1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// Lightweight locks and other synchronization mechanisms.
//
// These implementations are based on WebKit's WTF::Lock. See
// https://webkit.org/blog/6161/locking-in-webkit/ for a description of the
// design.
#ifndef Py_INTERNAL_LOCK_H
#define Py_INTERNAL_LOCK_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef Py_BUILD_CORE
# error "this header requires Py_BUILD_CORE define"
#endif
//_Py_UNLOCKED is defined as 0 and _Py_LOCKED as 1 in Include/cpython/lock.h
#define _Py_HAS_PARKED 2
#define _Py_ONCE_INITIALIZED 4
static inline int
PyMutex_LockFast(PyMutex *m)
{
uint8_t expected = _Py_UNLOCKED;
uint8_t *lock_bits = &m->_bits;
return _Py_atomic_compare_exchange_uint8(lock_bits, &expected, _Py_LOCKED);
}
// Re-initializes the mutex after a fork to the unlocked state.
static inline void
_PyMutex_at_fork_reinit(PyMutex *m)
{
memset(m, 0, sizeof(*m));
}
typedef enum _PyLockFlags {
// Do not detach/release the GIL when waiting on the lock.
_Py_LOCK_DONT_DETACH = 0,
// Detach/release the GIL while waiting on the lock.
_PY_LOCK_DETACH = 1,
// Handle signals if interrupted while waiting on the lock.
_PY_LOCK_HANDLE_SIGNALS = 2,
} _PyLockFlags;
// Lock a mutex with an optional timeout and additional options. See
// _PyLockFlags for details.
extern PyAPI_FUNC(PyLockStatus)
_PyMutex_LockTimed(PyMutex *m, PyTime_t timeout_ns, _PyLockFlags flags);
// Lock a mutex with additional options. See _PyLockFlags for details.
static inline void
PyMutex_LockFlags(PyMutex *m, _PyLockFlags flags)
{
uint8_t expected = _Py_UNLOCKED;
if (!_Py_atomic_compare_exchange_uint8(&m->_bits, &expected, _Py_LOCKED)) {
_PyMutex_LockTimed(m, -1, flags);
}
}
// Unlock a mutex, returns -1 if the mutex is not locked (used for improved
// error messages) otherwise returns 0.
extern int _PyMutex_TryUnlock(PyMutex *m);
// PyEvent is a one-time event notification
typedef struct {
uint8_t v;
} PyEvent;
// Check if the event is set without blocking. Returns 1 if the event is set or
// 0 otherwise.
PyAPI_FUNC(int) _PyEvent_IsSet(PyEvent *evt);
// Set the event and notify any waiting threads.
// Export for '_testinternalcapi' shared extension
PyAPI_FUNC(void) _PyEvent_Notify(PyEvent *evt);
// Wait for the event to be set. If the event is already set, then this returns
// immediately.
PyAPI_FUNC(void) PyEvent_Wait(PyEvent *evt);
// Wait for the event to be set, or until the timeout expires. If the event is
// already set, then this returns immediately. Returns 1 if the event was set,
// and 0 if the timeout expired or thread was interrupted. If `detach` is
// true, then the thread will detach/release the GIL while waiting.
PyAPI_FUNC(int)
PyEvent_WaitTimed(PyEvent *evt, PyTime_t timeout_ns, int detach);
// _PyRawMutex implements a word-sized mutex that that does not depend on the
// parking lot API, and therefore can be used in the parking lot
// implementation.
//
// The mutex uses a packed representation: the least significant bit is used to
// indicate whether the mutex is locked or not. The remaining bits are either
// zero or a pointer to a `struct raw_mutex_entry` (see lock.c).
typedef struct {
uintptr_t v;
} _PyRawMutex;
// Slow paths for lock/unlock
extern void _PyRawMutex_LockSlow(_PyRawMutex *m);
extern void _PyRawMutex_UnlockSlow(_PyRawMutex *m);
static inline void
_PyRawMutex_Lock(_PyRawMutex *m)
{
uintptr_t unlocked = _Py_UNLOCKED;
if (_Py_atomic_compare_exchange_uintptr(&m->v, &unlocked, _Py_LOCKED)) {
return;
}
_PyRawMutex_LockSlow(m);
}
static inline void
_PyRawMutex_Unlock(_PyRawMutex *m)
{
uintptr_t locked = _Py_LOCKED;
if (_Py_atomic_compare_exchange_uintptr(&m->v, &locked, _Py_UNLOCKED)) {
return;
}
_PyRawMutex_UnlockSlow(m);
}
// Type signature for one-time initialization functions. The function should
// return 0 on success and -1 on failure.
typedef int _Py_once_fn_t(void *arg);
// (private) slow path for one time initialization
PyAPI_FUNC(int)
_PyOnceFlag_CallOnceSlow(_PyOnceFlag *flag, _Py_once_fn_t *fn, void *arg);
// Calls `fn` once using `flag`. The `arg` is passed to the call to `fn`.
//
// Returns 0 on success and -1 on failure.
//
// If `fn` returns 0 (success), then subsequent calls immediately return 0.
// If `fn` returns -1 (failure), then subsequent calls will retry the call.
static inline int
_PyOnceFlag_CallOnce(_PyOnceFlag *flag, _Py_once_fn_t *fn, void *arg)
{
if (_Py_atomic_load_uint8(&flag->v) == _Py_ONCE_INITIALIZED) {
return 0;
}
return _PyOnceFlag_CallOnceSlow(flag, fn, arg);
}
// A recursive mutex. The mutex should zero-initialized.
typedef struct {
PyMutex mutex;
unsigned long long thread; // i.e., PyThread_get_thread_ident_ex()
size_t level;
} _PyRecursiveMutex;
PyAPI_FUNC(int) _PyRecursiveMutex_IsLockedByCurrentThread(_PyRecursiveMutex *m);
PyAPI_FUNC(void) _PyRecursiveMutex_Lock(_PyRecursiveMutex *m);
extern PyLockStatus _PyRecursiveMutex_LockTimed(_PyRecursiveMutex *m, PyTime_t timeout, _PyLockFlags flags);
PyAPI_FUNC(void) _PyRecursiveMutex_Unlock(_PyRecursiveMutex *m);
extern int _PyRecursiveMutex_TryUnlock(_PyRecursiveMutex *m);
// A readers-writer (RW) lock. The lock supports multiple concurrent readers or
// a single writer. The lock is write-preferring: if a writer is waiting while
// the lock is read-locked then, new readers will be blocked. This avoids
// starvation of writers.
//
// In C++, the equivalent synchronization primitive is std::shared_mutex
// with shared ("read") and exclusive ("write") locking.
//
// The two least significant bits are used to indicate if the lock is
// write-locked and if there are parked threads (either readers or writers)
// waiting to acquire the lock. The remaining bits are used to indicate the
// number of readers holding the lock.
//
// 0b000..00000: unlocked
// 0bnnn..nnn00: nnn..nnn readers holding the lock
// 0bnnn..nnn10: nnn..nnn readers holding the lock and a writer is waiting
// 0b00000..010: unlocked with awoken writer about to acquire lock
// 0b00000..001: write-locked
// 0b00000..011: write-locked and readers or other writers are waiting
//
// Note that reader_count must be zero if the lock is held by a writer, and
// vice versa. The lock can only be held by readers or a writer, but not both.
//
// The design is optimized for simplicity of the implementation. The lock is
// not fair: if fairness is desired, use an additional PyMutex to serialize
// writers. The lock is also not reentrant.
typedef struct {
uintptr_t bits;
} _PyRWMutex;
// Read lock (i.e., shared lock)
PyAPI_FUNC(void) _PyRWMutex_RLock(_PyRWMutex *rwmutex);
PyAPI_FUNC(void) _PyRWMutex_RUnlock(_PyRWMutex *rwmutex);
// Write lock (i.e., exclusive lock)
PyAPI_FUNC(void) _PyRWMutex_Lock(_PyRWMutex *rwmutex);
PyAPI_FUNC(void) _PyRWMutex_Unlock(_PyRWMutex *rwmutex);
// Similar to linux seqlock: https://en.wikipedia.org/wiki/Seqlock
// We use a sequence number to lock the writer, an even sequence means we're unlocked, an odd
// sequence means we're locked. Readers will read the sequence before attempting to read the
// underlying data and then read the sequence number again after reading the data. If the
// sequence has not changed the data is valid.
//
// Differs a little bit in that we use CAS on sequence as the lock, instead of a separate spin lock.
// The writer can also detect that the undelering data has not changed and abandon the write
// and restore the previous sequence.
typedef struct {
uint32_t sequence;
} _PySeqLock;
// Lock the sequence lock for the writer
PyAPI_FUNC(void) _PySeqLock_LockWrite(_PySeqLock *seqlock);
// Unlock the sequence lock and move to the next sequence number.
PyAPI_FUNC(void) _PySeqLock_UnlockWrite(_PySeqLock *seqlock);
// Abandon the current update indicating that no mutations have occurred
// and restore the previous sequence value.
PyAPI_FUNC(void) _PySeqLock_AbandonWrite(_PySeqLock *seqlock);
// Begin a read operation and return the current sequence number.
PyAPI_FUNC(uint32_t) _PySeqLock_BeginRead(_PySeqLock *seqlock);
// End the read operation and confirm that the sequence number has not changed.
// Returns 1 if the read was successful or 0 if the read should be retried.
PyAPI_FUNC(int) _PySeqLock_EndRead(_PySeqLock *seqlock, uint32_t previous);
// Check if the lock was held during a fork and clear the lock. Returns 1
// if the lock was held and any associated data should be cleared.
PyAPI_FUNC(int) _PySeqLock_AfterFork(_PySeqLock *seqlock);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTERNAL_LOCK_H */
|