False``, type checkers cannot narrow the type of
the variable at all. When a ``TypeIs`` function returns ``False``, type checkers can narrow
the type of the variable to exclude the ``TypeIs`` type.
.. versionadded:: 3.10
.. data:: Unpack
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator ``*`` on a
:ref:`type variable tuple <typevartuple>` is equivalent to using ``Unpack``
to mark the type variable tuple as having been unpacked::
Ts = TypeVarTuple('Ts')
tup: tuple[*Ts]
# Effectively does:
tup: tuple[Unpack[Ts]]
In fact, ``Unpack`` can be used interchangeably with ``*`` in the context
of :class:`typing.TypeVarTuple <TypeVarTuple>` and
:class:`builtins.tuple <tuple>` types. You might see ``Unpack`` being used
explicitly in older versions of Python, where ``*`` couldn't be used in
certain places::
# In older versions of Python, TypeVarTuple and Unpack
# are located in the `typing_extensions` backports package.
from typing_extensions import TypeVarTuple, Unpack
Ts = TypeVarTuple('Ts')
tup: tuple[*Ts] # Syntax error on Python <= 3.10!
tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible
``Unpack`` can also be used along with :class:`typing.TypedDict` for typing
``**kwargs`` in a function signature::
from typing import TypedDict, Unpack
class Movie(TypedDict):
name: str
year: int
# This function expects two keyword arguments - `name` of type `str`
# and `year` of type `int`.
def foo(**kwargs: Unpack[Movie]): ...
See :pep:`692` for more details on using ``Unpack`` for ``**kwargs`` typing.
.. versionadded:: 3.11
Building generic types and type aliases
"""""""""""""""""""""""""""""""""""""""
The following classes should not be used directly as annotations.
Their intended purpose is to be building blocks
for creating generic types and type aliases.
These objects can be created through special syntax
(:ref:`type parameter lists <type-params>` and the :keyword:`type` statement).
For compatibility with Python 3.11 and earlier, they can also be created
without the dedicated syntax, as documented below.
.. class:: Generic
Abstract base class for generic types.
A generic type is typically declared by adding a list of type parameters
after the class name::
class Mapping[KT, VT]:
def __getitem__(self, key: KT) -> VT:
...
# Etc.
Such a class implicitly inherits from ``Generic``.
The runtime semantics of this syntax are discussed in the
:ref:`Language Reference <generic-classes>`.
This class can then be used as follows::
def lookup_name[X, Y](mapping: Mapping[X, Y], key: X, default: Y) -> Y:
try:
return mapping[key]
except KeyError:
return default
Here the brackets after the function name indicate a
:ref:`generic function <generic-functions>`.
For backwards compatibility, generic classes can also be
declared by explicitly inheriting from
``Generic``. In this case, the type parameters must be declared
separately::
KT = TypeVar('KT')
VT = TypeVar('VT')
class Mapping(Generic[KT, VT]):
def __getitem__(self, key: KT) -> VT:
...
# Etc.
.. _typevar:
.. class:: TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False, infer_variance=False, default=typing.NoDefault)
Type variable.
The preferred way to construct a type variable is via the dedicated syntax
for :ref:`generic functions <generic-functions>`,
:ref:`generic classes <generic-classes>`, and
:ref:`generic type aliases <generic-type-aliases>`::
class Sequence[T]: # T is a TypeVar
...
This syntax can also be used to create bounded and constrained type
variables::
class StrSequence[S: str]: # S is a TypeVar with a `str` upper bound;
... # we can say that S is "bounded by `str`"
class StrOrBytesSequence[A: (str, bytes)]: # A is a TypeVar constrained to str or bytes
...
However, if desired, reusable type variables can also be constructed manually, like so::
T = TypeVar('T') # Can be anything
S = TypeVar('S', bound=str) # Can be any subtype of str
A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
as for generic function and type alias definitions.
See :class:`Generic` for more
information on generic types. Generic functions work as follows::
def repeat[T](x: T, n: int) -> Sequence[T]:
"""Return a list containing n references to x."""
return [x]*n
def print_capitalized[S: str](x: S) -> S:
"""Print x capitalized, and return x."""
print(x.capitalize())
return x
def concatenate[A: (str, bytes)](x: A, y: A) -> A:
"""Add two strings or bytes objects together."""
return x + y
Note that type variables can be *bounded*, *constrained*, or neither, but
cannot be both bounded *and* constrained.
The variance of type variables is inferred by type checkers when they are created
through the :ref:`type parameter syntax <type-params>` or when
``infer_variance=True`` is passed.
Manually created type variables may be explicitly marked covariant or contravariant by passing
``covariant=True`` or ``contravariant=True``.
By default, manually created type variables are invariant.
See :pep:`484` and :pep:`695` for more details.
Bounded type variables and constrained type variables have different
semantics in several important ways. Using a *bounded* type variable means
that the ``TypeVar`` will be solved using the most specific type possible::
x = print_capitalized('a string')
reveal_type(x) # revealed type is str
class StringSubclass(str):
pass
y = print_capitalized(StringSubclass('another string'))
reveal_type(y) # revealed type is StringSubclass
z = print_capitalized(45) # error: int is not a subtype of str
The upper bound of a type variable can be a concrete type, abstract type
(ABC or Protocol), or even a union of types::
# Can be anything with an __abs__ method
def print_abs[T: SupportsAbs](arg: T) -> None:
print("Absolute value:", abs(arg))
U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes
V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
.. _typing-constrained-typevar:
Using a *constrained* type variable, however, means that the ``TypeVar``
can only ever be solved as being exactly one of the constraints given::
a = concatenate('one', 'two')
reveal_type(a) # revealed type is str
b = concatenate(StringSubclass('one'), StringSubclass('two'))
reveal_type(b) # revealed type is str, despite StringSubclass being passed in
c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime, ``isinstance(x, T)`` will raise :exc:`TypeError`.
.. attribute:: __name__
The name of the type variable.
.. attribute:: __covariant__
Whether the type var has been explicitly marked as covariant.
.. attribute:: __contravariant__
Whether the type var has been explicitly marked as contravariant.
.. attribute:: __infer_variance__
Whether the type variable's variance should be inferred by type checkers.
.. versionadded:: 3.12
.. attribute:: __bound__
The upper bound of the type variable, if any.
.. versionchanged:: 3.12
For type variables created through :ref:`type parameter syntax <type-params>`,
the bound is evaluated only when the attribute is accessed, not when
the type variable is created (see :ref:`lazy-evaluation`).
.. method:: evaluate_bound
An :term:`evaluate function` corresponding to the :attr:`~TypeVar.__bound__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`~TypeVar.__bound__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format.
.. versionadded:: 3.14
.. attribute:: __constraints__
A tuple containing the constraints of the type variable, if any.
.. versionchanged:: 3.12
For type variables created through :ref:`type parameter syntax <type-params>`,
the constraints are evaluated only when the attribute is accessed, not when
the type variable is created (see :ref:`lazy-evaluation`).
.. method:: evaluate_constraints
An :term:`evaluate function` corresponding to the :attr:`~TypeVar.__constraints__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`~TypeVar.__constraints__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format.
.. versionadded:: 3.14
.. attribute:: __default__
The default value of the type variable, or :data:`typing.NoDefault` if it
has no default.
.. versionadded:: 3.13
.. method:: evaluate_default
An :term:`evaluate function` corresponding to the :attr:`~TypeVar.__default__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`~TypeVar.__default__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format.
.. versionadded:: 3.14
.. method:: has_default()
Return whether or not the type variable has a default value. This is equivalent
to checking whether :attr:`__default__` is not the :data:`typing.NoDefault`
singleton, except that it does not force evaluation of the
:ref:`lazily evaluated <lazy-evaluation>` default value.
.. versionadded:: 3.13
.. versionchanged:: 3.12
Type variables can now be declared using the
:ref:`type parameter <type-params>` syntax introduced by :pep:`695`.
The ``infer_variance`` parameter was added.
.. versionchanged:: 3.13
Support for default values was added.
.. _typevartuple:
.. class:: TypeVarTuple(name, *, default=typing.NoDefault)
Type variable tuple. A specialized form of :ref:`type variable <typevar>`
that enables *variadic* generics.
Type variable tuples can be declared in :ref:`type parameter lists <type-params>`
using a single asterisk (``*``) before the name::
def move_first_element_to_last[T, *Ts](tup: tuple[T, *Ts]) -> tuple[*Ts, T]:
return (*tup[1:], tup[0])
Or by explicitly invoking the ``TypeVarTuple`` constructor::
T = TypeVar("T")
Ts = TypeVarTuple("Ts")
def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]:
return (*tup[1:], tup[0])
A normal type variable enables parameterization with a single type. A type
variable tuple, in contrast, allows parameterization with an
*arbitrary* number of types by acting like an *arbitrary* number of type
variables wrapped in a tuple. For example::
# T is bound to int, Ts is bound to ()
# Return value is (1,), which has type tuple[int]
move_first_element_to_last(tup=(1,))
# T is bound to int, Ts is bound to (str,)
# Return value is ('spam', 1), which has type tuple[str, int]
move_first_element_to_last(tup=(1, 'spam'))
# T is bound to int, Ts is bound to (str, float)
# Return value is ('spam', 3.0, 1), which has type tuple[str, float, int]
move_first_element_to_last(tup=(1, 'spam', 3.0))
# This fails to type check (and fails at runtime)
# because tuple[()] is not compatible with tuple[T, *Ts]
# (at least one element is required)
move_first_element_to_last(tup=())
Note the use of the unpacking operator ``*`` in ``tuple[T, *Ts]``.
Conceptually, you can think of ``Ts`` as a tuple of type variables
``(T1, T2, ...)``. ``tuple[T, *Ts]`` would then become
``tuple[T, *(T1, T2, ...)]``, which is equivalent to
``tuple[T, T1, T2, ...]``. (Note that in older versions of Python, you might
see this written using :data:`Unpack <Unpack>` instead, as
``Unpack[Ts]``.)
Type variable tuples must *always* be unpacked. This helps distinguish type
variable tuples from normal type variables::
x: Ts # Not valid
x: tuple[Ts] # Not valid
x: tuple[*Ts] # The correct way to do it
Type variable tuples can be used in the same contexts as normal type
variables. For example, in class definitions, arguments, and return types::
class Array[*Shape]:
def __getitem__(self, key: tuple[*Shape]) -> float: ...
def __abs__(self) -> "Array[*Shape]": ...
def get_shape(self) -> tuple[*Shape]: ...
Type variable tuples can be happily combined with normal type variables:
.. testcode::
class Array[DType, *Shape]: # This is fine
pass
class Array2[*Shape, DType]: # This would also be fine
pass
class Height: ...
class Width: ...
float_array_1d: Array[float, Height] = Array() # Totally fine
int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too
However, note that at most one type variable tuple may appear in a single
list of type arguments or type parameters::
x: tuple[*Ts, *Ts] # Not valid
class Array[*Shape, *Shape]: # Not valid
pass
Finally, an unpacked type variable tuple can be used as the type annotation
of ``*args``::
def call_soon[*Ts](
callback: Callable[[*Ts], None],
*args: *Ts
) -> None:
...
callback(*args)
In contrast to non-unpacked annotations of ``*args`` - e.g. ``*args: int``,
which would specify that *all* arguments are ``int`` - ``*args: *Ts``
enables reference to the types of the *individual* arguments in ``*args``.
Here, this allows us to ensure the types of the ``*args`` passed
to ``call_soon`` match the types of the (positional) arguments of
``callback``.
See :pep:`646` for more details on type variable tuples.
.. attribute:: __name__
The name of the type variable tuple.
.. attribute:: __default__
The default value of the type variable tuple, or :data:`typing.NoDefault` if it
has no default.
.. versionadded:: 3.13
.. method:: evaluate_default
An :term:`evaluate function` corresponding to the :attr:`~TypeVarTuple.__default__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`~TypeVarTuple.__default__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format.
.. versionadded:: 3.14
.. method:: has_default()
Return whether or not the type variable tuple has a default value. This is equivalent
to checking whether :attr:`__default__` is not the :data:`typing.NoDefault`
singleton, except that it does not force evaluation of the
:ref:`lazily evaluated <lazy-evaluation>` default value.
.. versionadded:: 3.13
.. versionadded:: 3.11
.. versionchanged:: 3.12
Type variable tuples can now be declared using the
:ref:`type parameter <type-params>` syntax introduced by :pep:`695`.
.. versionchanged:: 3.13
Support for default values was added.
.. class:: ParamSpec(name, *, bound=None, covariant=False, contravariant=False, default=typing.NoDefault)
Parameter specification variable. A specialized version of
:ref:`type variables <typevar>`.
In :ref:`type parameter lists <type-params>`, parameter specifications
can be declared with two asterisks (``**``)::
type IntFunc[**P] = Callable[P, int]
For compatibility with Python 3.11 and earlier, ``ParamSpec`` objects
can also be created as follows::
P = ParamSpec('P')
Parameter specification variables exist primarily for the benefit of static
type checkers. They are used to forward the parameter types of one
callable to another callable -- a pattern commonly found in higher order
functions and decorators. They are only valid when used in ``Concatenate``,
or as the first argument to ``Callable``, or as parameters for user-defined
Generics. See :class:`Generic` for more information on generic types.
For example, to add basic logging to a function, one can create a decorator
``add_logging`` to log function calls. The parameter specification variable
tells the type checker that the callable passed into the decorator and the
new callable returned by it have inter-dependent type parameters::
from collections.abc import Callable
import logging
def add_logging[T, **P](f: Callable[P, T]) -> Callable[P, T]:
'''A type-safe decorator to add logging to a function.'''
def inner(*args: P.args, **kwargs: P.kwargs) -> T:
logging.info(f'{f.__name__} was called')
return f(*args, **kwargs)
return inner
@add_logging
def add_two(x: float, y: float) -> float:
'''Add two numbers together.'''
return x + y
Without ``ParamSpec``, the simplest way to annotate this previously was to
use a :class:`TypeVar` with upper bound ``Callable[..., Any]``. However this
causes two problems:
1. The type checker can't type check the ``inner`` function because
``*args`` and ``**kwargs`` have to be typed :data:`Any`.
2. :func:`~cast` may be required in the body of the ``add_logging``
decorator when returning the ``inner`` function, or the static type
checker must be told to ignore the ``return inner``.
.. attribute:: args
.. attribute:: kwargs
Since ``ParamSpec`` captures both positional and keyword parameters,
``P.args`` and ``P.kwargs`` can be used to split a ``ParamSpec`` into its
components. ``P.args`` represents the tuple of positional parameters in a
given call and should only be used to annotate ``*args``. ``P.kwargs``
represents the mapping of keyword parameters to their values in a given call,
and should be only be used to annotate ``**kwargs``. Both
attributes require the annotated parameter to be in scope. At runtime,
``P.args`` and ``P.kwargs`` are instances respectively of
:class:`ParamSpecArgs` and :class:`ParamSpecKwargs`.
.. attribute:: __name__
The name of the parameter specification.
.. attribute:: __default__
The default value of the parameter specification, or :data:`typing.NoDefault` if it
has no default.
.. versionadded:: 3.13
.. method:: evaluate_default
An :term:`evaluate function` corresponding to the :attr:`~ParamSpec.__default__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`~ParamSpec.__default__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format.
.. versionadded:: 3.14
.. method:: has_default()
Return whether or not the parameter specification has a default value. This is equivalent
to checking whether :attr:`__default__` is not the :data:`typing.NoDefault`
singleton, except that it does not force evaluation of the
:ref:`lazily evaluated <lazy-evaluation>` default value.
.. versionadded:: 3.13
Parameter specification variables created with ``covariant=True`` or
``contravariant=True`` can be used to declare covariant or contravariant
generic types. The ``bound`` argument is also accepted, similar to
:class:`TypeVar`. However the actual semantics of these keywords are yet to
be decided.
.. versionadded:: 3.10
.. versionchanged:: 3.12
Parameter specifications can now be declared using the
:ref:`type parameter <type-params>` syntax introduced by :pep:`695`.
.. versionchanged:: 3.13
Support for default values was added.
.. note::
Only parameter specification variables defined in global scope can
be pickled.
.. seealso::
* :pep:`612` -- Parameter Specification Variables (the PEP which introduced
``ParamSpec`` and ``Concatenate``)
* :data:`Concatenate`
* :ref:`annotating-callables`
.. data:: ParamSpecArgs
ParamSpecKwargs
Arguments and keyword arguments attributes of a :class:`ParamSpec`. The
``P.args`` attribute of a ``ParamSpec`` is an instance of ``ParamSpecArgs``,
and ``P.kwargs`` is an instance of ``ParamSpecKwargs``. They are intended
for runtime introspection and have no special meaning to static type checkers.
Calling :func:`get_origin` on either of these objects will return the
original ``ParamSpec``:
.. doctest::
>>> from typing import ParamSpec, get_origin
>>> P = ParamSpec("P")
>>> get_origin(P.args) is P
True
>>> get_origin(P.kwargs) is P
True
.. versionadded:: 3.10
.. class:: TypeAliasType(name, value, *, type_params=())
The type of type aliases created through the :keyword:`type` statement.
Example:
.. doctest::
>>> type Alias = int
>>> type(Alias)
<class 'typing.TypeAliasType'>
.. versionadded:: 3.12
.. attribute:: __name__
The name of the type alias:
.. doctest::
>>> type Alias = int
>>> Alias.__name__
'Alias'
.. attribute:: __module__
The module in which the type alias was defined::
>>> type Alias = int
>>> Alias.__module__
'__main__'
.. attribute:: __type_params__
The type parameters of the type alias, or an empty tuple if the alias is
not generic:
.. doctest::
>>> type ListOrSet[T] = list[T] | set[T]
>>> ListOrSet.__type_params__
(T,)
>>> type NotGeneric = int
>>> NotGeneric.__type_params__
()
.. attribute:: __value__
The type alias's value. This is :ref:`lazily evaluated <lazy-evaluation>`,
so names used in the definition of the alias are not resolved until the
``__value__`` attribute is accessed:
.. doctest::
>>> type Mutually = Recursive
>>> type Recursive = Mutually
>>> Mutually
Mutually
>>> Recursive
Recursive
>>> Mutually.__value__
Recursive
>>> Recursive.__value__
Mutually
.. method:: evaluate_value
An :term:`evaluate function` corresponding to the :attr:`__value__` attribute.
When called directly, this method supports only the :attr:`~annotationlib.Format.VALUE`
format, which is equivalent to accessing the :attr:`__value__` attribute directly,
but the method object can be passed to :func:`annotationlib.call_evaluate_function`
to evaluate the value in a different format:
.. doctest::
>>> type Alias = undefined
>>> Alias.__value__
Traceback (most recent call last):
...
NameError: name 'undefined' is not defined
>>> from annotationlib import Format, call_evaluate_function
>>> Alias.evaluate_value(Format.VALUE)
Traceback (most recent call last):
...
NameError: name 'undefined' is not defined
>>> call_evaluate_function(Alias.evaluate_value, Format.FORWARDREF)
ForwardRef('undefined')
.. versionadded:: 3.14
.. rubric:: Unpacking
Type aliases support star unpacking using the ``*Alias`` syntax.
This is equivalent to using ``Unpack[Alias]`` directly:
.. doctest::
>>> type Alias = tuple[int, str]
>>> type Unpacked = tuple[bool, *Alias]
>>> Unpacked.__value__
tuple[bool, typing.Unpack[Alias]]
.. versionadded:: 3.14
Other special directives
""""""""""""""""""""""""
These functions and classes should not be used directly as annotations.
Their intended purpose is to be building blocks for creating and declaring
types.
.. class:: NamedTuple
Typed version of :func:`collections.namedtuple`.
Usage::
class Employee(NamedTuple):
name: str
id: int
This is equivalent to::
Employee = collections.namedtuple('Employee', ['name', 'id'])
To give a field a default value, you can assign to it in the class body::
class Employee(NamedTuple):
name: str
id: int = 3
employee = Employee('Guido')
assert employee.id == 3
Fields with a default value must come after any fields without a default.
The resulting class has an extra attribute ``__annotations__`` giving a
dict that maps the field names to the field types. (The field names are in
the ``_fields`` attribute and the default values are in the
``_field_defaults`` attribute, both of which are part of the :func:`~collections.namedtuple`
API.)
``NamedTuple`` subclasses can also have docstrings and methods::
class Employee(NamedTuple):
"""Represents an employee."""
name: str
id: int = 3
def __repr__(self) -> str:
return f'<Employee {self.name}, id={self.id}>'
``NamedTuple`` subclasses can be generic::
class Group[T](NamedTuple):
key: T
group: list[T]
Backward-compatible usage::
# For creating a generic NamedTuple on Python 3.11
T = TypeVar("T")
class Group(NamedTuple, Generic[T]):
key: T
group: list[T]
# A functional syntax is also supported
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
.. versionchanged:: 3.6
Added support for :pep:`526` variable annotation syntax.
.. versionchanged:: 3.6.1
Added support for default values, methods, and docstrings.
.. versionchanged:: 3.8
The ``_field_types`` and ``__annotations__`` attributes are
now regular dictionaries instead of instances of ``OrderedDict``.
.. versionchanged:: 3.9
Removed the ``_field_types`` attribute in favor of the more
standard ``__annotations__`` attribute which has the same information.
.. versionchanged:: 3.11
Added support for generic namedtuples.
.. versionchanged:: 3.14
Using :func:`super` (and the ``__class__`` :term:`closure variable`) in methods of ``NamedTuple`` subclasses
is unsupported and causes a :class:`TypeError`.
.. deprecated-removed:: 3.13 3.15
The undocumented keyword argument syntax for creating NamedTuple classes
(``NT = NamedTuple("NT", x=int)``) is deprecated, and will be disallowed
in 3.15. Use the class-based syntax or the functional syntax instead.
.. deprecated-removed:: 3.13 3.15
When using the functional syntax to create a NamedTuple class, failing to
pass a value to the 'fields' parameter (``NT = NamedTuple("NT")``) is
deprecated. Passing ``None`` to the 'fields' parameter
(``NT = NamedTuple("NT", None)``) is also deprecated. Both will be
disallowed in Python 3.15. To create a NamedTuple class with 0 fields,
use ``class NT(NamedTuple): pass`` or ``NT = NamedTuple("NT", [])``.
.. class:: NewType(name, tp)
Helper class to create low-overhead :ref:`distinct types <distinct>`.
A ``NewType`` is considered a distinct type by a typechecker. At runtime,
however, calling a ``NewType`` returns its argument unchanged.
Usage::
UserId = NewType('UserId', int) # Declare the NewType "UserId"
first_user = UserId(1) # "UserId" returns the argument unchanged at runtime
.. attribute:: __module__
The module in which the new type is defined.
.. attribute:: __name__
The name of the new type.
.. attribute:: __supertype__
The type that the new type is based on.
.. versionadded:: 3.5.2
.. versionchanged:: 3.10
``NewType`` is now a class rather than a function.
.. class:: Protocol(Generic)
Base class for protocol classes.
Protocol classes are defined like this::
class Proto(Protocol):
def meth(self) -> int:
...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing), for example::
class C:
def meth(self) -> int:
return 0
def func(x: Proto) -> int:
return x.meth()
func(C()) # Passes static type check
See :pep:`544` for more details. Protocol classes decorated with
:func:`runtime_checkable` (described later) act as simple-minded runtime
protocols that check only the presence of given attributes, ignoring their
type signatures. Protocol classes without this decorator cannot be used
as the second argument to :func:`isinstance` or :func:`issubclass`.
Protocol classes can be generic, for example::
class GenProto[T](Protocol):
def meth(self) -> T:
...
In code that needs to be compatible with Python 3.11 or older, generic
Protocols can be written as follows::
T = TypeVar("T")
class GenProto(Protocol[T]):
def meth(self) -> T:
...
.. versionadded:: 3.8
.. decorator:: runtime_checkable
Mark a protocol class as a runtime protocol.
Such a protocol can be used with :func:`isinstance` and :func:`issubclass`.
This allows a simple-minded structural check, very similar to "one trick ponies"
in :mod:`collections.abc` such as :class:`~collections.abc.Iterable`. For example::
@runtime_checkable
class Closable(Protocol):
def close(self): ...
assert isinstance(open('/some/file'), Closable)
@runtime_checkable
class Named(Protocol):
name: str
import threading
assert isinstance(threading.Thread(name='Bob'), Named)
This decorator raises :exc:`TypeError` when applied to a non-protocol class.
.. note::
:func:`!runtime_checkable` will check only the presence of the required
methods or attributes, not their type signatures or types.
For example, :class:`ssl.SSLObject`
is a class, therefore it passes an :func:`issubclass`
check against :ref:`Callable <annotating-callables>`. However, the
``ssl.SSLObject.__init__`` method exists only to raise a
:exc:`TypeError` with a more informative message, therefore making
it impossible to call (instantiate) :class:`ssl.SSLObject`.
.. note::
An :func:`isinstance` check against a runtime-checkable protocol can be
surprisingly slow compared to an ``isinstance()`` check against
a non-protocol class. Consider using alternative idioms such as
:func:`hasattr` calls for structural checks in performance-sensitive
code.
.. versionadded:: 3.8
.. versionchanged:: 3.12
The internal implementation of :func:`isinstance` checks against
runtime-checkable protocols now uses :func:`inspect.getattr_static`
to look up attributes (previously, :func:`hasattr` was used).
As a result, some objects which used to be considered instances
of a runtime-checkable protocol may no longer be considered instances
of that protocol on Python 3.12+, and vice versa.
Most users are unlikely to be affected by this change.
.. versionchanged:: 3.12
The members of a runtime-checkable protocol are now considered "frozen"
at runtime as soon as the class has been created. Monkey-patching
attributes onto a runtime-checkable protocol will still work, but will
have no impact on :func:`isinstance` checks comparing objects to the
protocol. See :ref:`"What's new in Python 3.12" <whatsnew-typing-py312>`
for more details.
.. class:: TypedDict(dict)
Special construct to add type hints to a dictionary.
At runtime it is a plain :class:`dict`.
``TypedDict`` declares a dictionary type that expects all of its
instances to have a certain set of keys, where each key is
associated with a value of a consistent type. This expectation
is not checked at runtime but is only enforced by type checkers.
Usage::
class Point2D(TypedDict):
x: int
y: int
label: str
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
An alternative way to create a ``TypedDict`` is by using
function-call syntax. The second argument must be a literal :class:`dict`::
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
This functional syntax allows defining keys which are not valid
:ref:`identifiers <identifiers>`, for example because they are
keywords or contain hyphens, or when key names must not be
:ref:`mangled <private-name-mangling>` like regular private names::
# raises SyntaxError
class Point2D(TypedDict):
in: int # 'in' is a keyword
x-y: int # name with hyphens
class Definition(TypedDict):
__schema: str # mangled to `_Definition__schema`
# OK, functional syntax
Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
Definition = TypedDict('Definition', {'__schema': str}) # not mangled
By default, all keys must be present in a ``TypedDict``. It is possible to
mark individual keys as non-required using :data:`NotRequired`::
class Point2D(TypedDict):
x: int
y: int
label: NotRequired[str]
# Alternative syntax
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})
This means that a ``Point2D`` ``TypedDict`` can have the ``label``
key omitted.
It is also possible to mark all keys as non-required by default
by specifying a totality of ``False``::
class Point2D(TypedDict, total=False):
x: int
y: int
# Alternative syntax
Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)
This means that a ``Point2D`` ``TypedDict`` can have any of the keys
omitted. A type checker is only expected to support a literal ``False`` or
``True`` as the value of the ``total`` argument. ``True`` is the default,
and makes all items defined in the class body required.
Individual keys of a ``total=False`` ``TypedDict`` can be marked as
required using :data:`Required`::
class Point2D(TypedDict, total=False):
x: Required[int]
y: Required[int]
label: str
# Alternative syntax
Point2D = TypedDict('Point2D', {
'x': Required[int],
'y': Required[int],
'label': str
}, total=False)
It is possible for a ``TypedDict`` type to inherit from one or more other ``TypedDict`` types
using the class-based syntax.
Usage::
class Point3D(Point2D):
z: int
``Point3D`` has three items: ``x``, ``y`` and ``z``. It is equivalent to this
definition::
class Point3D(TypedDict):
x: int
y: int
z: int
A ``TypedDict`` cannot inherit from a non-\ ``TypedDict`` class,
except for :class:`Generic`. For example::
class X(TypedDict):
x: int
class Y(TypedDict):
y: int
class Z(object): pass # A non-TypedDict class
class XY(X, Y): pass # OK
class XZ(X, Z): pass # raises TypeError
A ``TypedDict`` can be generic::
class Group[T](TypedDict):
key: T
group: list[T]
To create a generic ``TypedDict`` that is compatible with Python 3.11
or lower, inherit from :class:`Generic` explicitly:
.. testcode::
T = TypeVar("T")
class Group(TypedDict, Generic[T]):
key: T
group: list[T]
A ``TypedDict`` can be introspected via annotations dicts
(see :ref:`annotations-howto` for more information on annotations best practices),
:attr:`__total__`, :attr:`__required_keys__`, and :attr:`__optional_keys__`.
.. attribute:: __total__
``Point2D.__total__`` gives the value of the ``total`` argument.
Example:
.. doctest::
>>> from typing import TypedDict
>>> class Point2D(TypedDict): pass
>>> Point2D.__total__
True
>>> class Point2D(TypedDict, total=False): pass
>>> Point2D.__total__
False
>>> class Point3D(Point2D): pass
>>> Point3D.__total__
True
This attribute reflects *only* the value of the ``total`` argument
to the current ``TypedDict`` class, not whether the class is semantically
total. For example, a ``TypedDict`` with ``__total__`` set to ``True`` may
have keys marked with :data:`NotRequired`, or it may inherit from another
``TypedDict`` with ``total=False``. Therefore, it is generally better to use
:attr:`__required_keys__` and :attr:`__optional_keys__` for introspection.
.. attribute:: __required_keys__
.. versionadded:: 3.9
.. attribute:: __optional_keys__
``Point2D.__required_keys__`` and ``Point2D.__optional_keys__`` return
:class:`frozenset` objects containing required and non-required keys, respectively.
Keys marked with :data:`Required` will always appear in ``__required_keys__``
and keys marked with :data:`NotRequired` will always appear in ``__optional_keys__``.
For backwards compatibility with Python 3.10 and below,
it is also possible to use inheritance to declare both required and
non-required keys in the same ``TypedDict`` . This is done by declaring a
``TypedDict`` with one value for the ``total`` argument and then
inheriting from it in another ``TypedDict`` with a different value for
``total``:
.. doctest::
>>> class Point2D(TypedDict, total=False):
... x: int
... y: int
...
>>> class Point3D(Point2D):
... z: int
...
>>> Point3D.__required_keys__ == frozenset({'z'})
True
>>> Point3D.__optional_keys__ == frozenset({'x', 'y'})
True
.. versionadded:: 3.9
.. note::
If ``from __future__ import annotations`` is used or if annotations
are given as strings, annotations are not evaluated when the
``TypedDict`` is defined. Therefore, the runtime introspection that
``__required_keys__`` and ``__optional_keys__`` rely on may not work
properly, and the values of the attributes may be incorrect.
Support for :data:`ReadOnly` is reflected in the following attributes:
.. attribute:: __readonly_keys__
A :class:`frozenset` containing the names of all read-only keys. Keys
are read-only if they carry the :data:`ReadOnly` qualifier.
.. versionadded:: 3.13
.. attribute:: __mutable_keys__
A :class:`frozenset` containing the names of all mutable keys. Keys
are mutable if they do not carry the :data:`ReadOnly` qualifier.
.. versionadded:: 3.13
See the `TypedDict <https://typing.python.org/en/latest/spec/typeddict.html#typeddict>`_ section in the typing documentation for more examples and detailed rules.
.. versionadded:: 3.8
.. versionchanged:: 3.11
Added support for marking individual keys as :data:`Required` or :data:`NotRequired`.
See :pep:`655`.
.. versionchanged:: 3.11
Added support for generic ``TypedDict``\ s.
.. versionchanged:: 3.13
Removed support for the keyword-argument method of creating ``TypedDict``\ s.
.. versionchanged:: 3.13
Support for the :data:`ReadOnly` qualifier was added.
.. deprecated-removed:: 3.13 3.15
When using the functional syntax to create a TypedDict class, failing to
pass a value to the 'fields' parameter (``TD = TypedDict("TD")``) is
deprecated. Passing ``None`` to the 'fields' parameter
(``TD = TypedDict("TD", None)``) is also deprecated. Both will be
disallowed in Python 3.15. To create a TypedDict class with 0 fields,
use ``class TD(TypedDict): pass`` or ``TD = TypedDict("TD", {})``.
Protocols
---------
The following protocols are provided by the :mod:`!typing` module. All are decorated
with :func:`@runtime_checkable <runtime_checkable>`.
.. class:: SupportsAbs
An ABC with one abstract method ``__abs__`` that is covariant
in its return type.
.. class:: SupportsBytes
An ABC with one abstract method ``__bytes__``.
.. class:: SupportsComplex
An ABC with one abstract method ``__complex__``.
.. class:: SupportsFloat
An ABC with one abstract method ``__float__``.
.. class:: SupportsIndex
An ABC with one abstract method ``__index__``.
.. versionadded:: 3.8
.. class:: SupportsInt
An ABC with one abstract method ``__int__``.
.. class:: SupportsRound
An ABC with one abstract method ``__round__``
that is covariant in its return type.
.. _typing-io:
ABCs and Protocols for working with I/O
---------------------------------------
.. class:: IO[AnyStr]
TextIO[AnyStr]
BinaryIO[AnyStr]
Generic class ``IO[AnyStr]`` and its subclasses ``TextIO(IO[str])``
and ``BinaryIO(IO[bytes])``
represent the types of I/O streams such as returned by
:func:`open`. Please note that these classes are not protocols, and
their interface is fairly broad.
The protocols :class:`io.Reader` and :class:`io.Writer` offer a simpler
alternative for argument types, when only the ``read()`` or ``write()``
methods are accessed, respectively::
def read_and_write(reader: Reader[str], writer: Writer[bytes]):
data = reader.read()
writer.write(data.encode())
Also consider using :class:`collections.abc.Iterable` for iterating over
the lines of an input stream::
def read_config(stream: Iterable[str]):
for line in stream:
...
Functions and decorators
------------------------
.. function:: cast(typ, val)
Cast a value to a type.
This returns the value unchanged. To the type checker this
signals that the return value has the designated type, but at
runtime we intentionally don't check anything (we want this
to be as fast as possible).
.. function:: assert_type(val, typ, /)
Ask a static type checker to confirm that *val* has an inferred type of *typ*.
At runtime this does nothing: it returns the first argument unchanged with no
checks or side effects, no matter the actual type of the argument.
When a static type checker encounters a call to ``assert_type()``, it
emits an error if the value is not of the specified type::
def greet(name: str) -> None:
assert_type(name, str) # OK, inferred type of `name` is `str`
assert_type(name, int) # type checker error
This function is useful for ensuring the type checker's understanding of a
script is in line with the developer's intentions::
def complex_function(arg: object):
# Do some complex type-narrowing logic,
# after which we hope the inferred type will be `int`
...
# Test whether the type checker correctly understands our function
assert_type(arg, int)
.. versionadded:: 3.11
.. function:: assert_never(arg, /)
Ask a static type checker to confirm that a line of code is unreachable.
Example::
def int_or_str(arg: int | str) -> None:
match arg:
case int():
print("It's an int")
case str():
print("It's a str")
case _ as unreachable:
assert_never(unreachable)
Here, the annotations allow the type checker to infer that the
last case can never execute, because ``arg`` is either
an :class:`int` or a :class:`str`, and both options are covered by
earlier cases.
If a type checker finds that a call to ``assert_never()`` is
reachable, it will emit an error. For example, if the type annotation
for ``arg`` was instead ``int | str | float``, the type checker would
emit an error pointing out that ``unreachable`` is of type :class:`float`.
For a call to ``assert_never`` to pass type checking, the inferred type of
the argument passed in must be the bottom type, :data:`Never`, and nothing
else.
At runtime, this throws an exception when called.
.. seealso::
`Unreachable Code and Exhaustiveness Checking
<https://typing.python.org/en/latest/guides/unreachable.html>`__ has more
information about exhaustiveness checking with static typing.
.. versionadded:: 3.11
.. function:: reveal_type(obj, /)
Ask a static type checker to reveal the inferred type of an expression.
When a static type checker encounters a call to this function,
it emits a diagnostic with the inferred type of the argument. For example::
x: int = 1
reveal_type(x) # Revealed type is "builtins.int"
This can be useful when you want to debug how your type checker
handles a particular piece of code.
At runtime, this function prints the runtime type of its argument to
:data:`sys.stderr` and returns the argument unchanged (allowing the call to
be used within an expression)::
x = reveal_type(1) # prints "Runtime type is int"
print(x) # prints "1"
Note that the runtime type may be different from (more or less specific
than) the type statically inferred by a type checker.
Most type checkers support ``reveal_type()`` anywhere, even if the
name is not imported from ``typing``. Importing the name from
``typing``, however, allows your code to run without runtime errors and
communicates intent more clearly.
.. versionadded:: 3.11
.. decorator:: dataclass_transform(*, eq_default=True, order_default=False, \
kw_only_default=False, frozen_default=False, \
field_specifiers=(), **kwargs)
Decorator to mark an object as providing
:func:`dataclass <dataclasses.dataclass>`-like behavior.
``dataclass_transform`` may be used to
decorate a class, metaclass, or a function that is itself a decorator.
The presence of ``@dataclass_transform()`` tells a static type checker that the
decorated object performs runtime "magic" that
transforms a class in a similar way to
:func:`@dataclasses.dataclass <dataclasses.dataclass>`.
Example usage with a decorator function:
.. testcode::
@dataclass_transform()
def create_model[T](cls: type[T]) -> type[T]:
...
return cls
@create_model
class CustomerModel:
id: int
name: str
On a base class::
@dataclass_transform()
class ModelBase: ...
class CustomerModel(ModelBase):
id: int
name: str
On a metaclass::
@dataclass_transform()
class ModelMeta(type): ...
class ModelBase(metaclass=ModelMeta): ...
class CustomerModel(ModelBase):
id: int
name: str
The ``CustomerModel`` classes defined above will
be treated by type checkers similarly to classes created with
:func:`@dataclasses.dataclass <dataclasses.dataclass>`.
For example, type checkers will assume these classes have
``__init__`` methods that accept ``id`` and ``name``.
The decorated class, metaclass, or function may accept the following bool
arguments which type checkers will assume have the same effect as they
would have on the
:func:`@dataclasses.dataclass<dataclasses.dataclass>` decorator: ``init``,
``eq``, ``order``, ``unsafe_hash``, ``frozen``, ``match_args``,
``kw_only``, and ``slots``. It must be possible for the value of these
arguments (``True`` or ``False``) to be statically evaluated.
The arguments to the ``dataclass_transform`` decorator can be used to
customize the default behaviors of the decorated class, metaclass, or
function:
:param bool eq_default:
Indicates whether the ``eq`` parameter is assumed to be
``True`` or ``False`` if it is omitted by the caller.
Defaults to ``True``.
:param bool order_default:
Indicates whether the ``order`` parameter is
assumed to be ``True`` or ``False`` if it is omitted by the caller.
Defaults to ``False``.
:param bool kw_only_default:
Indicates whether the ``kw_only`` parameter is
assumed to be ``True`` or ``False`` if it is omitted by the caller.
Defaults to ``False``.
:param bool frozen_default:
Indicates whether the ``frozen`` parameter is
assumed to be ``True`` or ``False`` if it is omitted by the caller.
Defaults to ``False``.
.. versionadded:: 3.12
:param field_specifiers:
Specifies a static list of supported classes
or functions that describe fields, similar to :func:`dataclasses.field`.
Defaults to ``()``.
:type field_specifiers: tuple[Callable[..., Any], ...]
:param Any \**kwargs:
Arbitrary other keyword arguments are accepted in order to allow for
possible future extensions.
Type checkers recognize the following optional parameters on field
specifiers:
.. list-table:: **Recognised parameters for field specifiers**
:header-rows: 1
:widths: 20 80
* - Parameter name
- Description
* - ``init``
- Indicates whether the field should be included in the
synthesized ``__init__`` method. If unspecified, ``init`` defaults to
``True``.
* - ``default``
- Provides the default value for the field.
* - ``default_factory``
- Provides a runtime callback that returns the
default value for the field. If neither ``default`` nor
``default_factory`` are specified, the field is assumed to have no
default value and must be provided a value when the class is
instantiated.
* - ``factory``
- An alias for the ``default_factory`` parameter on field specifiers.
* - ``kw_only``
- Indicates whether the field should be marked as
keyword-only. If ``True``, the field will be keyword-only. If
``False``, it will not be keyword-only. If unspecified, the value of
the ``kw_only`` parameter on the object decorated with
``dataclass_transform`` will be used, or if that is unspecified, the
value of ``kw_only_default`` on ``dataclass_transform`` will be used.
* - ``alias``
- Provides an alternative name for the field. This alternative
name is used in the synthesized ``__init__`` method.
At runtime, this decorator records its arguments in the
``__dataclass_transform__`` attribute on the decorated object.
It has no other runtime effect.
See :pep:`681` for more details.
.. versionadded:: 3.11
.. _overload:
.. decorator:: overload
Decorator for creating overloaded functions and methods.
The ``@overload`` decorator allows describing functions and methods
that support multiple different combinations of argument types. A series
of ``@overload``-decorated definitions must be followed by exactly one
non-``@overload``-decorated definition (for the same function/method).
``@overload``-decorated definitions are for the benefit of the
type checker only, since they will be overwritten by the
non-``@overload``-decorated definition. The non-``@overload``-decorated
definition, meanwhile, will be used at
runtime but should be ignored by a type checker. At runtime, calling
an ``@overload``-decorated function directly will raise
:exc:`NotImplementedError`.
An example of overload that gives a more
precise type than can be expressed using a union or a type variable:
.. testcode::
@overload
def process(response: None) -> None:
...
@overload
def process(response: int) -> tuple[int, str]:
...
@overload
def process(response: bytes) -> str:
...
def process(response):
... # actual implementation goes here
See :pep:`484` for more details and comparison with other typing semantics.
.. versionchanged:: 3.11
Overloaded functions can now be introspected at runtime using
:func:`get_overloads`.
.. function:: get_overloads(func)
Return a sequence of :func:`@overload <overload>`-decorated definitions for
*func*.
*func* is the function object for the implementation of the
overloaded function. For example, given the definition of ``process`` in
the documentation for :func:`@overload <overload>`,
``get_overloads(process)`` will return a sequence of three function objects
for the three defined overloads. If called on a function with no overloads,
``get_overloads()`` returns an empty sequence.
``get_overloads()`` can be used for introspecting an overloaded function at
runtime.
.. versionadded:: 3.11
.. function:: clear_overloads()
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
.. versionadded:: 3.11
.. decorator:: final
Decorator to indicate final methods and final classes.
Decorating a method with ``@final`` indicates to a type checker that the
method cannot be overridden in a subclass. Decorating a class with ``@final``
indicates that it cannot be subclassed.
For example::
class Base:
@final
def done(self) -> None:
...
class Sub(Base):
def done(self) -> None: # Error reported by type checker
...
@final
class Leaf:
...
class Other(Leaf): # Error reported by type checker
...
There is no runtime checking of these properties. See :pep:`591` for
more details.
.. versionadded:: 3.8
.. versionchanged:: 3.11
The decorator will now attempt to set a ``__final__`` attribute to ``True``
on the decorated object. Thus, a check like
``if getattr(obj, "__final__", False)`` can be used at runtime
to determine whether an object ``obj`` has been marked as final.
If the decorated object does not support setting attributes,
the decorator returns the object unchanged without raising an exception.
.. decorator:: no_type_check
Decorator to indicate that annotations are not type hints.
This works as a class or function :term:`decorator`. With a class, it
applies recursively to all methods and classes defined in that class
(but not to methods defined in its superclasses or subclasses). Type
checkers will ignore all annotations in a function or class with this
decorator.
``@no_type_check`` mutates the decorated object in place.
.. decorator:: no_type_check_decorator
Decorator to give another decorator the :func:`no_type_check` effect.
This wraps the decorator with something that wraps the decorated
function in :func:`no_type_check`.
.. deprecated-removed:: 3.13 3.15
No type checker ever added support for ``@no_type_check_decorator``. It
is therefore deprecated, and will be removed in Python 3.15.
.. decorator:: override
Decorator to indicate that a method in a subclass is intended to override a
method or attribute in a superclass.
Type checkers should emit an error if a method decorated with ``@override``
does not, in fact, override anything.
This helps prevent bugs that may occur when a base class is changed without
an equivalent change to a child class.
For example:
.. testcode::
class Base:
def log_status(self) -> None:
...
class Sub(Base):
@override
def log_status(self) -> None: # Okay: overrides Base.log_status
...
@override
def done(self) -> None: # Error reported by type checker
...
There is no runtime checking of this property.
The decorator will attempt to set an ``__override__`` attribute to ``True`` on
the decorated object. Thus, a check like
``if getattr(obj, "__override__", False)`` can be used at runtime to determine
whether an object ``obj`` has been marked as an override. If the decorated object
does not support setting attributes, the decorator returns the object unchanged
without raising an exception.
See :pep:`698` for more details.
.. versionadded:: 3.12
.. decorator:: type_check_only
Decorator to mark a class or function as unavailable at runtime.
This decorator is itself not available at runtime. It is mainly
intended to mark classes that are defined in type stub files if
an implementation returns an instance of a private class::
@type_check_only
class Response: # private or not available at runtime
code: int
def get_header(self, name: str) -> str: ...
def fetch_response() -> Response: ...
Note that returning instances of private classes is not recommended.
It is usually preferable to make such classes public.
Introspection helpers
---------------------
.. function:: get_type_hints(obj, globalns=None, localns=None, include_extras=False)
Return a dictionary containing type hints for a function, method, module
or class object.
This is often the same as ``obj.__annotations__``, but this function makes
the following changes to the annotations dictionary:
* Forward references encoded as string literals or :class:`ForwardRef`
objects are handled by evaluating them in *globalns*, *localns*, and
(where applicable) *obj*'s :ref:`type parameter <type-params>` namespace.
If *globalns* or *localns* is not given, appropriate namespace
dictionaries are inferred from *obj*.
* ``None`` is replaced with :class:`types.NoneType`.
* If :func:`@no_type_check <no_type_check>` has been applied to *obj*, an
empty dictionary is returned.
* If *obj* is a class ``C``, the function returns a dictionary that merges
annotations from ``C``'s base classes with those on ``C`` directly. This
is done by traversing :attr:`C.__mro__ <type.__mro__>` and iteratively
combining
``__annotations__`` dictionaries. Annotations on classes appearing
earlier in the :term:`method resolution order` always take precedence over
annotations on classes appearing later in the method resolution order.
* The function recursively replaces all occurrences of ``Annotated[T, ...]``
with ``T``, unless *include_extras* is set to ``True`` (see
:class:`Annotated` for more information).
See also :func:`inspect.get_annotations`, a lower-level function that
returns annotations more directly.
.. note::
If any forward references in the annotations of *obj* are not resolvable
or are not valid Python code, this function will raise an exception
such as :exc:`NameError`. For example, this can happen with imported
:ref:`type aliases <type-aliases>` that include forward references,
or with names imported under :data:`if TYPE_CHECKING <TYPE_CHECKING>`.
.. versionchanged:: 3.9
Added ``include_extras`` parameter as part of :pep:`593`.
See the documentation on :data:`Annotated` for more information.
.. versionchanged:: 3.11
Previously, ``Optional[t]`` was added for function and method annotations
if a default value equal to ``None`` was set.
Now the annotation is returned unchanged.
.. function:: get_origin(tp)
Get the unsubscripted version of a type: for a typing object of the form
``X[Y, Z, ...]`` return ``X``.
If ``X`` is a typing-module alias for a builtin or
:mod:`collections` class, it will be normalized to the original class.
If ``X`` is an instance of :class:`ParamSpecArgs` or :class:`ParamSpecKwargs`,
return the underlying :class:`ParamSpec`.
Return ``None`` for unsupported objects.
Examples:
.. testcode::
assert get_origin(str) is None
assert get_origin(Dict[str, int]) is dict
assert get_origin(Union[int, str]) is Union
assert get_origin(Annotated[str, "metadata"]) is Annotated
P = ParamSpec('P')
assert get_origin(P.args) is P
assert get_origin(P.kwargs) is P
.. versionadded:: 3.8
.. function:: get_args(tp)
Get type arguments with all substitutions performed: for a typing object
of the form ``X[Y, Z, ...]`` return ``(Y, Z, ...)``.
If ``X`` is a union or :class:`Literal` contained in another
generic type, the order of ``(Y, Z, ...)`` may be different from the order
of the original arguments ``[Y, Z, ...]`` due to type caching.
Return ``()`` for unsupported objects.
Examples:
.. testcode::
assert get_args(int) == ()
assert get_args(Dict[int, str]) == (int, str)
assert get_args(Union[int, str]) == (int, str)
.. versionadded:: 3.8
.. function:: get_protocol_members(tp)
Return the set of members defined in a :class:`Protocol`.
.. doctest::
>>> from typing import Protocol, get_protocol_members
>>> class P(Protocol):
... def a(self) -> str: ...
... b: int
>>> get_protocol_members(P) == frozenset({'a', 'b'})
True
Raise :exc:`TypeError` for arguments that are not Protocols.
.. versionadded:: 3.13
.. function:: is_protocol(tp)
Determine if a type is a :class:`Protocol`.
For example::
class P(Protocol):
def a(self) -> str: ...
b: int
is_protocol(P) # => True
is_protocol(int) # => False
.. versionadded:: 3.13
.. function:: is_typeddict(tp)
Check if a type is a :class:`TypedDict`.
For example:
.. testcode::
class Film(TypedDict):
title: str
year: int
assert is_typeddict(Film)
assert not is_typeddict(list | str)
# TypedDict is a factory for creating typed dicts,
# not a typed dict itself
assert not is_typeddict(TypedDict)
.. versionadded:: 3.10
.. class:: ForwardRef
Class used for internal typing representation of string forward references.
For example, ``List["SomeClass"]`` is implicitly transformed into
``List[ForwardRef("SomeClass")]``. :class:`!ForwardRef` should not be instantiated by
a user, but may be used by introspection tools.
.. note::
:pep:`585` generic types such as ``list["SomeClass"]`` will not be
implicitly transformed into ``list[ForwardRef("SomeClass")]`` and thus
will not automatically resolve to ``list[SomeClass]``.
.. versionadded:: 3.7.4
.. versionchanged:: 3.14
This is now an alias for :class:`annotationlib.ForwardRef`. Several undocumented
behaviors of this class have been changed; for example, after a ``ForwardRef`` has
been evaluated, the evaluated value is no longer cached.
.. function:: evaluate_forward_ref(forward_ref, *, owner=None, globals=None, locals=None, type_params=None, format=annotationlib.Format.VALUE)
Evaluate an :class:`annotationlib.ForwardRef` as a :term:`type hint`.
This is similar to calling :meth:`annotationlib.ForwardRef.evaluate`,
but unlike that method, :func:`!evaluate_forward_ref` also
recursively evaluates forward references nested within the type hint.
See the documentation for :meth:`annotationlib.ForwardRef.evaluate` for
the meaning of the *owner*, *globals*, *locals*, *type_params*, and *format* parameters.
.. versionadded:: 3.14
.. data:: NoDefault
A sentinel object used to indicate that a type parameter has no default
value. For example:
.. doctest::
>>> T = TypeVar("T")
>>> T.__default__ is typing.NoDefault
True
>>> S = TypeVar("S", default=None)
>>> S.__default__ is None
True
.. versionadded:: 3.13
Constant
--------
.. data:: TYPE_CHECKING
A special constant that is assumed to be ``True`` by 3rd party static
type checkers. It's ``False`` at runtime.
A module which is expensive to import, and which only contain types
used for typing annotations, can be safely imported inside an
``if TYPE_CHECKING:`` block. This prevents the module from actually
being imported at runtime; annotations aren't eagerly evaluated
(see :pep:`649`) so using undefined symbols in annotations is
harmless--as long as you don't later examine them.
Your static type analysis tool will set ``TYPE_CHECKING`` to
``True`` during static type analysis, which means the module will
be imported and the types will be checked properly during such analysis.
Usage::
if TYPE_CHECKING:
import expensive_mod
def fun(arg: expensive_mod.SomeType) -> None:
local_var: expensive_mod.AnotherType = other_fun()
If you occasionally need to examine type annotations at runtime
which may contain undefined symbols, use
:meth:`annotationlib.get_annotations` with a ``format`` parameter
of :attr:`annotationlib.Format.STRING` or
:attr:`annotationlib.Format.FORWARDREF` to safely retrieve the
annotations without raising :exc:`NameError`.
.. versionadded:: 3.5.2
.. _generic-concrete-collections:
.. _deprecated-aliases:
Deprecated aliases
------------------
This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the :mod:`!typing`
module in order to support parameterizing these generic classes using ``[]``.
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support ``[]`` (see
:pep:`585`).
The redundant types are deprecated as of Python 3.9. However, while the aliases
may be removed at some point, removal of these aliases is not currently
planned. As such, no deprecation warnings are currently issued by the
interpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, a
deprecation warning will be issued by the interpreter for at least two releases
prior to removal. The aliases are guaranteed to remain in the :mod:`!typing` module
without deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if the
program they are checking targets a minimum Python version of 3.9 or newer.
.. _corresponding-to-built-in-types:
Aliases to built-in types
"""""""""""""""""""""""""
.. class:: Dict(dict, MutableMapping[KT, VT])
Deprecated alias to :class:`dict`.
Note that to annotate arguments, it is preferred
to use an abstract collection type such as :class:`~collections.abc.Mapping`
rather than to use :class:`dict` or :class:`!typing.Dict`.
.. deprecated:: 3.9
:class:`builtins.dict <dict>` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: List(list, MutableSequence[T])
Deprecated alias to :class:`list`.
Note that to annotate arguments, it is preferred
to use an abstract collection type such as
:class:`~collections.abc.Sequence` or :class:`~collections.abc.Iterable`
rather than to use :class:`list` or :class:`!typing.List`.
.. deprecated:: 3.9
:class:`builtins.list <list>` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Set(set, MutableSet[T])
Deprecated alias to :class:`builtins.set <set>`.
Note that to annotate arguments, it is preferred
to use an abstract collection type such as :class:`collections.abc.Set`
rather than to use :class:`set` or :class:`typing.Set`.
.. deprecated:: 3.9
:class:`builtins.set <set>` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: FrozenSet(frozenset, AbstractSet[T_co])
Deprecated alias to :class:`builtins.frozenset <frozenset>`.
.. deprecated:: 3.9
:class:`builtins.frozenset <frozenset>`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. data:: Tuple
Deprecated alias for :class:`tuple`.
:class:`tuple` and ``Tuple`` are special-cased in the type system; see
:ref:`annotating-tuples` for more details.
.. deprecated:: 3.9
:class:`builtins.tuple <tuple>` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Type(Generic[CT_co])
Deprecated alias to :class:`type`.
See :ref:`type-of-class-objects` for details on using :class:`type` or
``typing.Type`` in type annotations.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`builtins.type <type>` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. _corresponding-to-types-in-collections:
Aliases to types in :mod:`collections`
""""""""""""""""""""""""""""""""""""""
.. class:: DefaultDict(collections.defaultdict, MutableMapping[KT, VT])
Deprecated alias to :class:`collections.defaultdict`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.defaultdict` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])
Deprecated alias to :class:`collections.OrderedDict`.
.. versionadded:: 3.7.2
.. deprecated:: 3.9
:class:`collections.OrderedDict` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: ChainMap(collections.ChainMap, MutableMapping[KT, VT])
Deprecated alias to :class:`collections.ChainMap`.
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.ChainMap` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Counter(collections.Counter, Dict[T, int])
Deprecated alias to :class:`collections.Counter`.
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.Counter` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Deque(deque, MutableSequence[T])
Deprecated alias to :class:`collections.deque`.
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.deque` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. _other-concrete-types:
Aliases to other concrete types
"""""""""""""""""""""""""""""""
.. class:: Pattern
Match
Deprecated aliases corresponding to the return types from
:func:`re.compile` and :func:`re.match`.
These types (and the corresponding functions) are generic over
:data:`AnyStr`. ``Pattern`` can be specialised as ``Pattern[str]`` or
``Pattern[bytes]``; ``Match`` can be specialised as ``Match[str]`` or
``Match[bytes]``.
.. deprecated:: 3.9
Classes ``Pattern`` and ``Match`` from :mod:`re` now support ``[]``.
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Text
Deprecated alias for :class:`str`.
``Text`` is provided to supply a forward
compatible path for Python 2 code: in Python 2, ``Text`` is an alias for
``unicode``.
Use ``Text`` to indicate that a value must contain a unicode string in
a manner that is compatible with both Python 2 and Python 3::
def add_unicode_checkmark(text: Text) -> Text:
return text + u' \u2713'
.. versionadded:: 3.5.2
.. deprecated:: 3.11
Python 2 is no longer supported, and most type checkers also no longer
support type checking Python 2 code. Removal of the alias is not
currently planned, but users are encouraged to use
:class:`str` instead of ``Text``.
.. _abstract-base-classes:
.. _corresponding-to-collections-in-collections-abc:
Aliases to container ABCs in :mod:`collections.abc`
"""""""""""""""""""""""""""""""""""""""""""""""""""
.. class:: AbstractSet(Collection[T_co])
Deprecated alias to :class:`collections.abc.Set`.
.. deprecated:: 3.9
:class:`collections.abc.Set` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Collection(Sized, Iterable[T_co], Container[T_co])
Deprecated alias to :class:`collections.abc.Collection`.
.. versionadded:: 3.6
.. deprecated:: 3.9
:class:`collections.abc.Collection` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Container(Generic[T_co])
Deprecated alias to :class:`collections.abc.Container`.
.. deprecated:: 3.9
:class:`collections.abc.Container` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])
Deprecated alias to :class:`collections.abc.ItemsView`.
.. deprecated:: 3.9
:class:`collections.abc.ItemsView` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: KeysView(MappingView, AbstractSet[KT_co])
Deprecated alias to :class:`collections.abc.KeysView`.
.. deprecated:: 3.9
:class:`collections.abc.KeysView` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Mapping(Collection[KT], Generic[KT, VT_co])
Deprecated alias to :class:`collections.abc.Mapping`.
.. deprecated:: 3.9
:class:`collections.abc.Mapping` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: MappingView(Sized)
Deprecated alias to :class:`collections.abc.MappingView`.
.. deprecated:: 3.9
:class:`collections.abc.MappingView` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: MutableMapping(Mapping[KT, VT])
Deprecated alias to :class:`collections.abc.MutableMapping`.
.. deprecated:: 3.9
:class:`collections.abc.MutableMapping`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: MutableSequence(Sequence[T])
Deprecated alias to :class:`collections.abc.MutableSequence`.
.. deprecated:: 3.9
:class:`collections.abc.MutableSequence`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: MutableSet(AbstractSet[T])
Deprecated alias to :class:`collections.abc.MutableSet`.
.. deprecated:: 3.9
:class:`collections.abc.MutableSet` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Sequence(Reversible[T_co], Collection[T_co])
Deprecated alias to :class:`collections.abc.Sequence`.
.. deprecated:: 3.9
:class:`collections.abc.Sequence` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: ValuesView(MappingView, Collection[_VT_co])
Deprecated alias to :class:`collections.abc.ValuesView`.
.. deprecated:: 3.9
:class:`collections.abc.ValuesView` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. _asynchronous-programming:
Aliases to asynchronous ABCs in :mod:`collections.abc`
""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. class:: Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])
Deprecated alias to :class:`collections.abc.Coroutine`.
See :ref:`annotating-generators-and-coroutines`
for details on using :class:`collections.abc.Coroutine`
and ``typing.Coroutine`` in type annotations.
.. versionadded:: 3.5.3
.. deprecated:: 3.9
:class:`collections.abc.Coroutine` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])
Deprecated alias to :class:`collections.abc.AsyncGenerator`.
See :ref:`annotating-generators-and-coroutines`
for details on using :class:`collections.abc.AsyncGenerator`
and ``typing.AsyncGenerator`` in type annotations.
.. versionadded:: 3.6.1
.. deprecated:: 3.9
:class:`collections.abc.AsyncGenerator`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. versionchanged:: 3.13
The ``SendType`` parameter now has a default.
.. class:: AsyncIterable(Generic[T_co])
Deprecated alias to :class:`collections.abc.AsyncIterable`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.AsyncIterable` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: AsyncIterator(AsyncIterable[T_co])
Deprecated alias to :class:`collections.abc.AsyncIterator`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.AsyncIterator` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Awaitable(Generic[T_co])
Deprecated alias to :class:`collections.abc.Awaitable`.
.. versionadded:: 3.5.2
.. deprecated:: 3.9
:class:`collections.abc.Awaitable` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. _corresponding-to-other-types-in-collections-abc:
Aliases to other ABCs in :mod:`collections.abc`
"""""""""""""""""""""""""""""""""""""""""""""""
.. class:: Iterable(Generic[T_co])
Deprecated alias to :class:`collections.abc.Iterable`.
.. deprecated:: 3.9
:class:`collections.abc.Iterable` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Iterator(Iterable[T_co])
Deprecated alias to :class:`collections.abc.Iterator`.
.. deprecated:: 3.9
:class:`collections.abc.Iterator` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. data:: Callable
Deprecated alias to :class:`collections.abc.Callable`.
See :ref:`annotating-callables` for details on how to use
:class:`collections.abc.Callable` and ``typing.Callable`` in type annotations.
.. deprecated:: 3.9
:class:`collections.abc.Callable` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. versionchanged:: 3.10
``Callable`` now supports :class:`ParamSpec` and :data:`Concatenate`.
See :pep:`612` for more details.
.. class:: Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])
Deprecated alias to :class:`collections.abc.Generator`.
See :ref:`annotating-generators-and-coroutines`
for details on using :class:`collections.abc.Generator`
and ``typing.Generator`` in type annotations.
.. deprecated:: 3.9
:class:`collections.abc.Generator` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. versionchanged:: 3.13
Default values for the send and return types were added.
.. class:: Hashable
Deprecated alias to :class:`collections.abc.Hashable`.
.. deprecated:: 3.12
Use :class:`collections.abc.Hashable` directly instead.
.. class:: Reversible(Iterable[T_co])
Deprecated alias to :class:`collections.abc.Reversible`.
.. deprecated:: 3.9
:class:`collections.abc.Reversible` now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. class:: Sized
Deprecated alias to :class:`collections.abc.Sized`.
.. deprecated:: 3.12
Use :class:`collections.abc.Sized` directly instead.
.. _context-manager-types:
Aliases to :mod:`contextlib` ABCs
"""""""""""""""""""""""""""""""""
.. class:: ContextManager(Generic[T_co, ExitT_co])
Deprecated alias to :class:`contextlib.AbstractContextManager`.
The first type parameter, ``T_co``, represents the type returned by
the :meth:`~object.__enter__` method. The optional second type parameter, ``ExitT_co``,
which defaults to ``bool | None``, represents the type returned by the
:meth:`~object.__exit__` method.
.. versionadded:: 3.5.4
.. deprecated:: 3.9
:class:`contextlib.AbstractContextManager`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. versionchanged:: 3.13
Added the optional second type parameter, ``ExitT_co``.
.. class:: AsyncContextManager(Generic[T_co, AExitT_co])
Deprecated alias to :class:`contextlib.AbstractAsyncContextManager`.
The first type parameter, ``T_co``, represents the type returned by
the :meth:`~object.__aenter__` method. The optional second type parameter, ``AExitT_co``,
which defaults to ``bool | None``, represents the type returned by the
:meth:`~object.__aexit__` method.
.. versionadded:: 3.6.2
.. deprecated:: 3.9
:class:`contextlib.AbstractAsyncContextManager`
now supports subscripting (``[]``).
See :pep:`585` and :ref:`types-genericalias`.
.. versionchanged:: 3.13
Added the optional second type parameter, ``AExitT_co``.
Deprecation Timeline of Major Features
======================================
Certain features in ``typing`` are deprecated and may be removed in a future
version of Python. The following table summarizes major deprecations for your
convenience. This is subject to change, and not all deprecations are listed.
.. list-table::
:header-rows: 1
* - Feature
- Deprecated in
- Projected removal
- PEP/issue
* - ``typing`` versions of standard collections
- 3.9
- Undecided (see :ref:`deprecated-aliases` for more information)
- :pep:`585`
* - :data:`typing.Text`
- 3.11
- Undecided
- :gh:`92332`
* - :class:`typing.Hashable` and :class:`typing.Sized`
- 3.12
- Undecided
- :gh:`94309`
* - :data:`typing.TypeAlias`
- 3.12
- Undecided
- :pep:`695`
* - :func:`@typing.no_type_check_decorator <no_type_check_decorator>`
- 3.13
- 3.15
- :gh:`106309`
* - :data:`typing.AnyStr`
- 3.13
- 3.18
- :gh:`105578`
|