1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
|
/* Python's malloc wrappers (see pymem.h) */
#include "Python.h"
#include "pycore_interp.h" // _PyInterpreterState_HasFeature
#include "pycore_object.h" // _PyDebugAllocatorStats() definition
#include "pycore_obmalloc.h"
#include "pycore_obmalloc_init.h"
#include "pycore_pyerrors.h" // _Py_FatalErrorFormat()
#include "pycore_pymem.h"
#include "pycore_pystate.h" // _PyInterpreterState_GET
#include "pycore_stats.h" // OBJECT_STAT_INC_COND()
#include <stdlib.h> // malloc()
#include <stdbool.h>
#ifdef WITH_MIMALLOC
// Forward declarations of functions used in our mimalloc modifications
static void _PyMem_mi_page_clear_qsbr(mi_page_t *page);
static bool _PyMem_mi_page_is_safe_to_free(mi_page_t *page);
static bool _PyMem_mi_page_maybe_free(mi_page_t *page, mi_page_queue_t *pq, bool force);
static void _PyMem_mi_page_reclaimed(mi_page_t *page);
static void _PyMem_mi_heap_collect_qsbr(mi_heap_t *heap);
# include "pycore_mimalloc.h"
# include "mimalloc/static.c"
# include "mimalloc/internal.h" // for stats
#endif
#if defined(Py_GIL_DISABLED) && !defined(WITH_MIMALLOC)
# error "Py_GIL_DISABLED requires WITH_MIMALLOC"
#endif
#undef uint
#define uint pymem_uint
/* Defined in tracemalloc.c */
extern void _PyMem_DumpTraceback(int fd, const void *ptr);
static void _PyObject_DebugDumpAddress(const void *p);
static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);
static void set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain);
static void set_up_debug_hooks_unlocked(void);
static void get_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *);
static void set_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *);
/***************************************/
/* low-level allocator implementations */
/***************************************/
/* the default raw allocator (wraps malloc) */
void *
_PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size)
{
/* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
for malloc(0), which would be treated as an error. Some platforms would
return a pointer with no memory behind it, which would break pymalloc.
To solve these problems, allocate an extra byte. */
if (size == 0)
size = 1;
return malloc(size);
}
void *
_PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize)
{
/* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
for calloc(0, 0), which would be treated as an error. Some platforms
would return a pointer with no memory behind it, which would break
pymalloc. To solve these problems, allocate an extra byte. */
if (nelem == 0 || elsize == 0) {
nelem = 1;
elsize = 1;
}
return calloc(nelem, elsize);
}
void *
_PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size)
{
if (size == 0)
size = 1;
return realloc(ptr, size);
}
void
_PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr)
{
free(ptr);
}
#ifdef WITH_MIMALLOC
static void
_PyMem_mi_page_clear_qsbr(mi_page_t *page)
{
#ifdef Py_GIL_DISABLED
// Clear the QSBR goal and remove the page from the QSBR linked list.
page->qsbr_goal = 0;
if (page->qsbr_node.next != NULL) {
llist_remove(&page->qsbr_node);
}
#endif
}
// Check if an empty, newly reclaimed page is safe to free now.
static bool
_PyMem_mi_page_is_safe_to_free(mi_page_t *page)
{
assert(mi_page_all_free(page));
#ifdef Py_GIL_DISABLED
assert(page->qsbr_node.next == NULL);
if (page->use_qsbr && page->qsbr_goal != 0) {
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
if (tstate == NULL) {
return false;
}
return _Py_qbsr_goal_reached(tstate->qsbr, page->qsbr_goal);
}
#endif
return true;
}
#ifdef Py_GIL_DISABLED
// If we are deferring collection of more than this amount of memory for
// mimalloc pages, advance the write sequence. Advancing allows these
// pages to be re-used in a different thread or for a different size class.
#define QSBR_PAGE_MEM_LIMIT 4096*20
// Return true if the global write sequence should be advanced for a mimalloc
// page that is deferred from collection.
static bool
should_advance_qsbr_for_page(struct _qsbr_thread_state *qsbr, mi_page_t *page)
{
size_t bsize = mi_page_block_size(page);
size_t page_size = page->capacity*bsize;
if (page_size > QSBR_PAGE_MEM_LIMIT) {
qsbr->deferred_page_memory = 0;
return true;
}
qsbr->deferred_page_memory += page_size;
if (qsbr->deferred_page_memory > QSBR_PAGE_MEM_LIMIT) {
qsbr->deferred_page_memory = 0;
return true;
}
return false;
}
#endif
static bool
_PyMem_mi_page_maybe_free(mi_page_t *page, mi_page_queue_t *pq, bool force)
{
#ifdef Py_GIL_DISABLED
assert(mi_page_all_free(page));
if (page->use_qsbr) {
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)PyThreadState_GET();
if (page->qsbr_goal != 0 && _Py_qbsr_goal_reached(tstate->qsbr, page->qsbr_goal)) {
_PyMem_mi_page_clear_qsbr(page);
_mi_page_free(page, pq, force);
return true;
}
_PyMem_mi_page_clear_qsbr(page);
page->retire_expire = 0;
if (should_advance_qsbr_for_page(tstate->qsbr, page)) {
page->qsbr_goal = _Py_qsbr_advance(tstate->qsbr->shared);
}
else {
page->qsbr_goal = _Py_qsbr_shared_next(tstate->qsbr->shared);
}
llist_insert_tail(&tstate->mimalloc.page_list, &page->qsbr_node);
return false;
}
#endif
_mi_page_free(page, pq, force);
return true;
}
static void
_PyMem_mi_page_reclaimed(mi_page_t *page)
{
#ifdef Py_GIL_DISABLED
assert(page->qsbr_node.next == NULL);
if (page->qsbr_goal != 0) {
if (mi_page_all_free(page)) {
assert(page->qsbr_node.next == NULL);
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)PyThreadState_GET();
page->retire_expire = 0;
llist_insert_tail(&tstate->mimalloc.page_list, &page->qsbr_node);
}
else {
page->qsbr_goal = 0;
}
}
#endif
}
static void
_PyMem_mi_heap_collect_qsbr(mi_heap_t *heap)
{
#ifdef Py_GIL_DISABLED
if (!heap->page_use_qsbr) {
return;
}
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
struct llist_node *head = &tstate->mimalloc.page_list;
if (llist_empty(head)) {
return;
}
struct llist_node *node;
llist_for_each_safe(node, head) {
mi_page_t *page = llist_data(node, mi_page_t, qsbr_node);
if (!mi_page_all_free(page)) {
// We allocated from this page some point after the delayed free
_PyMem_mi_page_clear_qsbr(page);
continue;
}
if (!_Py_qsbr_poll(tstate->qsbr, page->qsbr_goal)) {
return;
}
_PyMem_mi_page_clear_qsbr(page);
_mi_page_free(page, mi_page_queue_of(page), false);
}
#endif
}
void *
_PyMem_MiMalloc(void *ctx, size_t size)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM];
return mi_heap_malloc(heap, size);
#else
return mi_malloc(size);
#endif
}
void *
_PyMem_MiCalloc(void *ctx, size_t nelem, size_t elsize)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM];
return mi_heap_calloc(heap, nelem, elsize);
#else
return mi_calloc(nelem, elsize);
#endif
}
void *
_PyMem_MiRealloc(void *ctx, void *ptr, size_t size)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = &tstate->mimalloc.heaps[_Py_MIMALLOC_HEAP_MEM];
return mi_heap_realloc(heap, ptr, size);
#else
return mi_realloc(ptr, size);
#endif
}
void
_PyMem_MiFree(void *ctx, void *ptr)
{
mi_free(ptr);
}
void *
_PyObject_MiMalloc(void *ctx, size_t nbytes)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = tstate->mimalloc.current_object_heap;
return mi_heap_malloc(heap, nbytes);
#else
return mi_malloc(nbytes);
#endif
}
void *
_PyObject_MiCalloc(void *ctx, size_t nelem, size_t elsize)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = tstate->mimalloc.current_object_heap;
return mi_heap_calloc(heap, nelem, elsize);
#else
return mi_calloc(nelem, elsize);
#endif
}
void *
_PyObject_MiRealloc(void *ctx, void *ptr, size_t nbytes)
{
#ifdef Py_GIL_DISABLED
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
mi_heap_t *heap = tstate->mimalloc.current_object_heap;
return mi_heap_realloc(heap, ptr, nbytes);
#else
return mi_realloc(ptr, nbytes);
#endif
}
void
_PyObject_MiFree(void *ctx, void *ptr)
{
mi_free(ptr);
}
#endif // WITH_MIMALLOC
#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
#ifdef WITH_MIMALLOC
# define MIMALLOC_ALLOC {NULL, _PyMem_MiMalloc, _PyMem_MiCalloc, _PyMem_MiRealloc, _PyMem_MiFree}
# define MIMALLOC_OBJALLOC {NULL, _PyObject_MiMalloc, _PyObject_MiCalloc, _PyObject_MiRealloc, _PyObject_MiFree}
#endif
/* the pymalloc allocator */
// The actual implementation is further down.
#if defined(WITH_PYMALLOC)
void* _PyObject_Malloc(void *ctx, size_t size);
void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
void _PyObject_Free(void *ctx, void *p);
void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
#endif // WITH_PYMALLOC
#if defined(Py_GIL_DISABLED)
// Py_GIL_DISABLED requires using mimalloc for "mem" and "obj" domains.
# define PYRAW_ALLOC MALLOC_ALLOC
# define PYMEM_ALLOC MIMALLOC_ALLOC
# define PYOBJ_ALLOC MIMALLOC_OBJALLOC
#elif defined(WITH_PYMALLOC)
# define PYRAW_ALLOC MALLOC_ALLOC
# define PYMEM_ALLOC PYMALLOC_ALLOC
# define PYOBJ_ALLOC PYMALLOC_ALLOC
#else
# define PYRAW_ALLOC MALLOC_ALLOC
# define PYMEM_ALLOC MALLOC_ALLOC
# define PYOBJ_ALLOC MALLOC_ALLOC
#endif
/* the default debug allocators */
// The actual implementation is further down.
void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
void _PyMem_DebugRawFree(void *ctx, void *ptr);
void* _PyMem_DebugMalloc(void *ctx, size_t size);
void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
void _PyMem_DebugFree(void *ctx, void *p);
#define PYDBGRAW_ALLOC \
{&_PyRuntime.allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
#define PYDBGMEM_ALLOC \
{&_PyRuntime.allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
#define PYDBGOBJ_ALLOC \
{&_PyRuntime.allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
/* default raw allocator (not swappable) */
void *
_PyMem_DefaultRawMalloc(size_t size)
{
#ifdef Py_DEBUG
return _PyMem_DebugRawMalloc(&_PyRuntime.allocators.debug.raw, size);
#else
return _PyMem_RawMalloc(NULL, size);
#endif
}
void *
_PyMem_DefaultRawCalloc(size_t nelem, size_t elsize)
{
#ifdef Py_DEBUG
return _PyMem_DebugRawCalloc(&_PyRuntime.allocators.debug.raw, nelem, elsize);
#else
return _PyMem_RawCalloc(NULL, nelem, elsize);
#endif
}
void *
_PyMem_DefaultRawRealloc(void *ptr, size_t size)
{
#ifdef Py_DEBUG
return _PyMem_DebugRawRealloc(&_PyRuntime.allocators.debug.raw, ptr, size);
#else
return _PyMem_RawRealloc(NULL, ptr, size);
#endif
}
void
_PyMem_DefaultRawFree(void *ptr)
{
#ifdef Py_DEBUG
_PyMem_DebugRawFree(&_PyRuntime.allocators.debug.raw, ptr);
#else
_PyMem_RawFree(NULL, ptr);
#endif
}
wchar_t*
_PyMem_DefaultRawWcsdup(const wchar_t *str)
{
assert(str != NULL);
size_t len = wcslen(str);
if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
return NULL;
}
size_t size = (len + 1) * sizeof(wchar_t);
wchar_t *str2 = _PyMem_DefaultRawMalloc(size);
if (str2 == NULL) {
return NULL;
}
memcpy(str2, str, size);
return str2;
}
/* the low-level virtual memory allocator */
#ifdef WITH_PYMALLOC
# ifdef MS_WINDOWS
# include <windows.h>
# elif defined(HAVE_MMAP)
# include <sys/mman.h>
# ifdef MAP_ANONYMOUS
# define ARENAS_USE_MMAP
# endif
# endif
#endif
void *
_PyMem_ArenaAlloc(void *Py_UNUSED(ctx), size_t size)
{
#ifdef MS_WINDOWS
return VirtualAlloc(NULL, size,
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#elif defined(ARENAS_USE_MMAP)
void *ptr;
ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED)
return NULL;
assert(ptr != NULL);
return ptr;
#else
return malloc(size);
#endif
}
void
_PyMem_ArenaFree(void *Py_UNUSED(ctx), void *ptr,
#if defined(ARENAS_USE_MMAP)
size_t size
#else
size_t Py_UNUSED(size)
#endif
)
{
#ifdef MS_WINDOWS
/* Unlike free(), VirtualFree() does not special-case NULL to noop. */
if (ptr == NULL) {
return;
}
VirtualFree(ptr, 0, MEM_RELEASE);
#elif defined(ARENAS_USE_MMAP)
/* Unlike free(), munmap() does not special-case NULL to noop. */
if (ptr == NULL) {
return;
}
munmap(ptr, size);
#else
free(ptr);
#endif
}
/*******************************************/
/* end low-level allocator implementations */
/*******************************************/
#define ALLOCATORS_MUTEX (_PyRuntime.allocators.mutex)
#define _PyMem_Raw (_PyRuntime.allocators.standard.raw)
#define _PyMem (_PyRuntime.allocators.standard.mem)
#define _PyObject (_PyRuntime.allocators.standard.obj)
#define _PyMem_Debug (_PyRuntime.allocators.debug)
#define _PyObject_Arena (_PyRuntime.allocators.obj_arena)
/***************************/
/* managing the allocators */
/***************************/
static int
set_default_allocator_unlocked(PyMemAllocatorDomain domain, int debug,
PyMemAllocatorEx *old_alloc)
{
if (old_alloc != NULL) {
get_allocator_unlocked(domain, old_alloc);
}
PyMemAllocatorEx new_alloc;
switch(domain)
{
case PYMEM_DOMAIN_RAW:
new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
break;
case PYMEM_DOMAIN_MEM:
new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
break;
case PYMEM_DOMAIN_OBJ:
new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
break;
default:
/* unknown domain */
return -1;
}
set_allocator_unlocked(domain, &new_alloc);
if (debug) {
set_up_debug_hooks_domain_unlocked(domain);
}
return 0;
}
#ifdef Py_DEBUG
static const int pydebug = 1;
#else
static const int pydebug = 0;
#endif
int
_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
{
if (name == NULL || *name == '\0') {
/* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
nameions): use default memory allocators */
*allocator = PYMEM_ALLOCATOR_DEFAULT;
}
else if (strcmp(name, "default") == 0) {
*allocator = PYMEM_ALLOCATOR_DEFAULT;
}
else if (strcmp(name, "debug") == 0) {
*allocator = PYMEM_ALLOCATOR_DEBUG;
}
#if defined(WITH_PYMALLOC) && !defined(Py_GIL_DISABLED)
else if (strcmp(name, "pymalloc") == 0) {
*allocator = PYMEM_ALLOCATOR_PYMALLOC;
}
else if (strcmp(name, "pymalloc_debug") == 0) {
*allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
}
#endif
#ifdef WITH_MIMALLOC
else if (strcmp(name, "mimalloc") == 0) {
*allocator = PYMEM_ALLOCATOR_MIMALLOC;
}
else if (strcmp(name, "mimalloc_debug") == 0) {
*allocator = PYMEM_ALLOCATOR_MIMALLOC_DEBUG;
}
#endif
#ifndef Py_GIL_DISABLED
else if (strcmp(name, "malloc") == 0) {
*allocator = PYMEM_ALLOCATOR_MALLOC;
}
else if (strcmp(name, "malloc_debug") == 0) {
*allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
}
#endif
else {
/* unknown allocator */
return -1;
}
return 0;
}
static int
set_up_allocators_unlocked(PyMemAllocatorName allocator)
{
switch (allocator) {
case PYMEM_ALLOCATOR_NOT_SET:
/* do nothing */
break;
case PYMEM_ALLOCATOR_DEFAULT:
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, pydebug, NULL);
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, pydebug, NULL);
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, pydebug, NULL);
_PyRuntime.allocators.is_debug_enabled = pydebug;
break;
case PYMEM_ALLOCATOR_DEBUG:
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, 1, NULL);
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, 1, NULL);
(void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, 1, NULL);
_PyRuntime.allocators.is_debug_enabled = 1;
break;
#ifdef WITH_PYMALLOC
case PYMEM_ALLOCATOR_PYMALLOC:
case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
{
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc);
PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc);
set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &pymalloc);
int is_debug = (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG);
_PyRuntime.allocators.is_debug_enabled = is_debug;
if (is_debug) {
set_up_debug_hooks_unlocked();
}
break;
}
#endif
#ifdef WITH_MIMALLOC
case PYMEM_ALLOCATOR_MIMALLOC:
case PYMEM_ALLOCATOR_MIMALLOC_DEBUG:
{
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc);
PyMemAllocatorEx pymalloc = MIMALLOC_ALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc);
PyMemAllocatorEx objmalloc = MIMALLOC_OBJALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &objmalloc);
int is_debug = (allocator == PYMEM_ALLOCATOR_MIMALLOC_DEBUG);
_PyRuntime.allocators.is_debug_enabled = is_debug;
if (is_debug) {
set_up_debug_hooks_unlocked();
}
break;
}
#endif
case PYMEM_ALLOCATOR_MALLOC:
case PYMEM_ALLOCATOR_MALLOC_DEBUG:
{
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc);
set_allocator_unlocked(PYMEM_DOMAIN_MEM, &malloc_alloc);
set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &malloc_alloc);
int is_debug = (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG);
_PyRuntime.allocators.is_debug_enabled = is_debug;
if (is_debug) {
set_up_debug_hooks_unlocked();
}
break;
}
default:
/* unknown allocator */
return -1;
}
return 0;
}
int
_PyMem_SetupAllocators(PyMemAllocatorName allocator)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
int res = set_up_allocators_unlocked(allocator);
PyMutex_Unlock(&ALLOCATORS_MUTEX);
return res;
}
static int
pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
{
return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
}
static const char*
get_current_allocator_name_unlocked(void)
{
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
#ifdef WITH_PYMALLOC
PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
#endif
#ifdef WITH_MIMALLOC
PyMemAllocatorEx mimalloc = MIMALLOC_ALLOC;
PyMemAllocatorEx mimalloc_obj = MIMALLOC_OBJALLOC;
#endif
if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
pymemallocator_eq(&_PyMem, &malloc_alloc) &&
pymemallocator_eq(&_PyObject, &malloc_alloc))
{
return "malloc";
}
#ifdef WITH_PYMALLOC
if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
pymemallocator_eq(&_PyMem, &pymalloc) &&
pymemallocator_eq(&_PyObject, &pymalloc))
{
return "pymalloc";
}
#endif
#ifdef WITH_MIMALLOC
if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
pymemallocator_eq(&_PyMem, &mimalloc) &&
pymemallocator_eq(&_PyObject, &mimalloc_obj))
{
return "mimalloc";
}
#endif
PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;
if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
pymemallocator_eq(&_PyMem, &dbg_mem) &&
pymemallocator_eq(&_PyObject, &dbg_obj))
{
/* Debug hooks installed */
if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
{
return "malloc_debug";
}
#ifdef WITH_PYMALLOC
if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
{
return "pymalloc_debug";
}
#endif
#ifdef WITH_MIMALLOC
if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
pymemallocator_eq(&_PyMem_Debug.mem.alloc, &mimalloc) &&
pymemallocator_eq(&_PyMem_Debug.obj.alloc, &mimalloc_obj))
{
return "mimalloc_debug";
}
#endif
}
return NULL;
}
const char*
_PyMem_GetCurrentAllocatorName(void)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
const char *name = get_current_allocator_name_unlocked();
PyMutex_Unlock(&ALLOCATORS_MUTEX);
return name;
}
int
_PyMem_DebugEnabled(void)
{
return _PyRuntime.allocators.is_debug_enabled;
}
#ifdef WITH_PYMALLOC
static int
_PyMem_PymallocEnabled(void)
{
if (_PyMem_DebugEnabled()) {
return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
}
else {
return (_PyObject.malloc == _PyObject_Malloc);
}
}
#ifdef WITH_MIMALLOC
static int
_PyMem_MimallocEnabled(void)
{
#ifdef Py_GIL_DISABLED
return 1;
#else
if (_PyMem_DebugEnabled()) {
return (_PyMem_Debug.obj.alloc.malloc == _PyObject_MiMalloc);
}
else {
return (_PyObject.malloc == _PyObject_MiMalloc);
}
#endif
}
#endif // WITH_MIMALLOC
#endif // WITH_PYMALLOC
static void
set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain)
{
PyMemAllocatorEx alloc;
if (domain == PYMEM_DOMAIN_RAW) {
if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
return;
}
get_allocator_unlocked(domain, &_PyMem_Debug.raw.alloc);
alloc.ctx = &_PyMem_Debug.raw;
alloc.malloc = _PyMem_DebugRawMalloc;
alloc.calloc = _PyMem_DebugRawCalloc;
alloc.realloc = _PyMem_DebugRawRealloc;
alloc.free = _PyMem_DebugRawFree;
set_allocator_unlocked(domain, &alloc);
}
else if (domain == PYMEM_DOMAIN_MEM) {
if (_PyMem.malloc == _PyMem_DebugMalloc) {
return;
}
get_allocator_unlocked(domain, &_PyMem_Debug.mem.alloc);
alloc.ctx = &_PyMem_Debug.mem;
alloc.malloc = _PyMem_DebugMalloc;
alloc.calloc = _PyMem_DebugCalloc;
alloc.realloc = _PyMem_DebugRealloc;
alloc.free = _PyMem_DebugFree;
set_allocator_unlocked(domain, &alloc);
}
else if (domain == PYMEM_DOMAIN_OBJ) {
if (_PyObject.malloc == _PyMem_DebugMalloc) {
return;
}
get_allocator_unlocked(domain, &_PyMem_Debug.obj.alloc);
alloc.ctx = &_PyMem_Debug.obj;
alloc.malloc = _PyMem_DebugMalloc;
alloc.calloc = _PyMem_DebugCalloc;
alloc.realloc = _PyMem_DebugRealloc;
alloc.free = _PyMem_DebugFree;
set_allocator_unlocked(domain, &alloc);
}
}
static void
set_up_debug_hooks_unlocked(void)
{
set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_RAW);
set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_MEM);
set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_OBJ);
_PyRuntime.allocators.is_debug_enabled = 1;
}
void
PyMem_SetupDebugHooks(void)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
set_up_debug_hooks_unlocked();
PyMutex_Unlock(&ALLOCATORS_MUTEX);
}
static void
get_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
switch(domain)
{
case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
default:
/* unknown domain: set all attributes to NULL */
allocator->ctx = NULL;
allocator->malloc = NULL;
allocator->calloc = NULL;
allocator->realloc = NULL;
allocator->free = NULL;
}
}
static void
set_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
switch(domain)
{
case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
/* ignore unknown domain */
}
}
void
PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
get_allocator_unlocked(domain, allocator);
PyMutex_Unlock(&ALLOCATORS_MUTEX);
}
void
PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
set_allocator_unlocked(domain, allocator);
PyMutex_Unlock(&ALLOCATORS_MUTEX);
}
void
PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
*allocator = _PyObject_Arena;
PyMutex_Unlock(&ALLOCATORS_MUTEX);
}
void
PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
{
PyMutex_Lock(&ALLOCATORS_MUTEX);
_PyObject_Arena = *allocator;
PyMutex_Unlock(&ALLOCATORS_MUTEX);
}
/* Note that there is a possible, but very unlikely, race in any place
* below where we call one of the allocator functions. We access two
* fields in each case: "malloc", etc. and "ctx".
*
* It is unlikely that the allocator will be changed while one of those
* calls is happening, much less in that very narrow window.
* Furthermore, the likelihood of a race is drastically reduced by the
* fact that the allocator may not be changed after runtime init
* (except with a wrapper).
*
* With the above in mind, we currently don't worry about locking
* around these uses of the runtime-global allocators state. */
/*************************/
/* the "arena" allocator */
/*************************/
void *
_PyObject_VirtualAlloc(size_t size)
{
return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size);
}
void
_PyObject_VirtualFree(void *obj, size_t size)
{
_PyObject_Arena.free(_PyObject_Arena.ctx, obj, size);
}
/***********************/
/* the "raw" allocator */
/***********************/
void *
PyMem_RawMalloc(size_t size)
{
/*
* Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
* Most python internals blindly use a signed Py_ssize_t to track
* things without checking for overflows or negatives.
* As size_t is unsigned, checking for size < 0 is not required.
*/
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
}
void *
PyMem_RawCalloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
}
void*
PyMem_RawRealloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
}
void PyMem_RawFree(void *ptr)
{
_PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
}
/***********************/
/* the "mem" allocator */
/***********************/
void *
PyMem_Malloc(size_t size)
{
/* see PyMem_RawMalloc() */
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
OBJECT_STAT_INC_COND(allocations512, size < 512);
OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
OBJECT_STAT_INC(allocations);
return _PyMem.malloc(_PyMem.ctx, size);
}
void *
PyMem_Calloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
OBJECT_STAT_INC_COND(allocations512, elsize < 512);
OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
OBJECT_STAT_INC(allocations);
return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
}
void *
PyMem_Realloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
}
void
PyMem_Free(void *ptr)
{
OBJECT_STAT_INC(frees);
_PyMem.free(_PyMem.ctx, ptr);
}
/***************************/
/* pymem utility functions */
/***************************/
wchar_t*
_PyMem_RawWcsdup(const wchar_t *str)
{
assert(str != NULL);
size_t len = wcslen(str);
if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
return NULL;
}
size_t size = (len + 1) * sizeof(wchar_t);
wchar_t *str2 = PyMem_RawMalloc(size);
if (str2 == NULL) {
return NULL;
}
memcpy(str2, str, size);
return str2;
}
char *
_PyMem_RawStrdup(const char *str)
{
assert(str != NULL);
size_t size = strlen(str) + 1;
char *copy = PyMem_RawMalloc(size);
if (copy == NULL) {
return NULL;
}
memcpy(copy, str, size);
return copy;
}
char *
_PyMem_Strdup(const char *str)
{
assert(str != NULL);
size_t size = strlen(str) + 1;
char *copy = PyMem_Malloc(size);
if (copy == NULL) {
return NULL;
}
memcpy(copy, str, size);
return copy;
}
/***********************************************/
/* Delayed freeing support for Py_GIL_DISABLED */
/***********************************************/
// So that sizeof(struct _mem_work_chunk) is 4096 bytes on 64-bit platforms.
#define WORK_ITEMS_PER_CHUNK 254
// A pointer to be freed once the QSBR read sequence reaches qsbr_goal.
struct _mem_work_item {
uintptr_t ptr; // lowest bit tagged 1 for objects freed with PyObject_Free
uint64_t qsbr_goal;
};
// A fixed-size buffer of pointers to be freed
struct _mem_work_chunk {
// Linked list node of chunks in queue
struct llist_node node;
Py_ssize_t rd_idx; // index of next item to read
Py_ssize_t wr_idx; // index of next item to write
struct _mem_work_item array[WORK_ITEMS_PER_CHUNK];
};
static int
work_item_should_decref(uintptr_t ptr)
{
return ptr & 0x01;
}
static void
free_work_item(uintptr_t ptr, delayed_dealloc_cb cb, void *state)
{
if (work_item_should_decref(ptr)) {
PyObject *obj = (PyObject *)(ptr - 1);
#ifdef Py_GIL_DISABLED
if (cb == NULL) {
assert(!_PyInterpreterState_GET()->stoptheworld.world_stopped);
Py_DECREF(obj);
return;
}
assert(_PyInterpreterState_GET()->stoptheworld.world_stopped);
Py_ssize_t refcount = _Py_ExplicitMergeRefcount(obj, -1);
if (refcount == 0) {
cb(obj, state);
}
#else
Py_DECREF(obj);
#endif
}
else {
PyMem_Free((void *)ptr);
}
}
#ifdef Py_GIL_DISABLED
// For deferred advance on free: the number of deferred items before advancing
// the write sequence. This is based on WORK_ITEMS_PER_CHUNK. We ideally
// want to process a chunk before it overflows.
#define QSBR_DEFERRED_LIMIT 127
// If the deferred memory exceeds 1 MiB, advance the write sequence. This
// helps limit memory usage due to QSBR delaying frees too long.
#define QSBR_FREE_MEM_LIMIT 1024*1024
// Return true if the global write sequence should be advanced for a deferred
// memory free.
static bool
should_advance_qsbr_for_free(struct _qsbr_thread_state *qsbr, size_t size)
{
if (size > QSBR_FREE_MEM_LIMIT) {
qsbr->deferred_count = 0;
qsbr->deferred_memory = 0;
qsbr->should_process = true;
return true;
}
qsbr->deferred_count++;
qsbr->deferred_memory += size;
if (qsbr->deferred_count > QSBR_DEFERRED_LIMIT ||
qsbr->deferred_memory > QSBR_FREE_MEM_LIMIT) {
qsbr->deferred_count = 0;
qsbr->deferred_memory = 0;
qsbr->should_process = true;
return true;
}
return false;
}
#endif
static void
free_delayed(uintptr_t ptr, size_t size)
{
#ifndef Py_GIL_DISABLED
free_work_item(ptr, NULL, NULL);
#else
PyInterpreterState *interp = _PyInterpreterState_GET();
if (_PyInterpreterState_GetFinalizing(interp) != NULL ||
interp->stoptheworld.world_stopped)
{
// Free immediately during interpreter shutdown or if the world is
// stopped.
assert(!interp->stoptheworld.world_stopped || !work_item_should_decref(ptr));
free_work_item(ptr, NULL, NULL);
return;
}
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
struct llist_node *head = &tstate->mem_free_queue;
struct _mem_work_chunk *buf = NULL;
if (!llist_empty(head)) {
// Try to re-use the last buffer
buf = llist_data(head->prev, struct _mem_work_chunk, node);
if (buf->wr_idx == WORK_ITEMS_PER_CHUNK) {
// already full
buf = NULL;
}
}
if (buf == NULL) {
buf = PyMem_Calloc(1, sizeof(*buf));
if (buf != NULL) {
llist_insert_tail(head, &buf->node);
}
}
if (buf == NULL) {
// failed to allocate a buffer, free immediately
PyObject *to_dealloc = NULL;
_PyEval_StopTheWorld(tstate->base.interp);
if (work_item_should_decref(ptr)) {
PyObject *obj = (PyObject *)(ptr - 1);
Py_ssize_t refcount = _Py_ExplicitMergeRefcount(obj, -1);
if (refcount == 0) {
to_dealloc = obj;
}
}
else {
PyMem_Free((void *)ptr);
}
_PyEval_StartTheWorld(tstate->base.interp);
if (to_dealloc != NULL) {
_Py_Dealloc(to_dealloc);
}
return;
}
assert(buf != NULL && buf->wr_idx < WORK_ITEMS_PER_CHUNK);
uint64_t seq;
if (should_advance_qsbr_for_free(tstate->qsbr, size)) {
seq = _Py_qsbr_advance(tstate->qsbr->shared);
}
else {
seq = _Py_qsbr_shared_next(tstate->qsbr->shared);
}
buf->array[buf->wr_idx].ptr = ptr;
buf->array[buf->wr_idx].qsbr_goal = seq;
buf->wr_idx++;
if (buf->wr_idx == WORK_ITEMS_PER_CHUNK) {
// Normally the processing of delayed items is done from the eval
// breaker. Processing here is a safety measure to ensure too much
// work does not accumulate.
_PyMem_ProcessDelayed((PyThreadState *)tstate);
}
#endif
}
void
_PyMem_FreeDelayed(void *ptr, size_t size)
{
assert(!((uintptr_t)ptr & 0x01));
if (ptr != NULL) {
free_delayed((uintptr_t)ptr, size);
}
}
#ifdef Py_GIL_DISABLED
void
_PyObject_XDecRefDelayed(PyObject *ptr)
{
assert(!((uintptr_t)ptr & 0x01));
if (ptr != NULL) {
// We use 0 as the size since we don't have an easy way to know the
// actual size. If we are freeing many objects, the write sequence
// will be advanced due to QSBR_DEFERRED_LIMIT.
free_delayed(((uintptr_t)ptr)|0x01, 0);
}
}
#endif
static struct _mem_work_chunk *
work_queue_first(struct llist_node *head)
{
return llist_data(head->next, struct _mem_work_chunk, node);
}
static void
process_queue(struct llist_node *head, _PyThreadStateImpl *tstate,
bool keep_empty, delayed_dealloc_cb cb, void *state)
{
while (!llist_empty(head)) {
struct _mem_work_chunk *buf = work_queue_first(head);
if (buf->rd_idx < buf->wr_idx) {
struct _mem_work_item *item = &buf->array[buf->rd_idx];
if (!_Py_qsbr_poll(tstate->qsbr, item->qsbr_goal)) {
return;
}
buf->rd_idx++;
// NB: free_work_item may re-enter or execute arbitrary code
free_work_item(item->ptr, cb, state);
continue;
}
assert(buf->rd_idx == buf->wr_idx);
if (keep_empty && buf->node.next == head) {
// Keep the last buffer in the queue to reduce re-allocations
buf->rd_idx = buf->wr_idx = 0;
return;
}
llist_remove(&buf->node);
PyMem_Free(buf);
}
}
static void
process_interp_queue(struct _Py_mem_interp_free_queue *queue,
_PyThreadStateImpl *tstate, delayed_dealloc_cb cb,
void *state)
{
assert(PyMutex_IsLocked(&queue->mutex));
process_queue(&queue->head, tstate, false, cb, state);
int more_work = !llist_empty(&queue->head);
_Py_atomic_store_int_relaxed(&queue->has_work, more_work);
}
static void
maybe_process_interp_queue(struct _Py_mem_interp_free_queue *queue,
_PyThreadStateImpl *tstate, delayed_dealloc_cb cb,
void *state)
{
if (!_Py_atomic_load_int_relaxed(&queue->has_work)) {
return;
}
// Try to acquire the lock, but don't block if it's already held.
if (_PyMutex_LockTimed(&queue->mutex, 0, 0) == PY_LOCK_ACQUIRED) {
process_interp_queue(queue, tstate, cb, state);
PyMutex_Unlock(&queue->mutex);
}
}
void
_PyMem_ProcessDelayed(PyThreadState *tstate)
{
PyInterpreterState *interp = tstate->interp;
_PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate;
tstate_impl->qsbr->should_process = false;
// Process thread-local work
process_queue(&tstate_impl->mem_free_queue, tstate_impl, true, NULL, NULL);
// Process shared interpreter work
maybe_process_interp_queue(&interp->mem_free_queue, tstate_impl, NULL, NULL);
}
void
_PyMem_ProcessDelayedNoDealloc(PyThreadState *tstate, delayed_dealloc_cb cb, void *state)
{
PyInterpreterState *interp = tstate->interp;
_PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate;
// Process thread-local work
process_queue(&tstate_impl->mem_free_queue, tstate_impl, true, cb, state);
// Process shared interpreter work
maybe_process_interp_queue(&interp->mem_free_queue, tstate_impl, cb, state);
}
void
_PyMem_AbandonDelayed(PyThreadState *tstate)
{
PyInterpreterState *interp = tstate->interp;
struct llist_node *queue = &((_PyThreadStateImpl *)tstate)->mem_free_queue;
if (llist_empty(queue)) {
return;
}
// Check if the queue contains one empty buffer
struct _mem_work_chunk *buf = work_queue_first(queue);
if (buf->rd_idx == buf->wr_idx) {
llist_remove(&buf->node);
PyMem_Free(buf);
assert(llist_empty(queue));
return;
}
PyMutex_Lock(&interp->mem_free_queue.mutex);
// Merge the thread's work queue into the interpreter's work queue.
llist_concat(&interp->mem_free_queue.head, queue);
// Process the merged queue now (see gh-130794).
_PyThreadStateImpl *this_tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
process_interp_queue(&interp->mem_free_queue, this_tstate, NULL, NULL);
PyMutex_Unlock(&interp->mem_free_queue.mutex);
assert(llist_empty(queue)); // the thread's queue is now empty
}
void
_PyMem_FiniDelayed(PyInterpreterState *interp)
{
struct llist_node *head = &interp->mem_free_queue.head;
while (!llist_empty(head)) {
struct _mem_work_chunk *buf = work_queue_first(head);
if (buf->rd_idx < buf->wr_idx) {
// Free the remaining items immediately. There should be no other
// threads accessing the memory at this point during shutdown.
struct _mem_work_item *item = &buf->array[buf->rd_idx];
buf->rd_idx++;
// NB: free_work_item may re-enter or execute arbitrary code
free_work_item(item->ptr, NULL, NULL);
continue;
}
llist_remove(&buf->node);
PyMem_Free(buf);
}
}
/**************************/
/* the "object" allocator */
/**************************/
void *
PyObject_Malloc(size_t size)
{
/* see PyMem_RawMalloc() */
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
OBJECT_STAT_INC_COND(allocations512, size < 512);
OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
OBJECT_STAT_INC(allocations);
return _PyObject.malloc(_PyObject.ctx, size);
}
void *
PyObject_Calloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
OBJECT_STAT_INC_COND(allocations512, elsize < 512);
OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
OBJECT_STAT_INC(allocations);
return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
}
void *
PyObject_Realloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
}
void
PyObject_Free(void *ptr)
{
OBJECT_STAT_INC(frees);
_PyObject.free(_PyObject.ctx, ptr);
}
/* If we're using GCC, use __builtin_expect() to reduce overhead of
the valgrind checks */
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
# define UNLIKELY(value) __builtin_expect((value), 0)
# define LIKELY(value) __builtin_expect((value), 1)
#else
# define UNLIKELY(value) (value)
# define LIKELY(value) (value)
#endif
#ifdef WITH_PYMALLOC
#ifdef WITH_VALGRIND
#include <valgrind/valgrind.h>
/* -1 indicates that we haven't checked that we're running on valgrind yet. */
static int running_on_valgrind = -1;
#endif
typedef struct _obmalloc_state OMState;
/* obmalloc state for main interpreter and shared by all interpreters without
* their own obmalloc state. By not explicitly initializing this structure, it
* will be allocated in the BSS which is a small performance win. The radix
* tree arrays are fairly large but are sparsely used. */
static struct _obmalloc_state obmalloc_state_main;
static bool obmalloc_state_initialized;
static inline int
has_own_state(PyInterpreterState *interp)
{
return (_Py_IsMainInterpreter(interp) ||
!(interp->feature_flags & Py_RTFLAGS_USE_MAIN_OBMALLOC) ||
_Py_IsMainInterpreterFinalizing(interp));
}
static inline OMState *
get_state(void)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
assert(interp->obmalloc != NULL); // otherwise not initialized or freed
return interp->obmalloc;
}
// These macros all rely on a local "state" variable.
#define usedpools (state->pools.used)
#define allarenas (state->mgmt.arenas)
#define maxarenas (state->mgmt.maxarenas)
#define unused_arena_objects (state->mgmt.unused_arena_objects)
#define usable_arenas (state->mgmt.usable_arenas)
#define nfp2lasta (state->mgmt.nfp2lasta)
#define narenas_currently_allocated (state->mgmt.narenas_currently_allocated)
#define ntimes_arena_allocated (state->mgmt.ntimes_arena_allocated)
#define narenas_highwater (state->mgmt.narenas_highwater)
#define raw_allocated_blocks (state->mgmt.raw_allocated_blocks)
#ifdef WITH_MIMALLOC
static bool count_blocks(
const mi_heap_t* heap, const mi_heap_area_t* area,
void* block, size_t block_size, void* allocated_blocks)
{
*(size_t *)allocated_blocks += area->used;
return 1;
}
static Py_ssize_t
get_mimalloc_allocated_blocks(PyInterpreterState *interp)
{
size_t allocated_blocks = 0;
#ifdef Py_GIL_DISABLED
_Py_FOR_EACH_TSTATE_UNLOCKED(interp, t) {
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)t;
for (int i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) {
mi_heap_t *heap = &tstate->mimalloc.heaps[i];
mi_heap_visit_blocks(heap, false, &count_blocks, &allocated_blocks);
}
}
mi_abandoned_pool_t *pool = &interp->mimalloc.abandoned_pool;
for (uint8_t tag = 0; tag < _Py_MIMALLOC_HEAP_COUNT; tag++) {
_mi_abandoned_pool_visit_blocks(pool, tag, false, &count_blocks,
&allocated_blocks);
}
#else
// TODO(sgross): this only counts the current thread's blocks.
mi_heap_t *heap = mi_heap_get_default();
mi_heap_visit_blocks(heap, false, &count_blocks, &allocated_blocks);
#endif
return allocated_blocks;
}
#endif
Py_ssize_t
_PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *interp)
{
#ifdef WITH_MIMALLOC
if (_PyMem_MimallocEnabled()) {
return get_mimalloc_allocated_blocks(interp);
}
#endif
#ifdef Py_DEBUG
assert(has_own_state(interp));
#else
if (!has_own_state(interp)) {
_Py_FatalErrorFunc(__func__,
"the interpreter doesn't have its own allocator");
}
#endif
OMState *state = interp->obmalloc;
if (state == NULL) {
return 0;
}
Py_ssize_t n = raw_allocated_blocks;
/* add up allocated blocks for used pools */
for (uint i = 0; i < maxarenas; ++i) {
/* Skip arenas which are not allocated. */
if (allarenas[i].address == 0) {
continue;
}
uintptr_t base = (uintptr_t)_Py_ALIGN_UP(allarenas[i].address, POOL_SIZE);
/* visit every pool in the arena */
assert(base <= (uintptr_t) allarenas[i].pool_address);
for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) {
poolp p = (poolp)base;
n += p->ref.count;
}
}
return n;
}
static void free_obmalloc_arenas(PyInterpreterState *interp);
void
_PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *interp)
{
#ifdef WITH_MIMALLOC
if (_PyMem_MimallocEnabled()) {
Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp);
interp->runtime->obmalloc.interpreter_leaks += leaked;
return;
}
#endif
if (has_own_state(interp) && interp->obmalloc != NULL) {
Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp);
assert(has_own_state(interp) || leaked == 0);
interp->runtime->obmalloc.interpreter_leaks += leaked;
if (_PyMem_obmalloc_state_on_heap(interp) && leaked == 0) {
// free the obmalloc arenas and radix tree nodes. If leaked > 0
// then some of the memory allocated by obmalloc has not been
// freed. It might be safe to free the arenas in that case but
// it's possible that extension modules are still using that
// memory. So, it is safer to not free and to leak. Perhaps there
// should be warning when this happens. It should be possible to
// use a tool like "-fsanitize=address" to track down these leaks.
free_obmalloc_arenas(interp);
}
}
}
static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *);
/* We preserve the number of blocks leaked during runtime finalization,
so they can be reported if the runtime is initialized again. */
// XXX We don't lose any information by dropping this,
// so we should consider doing so.
static Py_ssize_t last_final_leaks = 0;
void
_Py_FinalizeAllocatedBlocks(_PyRuntimeState *runtime)
{
last_final_leaks = get_num_global_allocated_blocks(runtime);
runtime->obmalloc.interpreter_leaks = 0;
}
static Py_ssize_t
get_num_global_allocated_blocks(_PyRuntimeState *runtime)
{
Py_ssize_t total = 0;
if (_PyRuntimeState_GetFinalizing(runtime) != NULL) {
PyInterpreterState *interp = _PyInterpreterState_Main();
if (interp == NULL) {
/* We are at the very end of runtime finalization.
We can't rely on finalizing->interp since that thread
state is probably already freed, so we don't worry
about it. */
assert(PyInterpreterState_Head() == NULL);
}
else {
assert(interp != NULL);
/* It is probably the last interpreter but not necessarily. */
assert(PyInterpreterState_Next(interp) == NULL);
total += _PyInterpreterState_GetAllocatedBlocks(interp);
}
}
else {
_PyEval_StopTheWorldAll(&_PyRuntime);
HEAD_LOCK(runtime);
PyInterpreterState *interp = PyInterpreterState_Head();
assert(interp != NULL);
#ifdef Py_DEBUG
int got_main = 0;
#endif
for (; interp != NULL; interp = PyInterpreterState_Next(interp)) {
#ifdef Py_DEBUG
if (_Py_IsMainInterpreter(interp)) {
assert(!got_main);
got_main = 1;
assert(has_own_state(interp));
}
#endif
if (has_own_state(interp)) {
total += _PyInterpreterState_GetAllocatedBlocks(interp);
}
}
HEAD_UNLOCK(runtime);
_PyEval_StartTheWorldAll(&_PyRuntime);
#ifdef Py_DEBUG
assert(got_main);
#endif
}
total += runtime->obmalloc.interpreter_leaks;
total += last_final_leaks;
return total;
}
Py_ssize_t
_Py_GetGlobalAllocatedBlocks(void)
{
return get_num_global_allocated_blocks(&_PyRuntime);
}
#if WITH_PYMALLOC_RADIX_TREE
/*==========================================================================*/
/* radix tree for tracking arena usage. */
#define arena_map_root (state->usage.arena_map_root)
#ifdef USE_INTERIOR_NODES
#define arena_map_mid_count (state->usage.arena_map_mid_count)
#define arena_map_bot_count (state->usage.arena_map_bot_count)
#endif
/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or
* it cannot be created */
static inline Py_ALWAYS_INLINE arena_map_bot_t *
arena_map_get(OMState *state, pymem_block *p, int create)
{
#ifdef USE_INTERIOR_NODES
/* sanity check that IGNORE_BITS is correct */
assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root));
int i1 = MAP_TOP_INDEX(p);
if (arena_map_root.ptrs[i1] == NULL) {
if (!create) {
return NULL;
}
arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t));
if (n == NULL) {
return NULL;
}
arena_map_root.ptrs[i1] = n;
arena_map_mid_count++;
}
int i2 = MAP_MID_INDEX(p);
if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) {
if (!create) {
return NULL;
}
arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t));
if (n == NULL) {
return NULL;
}
arena_map_root.ptrs[i1]->ptrs[i2] = n;
arena_map_bot_count++;
}
return arena_map_root.ptrs[i1]->ptrs[i2];
#else
return &arena_map_root;
#endif
}
/* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw
* away 24 bits of the address. That reduces the space requirement of
* the tree compared to similar radix tree page-map schemes. In
* exchange for slashing the space requirement, it needs more
* computation to check an address.
*
* Tracking coverage is done by "ideal" arena address. It is easier to
* explain in decimal so let's say that the arena size is 100 bytes.
* Then, ideal addresses are 100, 200, 300, etc. For checking if a
* pointer address is inside an actual arena, we have to check two ideal
* arena addresses. E.g. if pointer is 357, we need to check 200 and
* 300. In the rare case that an arena is aligned in the ideal way
* (e.g. base address of arena is 200) then we only have to check one
* ideal address.
*
* The tree nodes for 200 and 300 both store the address of arena.
* There are two cases: the arena starts at a lower ideal arena and
* extends to this one, or the arena starts in this arena and extends to
* the next ideal arena. The tail_lo and tail_hi members correspond to
* these two cases.
*/
/* mark or unmark addresses covered by arena */
static int
arena_map_mark_used(OMState *state, uintptr_t arena_base, int is_used)
{
/* sanity check that IGNORE_BITS is correct */
assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root));
arena_map_bot_t *n_hi = arena_map_get(
state, (pymem_block *)arena_base, is_used);
if (n_hi == NULL) {
assert(is_used); /* otherwise node should already exist */
return 0; /* failed to allocate space for node */
}
int i3 = MAP_BOT_INDEX((pymem_block *)arena_base);
int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK);
if (tail == 0) {
/* is ideal arena address */
n_hi->arenas[i3].tail_hi = is_used ? -1 : 0;
}
else {
/* arena_base address is not ideal (aligned to arena size) and
* so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node
* for the next arena. Note that it might be in different MAP_TOP
* and MAP_MID nodes as well so we need to call arena_map_get()
* again (do the full tree traversal).
*/
n_hi->arenas[i3].tail_hi = is_used ? tail : 0;
uintptr_t arena_base_next = arena_base + ARENA_SIZE;
/* If arena_base is a legit arena address, so is arena_base_next - 1
* (last address in arena). If arena_base_next overflows then it
* must overflow to 0. However, that would mean arena_base was
* "ideal" and we should not be in this case. */
assert(arena_base < arena_base_next);
arena_map_bot_t *n_lo = arena_map_get(
state, (pymem_block *)arena_base_next, is_used);
if (n_lo == NULL) {
assert(is_used); /* otherwise should already exist */
n_hi->arenas[i3].tail_hi = 0;
return 0; /* failed to allocate space for node */
}
int i3_next = MAP_BOT_INDEX(arena_base_next);
n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0;
}
return 1;
}
/* Return true if 'p' is a pointer inside an obmalloc arena.
* _PyObject_Free() calls this so it needs to be very fast. */
static int
arena_map_is_used(OMState *state, pymem_block *p)
{
arena_map_bot_t *n = arena_map_get(state, p, 0);
if (n == NULL) {
return 0;
}
int i3 = MAP_BOT_INDEX(p);
/* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */
int32_t hi = n->arenas[i3].tail_hi;
int32_t lo = n->arenas[i3].tail_lo;
int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK);
return (tail < lo) || (tail >= hi && hi != 0);
}
/* end of radix tree logic */
/*==========================================================================*/
#endif /* WITH_PYMALLOC_RADIX_TREE */
/* Allocate a new arena. If we run out of memory, return NULL. Else
* allocate a new arena, and return the address of an arena_object
* describing the new arena. It's expected that the caller will set
* `usable_arenas` to the return value.
*/
static struct arena_object*
new_arena(OMState *state)
{
struct arena_object* arenaobj;
uint excess; /* number of bytes above pool alignment */
void *address;
int debug_stats = _PyRuntime.obmalloc.dump_debug_stats;
if (debug_stats == -1) {
const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
debug_stats = (opt != NULL && *opt != '\0');
_PyRuntime.obmalloc.dump_debug_stats = debug_stats;
}
if (debug_stats) {
_PyObject_DebugMallocStats(stderr);
}
if (unused_arena_objects == NULL) {
uint i;
uint numarenas;
size_t nbytes;
/* Double the number of arena objects on each allocation.
* Note that it's possible for `numarenas` to overflow.
*/
numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
if (numarenas <= maxarenas)
return NULL; /* overflow */
#if SIZEOF_SIZE_T <= SIZEOF_INT
if (numarenas > SIZE_MAX / sizeof(*allarenas))
return NULL; /* overflow */
#endif
nbytes = numarenas * sizeof(*allarenas);
arenaobj = (struct arena_object *)PyMem_RawRealloc(allarenas, nbytes);
if (arenaobj == NULL)
return NULL;
allarenas = arenaobj;
/* We might need to fix pointers that were copied. However,
* new_arena only gets called when all the pages in the
* previous arenas are full. Thus, there are *no* pointers
* into the old array. Thus, we don't have to worry about
* invalid pointers. Just to be sure, some asserts:
*/
assert(usable_arenas == NULL);
assert(unused_arena_objects == NULL);
/* Put the new arenas on the unused_arena_objects list. */
for (i = maxarenas; i < numarenas; ++i) {
allarenas[i].address = 0; /* mark as unassociated */
allarenas[i].nextarena = i < numarenas - 1 ?
&allarenas[i+1] : NULL;
}
/* Update globals. */
unused_arena_objects = &allarenas[maxarenas];
maxarenas = numarenas;
}
/* Take the next available arena object off the head of the list. */
assert(unused_arena_objects != NULL);
arenaobj = unused_arena_objects;
unused_arena_objects = arenaobj->nextarena;
assert(arenaobj->address == 0);
address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
#if WITH_PYMALLOC_RADIX_TREE
if (address != NULL) {
if (!arena_map_mark_used(state, (uintptr_t)address, 1)) {
/* marking arena in radix tree failed, abort */
_PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE);
address = NULL;
}
}
#endif
if (address == NULL) {
/* The allocation failed: return NULL after putting the
* arenaobj back.
*/
arenaobj->nextarena = unused_arena_objects;
unused_arena_objects = arenaobj;
return NULL;
}
arenaobj->address = (uintptr_t)address;
++narenas_currently_allocated;
++ntimes_arena_allocated;
if (narenas_currently_allocated > narenas_highwater)
narenas_highwater = narenas_currently_allocated;
arenaobj->freepools = NULL;
/* pool_address <- first pool-aligned address in the arena
nfreepools <- number of whole pools that fit after alignment */
arenaobj->pool_address = (pymem_block*)arenaobj->address;
arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
if (excess != 0) {
--arenaobj->nfreepools;
arenaobj->pool_address += POOL_SIZE - excess;
}
arenaobj->ntotalpools = arenaobj->nfreepools;
return arenaobj;
}
#if WITH_PYMALLOC_RADIX_TREE
/* Return true if and only if P is an address that was allocated by
pymalloc. When the radix tree is used, 'poolp' is unused.
*/
static bool
address_in_range(OMState *state, void *p, poolp Py_UNUSED(pool))
{
return arena_map_is_used(state, p);
}
#else
/*
address_in_range(P, POOL)
Return true if and only if P is an address that was allocated by pymalloc.
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
(the caller is asked to compute this because the macro expands POOL more than
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
variable and pass the latter to the macro; because address_in_range is
called on every alloc/realloc/free, micro-efficiency is important here).
Tricky: Let B be the arena base address associated with the pool, B =
arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
B <= P < B + ARENA_SIZE
Subtracting B throughout, this is true iff
0 <= P-B < ARENA_SIZE
By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
before the first arena has been allocated. `arenas` is still NULL in that
case. We're relying on that maxarenas is also 0 in that case, so that
(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
into a NULL arenas.
Details: given P and POOL, the arena_object corresponding to P is AO =
arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
stores, etc), POOL is the correct address of P's pool, AO.address is the
correct base address of the pool's arena, and P must be within ARENA_SIZE of
AO.address. In addition, AO.address is not 0 (no arena can start at address 0
(NULL)). Therefore address_in_range correctly reports that obmalloc
controls P.
Now suppose obmalloc does not control P (e.g., P was obtained via a direct
call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
in this case -- it may even be uninitialized trash. If the trash arenaindex
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
control P.
Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
allocated arena, obmalloc controls all the memory in slice AO.address :
AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
so P doesn't lie in that slice, so the macro correctly reports that P is not
controlled by obmalloc.
Finally, if P is not controlled by obmalloc and AO corresponds to an unused
arena_object (one not currently associated with an allocated arena),
AO.address is 0, and the second test in the macro reduces to:
P < ARENA_SIZE
If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
of the test still passes, and the third clause (AO.address != 0) is necessary
to get the correct result: AO.address is 0 in this case, so the macro
correctly reports that P is not controlled by obmalloc (despite that P lies in
slice AO.address : AO.address + ARENA_SIZE).
Note: The third (AO.address != 0) clause was added in Python 2.5. Before
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
corresponded to a currently-allocated arena, so the "P is not controlled by
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
was impossible.
Note that the logic is excruciating, and reading up possibly uninitialized
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
creates problems for some memory debuggers. The overwhelming advantage is
that this test determines whether an arbitrary address is controlled by
obmalloc in a small constant time, independent of the number of arenas
obmalloc controls. Since this test is needed at every entry point, it's
extremely desirable that it be this fast.
*/
static bool _Py_NO_SANITIZE_ADDRESS
_Py_NO_SANITIZE_THREAD
_Py_NO_SANITIZE_MEMORY
address_in_range(OMState *state, void *p, poolp pool)
{
// Since address_in_range may be reading from memory which was not allocated
// by Python, it is important that pool->arenaindex is read only once, as
// another thread may be concurrently modifying the value without holding
// the GIL. The following dance forces the compiler to read pool->arenaindex
// only once.
uint arenaindex = *((volatile uint *)&pool->arenaindex);
return arenaindex < maxarenas &&
(uintptr_t)p - allarenas[arenaindex].address < ARENA_SIZE &&
allarenas[arenaindex].address != 0;
}
#endif /* !WITH_PYMALLOC_RADIX_TREE */
/*==========================================================================*/
// Called when freelist is exhausted. Extend the freelist if there is
// space for a block. Otherwise, remove this pool from usedpools.
static void
pymalloc_pool_extend(poolp pool, uint size)
{
if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
/* There is room for another block. */
pool->freeblock = (pymem_block*)pool + pool->nextoffset;
pool->nextoffset += INDEX2SIZE(size);
*(pymem_block **)(pool->freeblock) = NULL;
return;
}
/* Pool is full, unlink from used pools. */
poolp next;
next = pool->nextpool;
pool = pool->prevpool;
next->prevpool = pool;
pool->nextpool = next;
}
/* called when pymalloc_alloc can not allocate a block from usedpool.
* This function takes new pool and allocate a block from it.
*/
static void*
allocate_from_new_pool(OMState *state, uint size)
{
/* There isn't a pool of the right size class immediately
* available: use a free pool.
*/
if (UNLIKELY(usable_arenas == NULL)) {
/* No arena has a free pool: allocate a new arena. */
#ifdef WITH_MEMORY_LIMITS
if (narenas_currently_allocated >= MAX_ARENAS) {
return NULL;
}
#endif
usable_arenas = new_arena(state);
if (usable_arenas == NULL) {
return NULL;
}
usable_arenas->nextarena = usable_arenas->prevarena = NULL;
assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
}
assert(usable_arenas->address != 0);
/* This arena already had the smallest nfreepools value, so decreasing
* nfreepools doesn't change that, and we don't need to rearrange the
* usable_arenas list. However, if the arena becomes wholly allocated,
* we need to remove its arena_object from usable_arenas.
*/
assert(usable_arenas->nfreepools > 0);
if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
/* It's the last of this size, so there won't be any. */
nfp2lasta[usable_arenas->nfreepools] = NULL;
}
/* If any free pools will remain, it will be the new smallest. */
if (usable_arenas->nfreepools > 1) {
assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
}
/* Try to get a cached free pool. */
poolp pool = usable_arenas->freepools;
if (LIKELY(pool != NULL)) {
/* Unlink from cached pools. */
usable_arenas->freepools = pool->nextpool;
usable_arenas->nfreepools--;
if (UNLIKELY(usable_arenas->nfreepools == 0)) {
/* Wholly allocated: remove. */
assert(usable_arenas->freepools == NULL);
assert(usable_arenas->nextarena == NULL ||
usable_arenas->nextarena->prevarena ==
usable_arenas);
usable_arenas = usable_arenas->nextarena;
if (usable_arenas != NULL) {
usable_arenas->prevarena = NULL;
assert(usable_arenas->address != 0);
}
}
else {
/* nfreepools > 0: it must be that freepools
* isn't NULL, or that we haven't yet carved
* off all the arena's pools for the first
* time.
*/
assert(usable_arenas->freepools != NULL ||
usable_arenas->pool_address <=
(pymem_block*)usable_arenas->address +
ARENA_SIZE - POOL_SIZE);
}
}
else {
/* Carve off a new pool. */
assert(usable_arenas->nfreepools > 0);
assert(usable_arenas->freepools == NULL);
pool = (poolp)usable_arenas->pool_address;
assert((pymem_block*)pool <= (pymem_block*)usable_arenas->address +
ARENA_SIZE - POOL_SIZE);
pool->arenaindex = (uint)(usable_arenas - allarenas);
assert(&allarenas[pool->arenaindex] == usable_arenas);
pool->szidx = DUMMY_SIZE_IDX;
usable_arenas->pool_address += POOL_SIZE;
--usable_arenas->nfreepools;
if (usable_arenas->nfreepools == 0) {
assert(usable_arenas->nextarena == NULL ||
usable_arenas->nextarena->prevarena ==
usable_arenas);
/* Unlink the arena: it is completely allocated. */
usable_arenas = usable_arenas->nextarena;
if (usable_arenas != NULL) {
usable_arenas->prevarena = NULL;
assert(usable_arenas->address != 0);
}
}
}
/* Frontlink to used pools. */
pymem_block *bp;
poolp next = usedpools[size + size]; /* == prev */
pool->nextpool = next;
pool->prevpool = next;
next->nextpool = pool;
next->prevpool = pool;
pool->ref.count = 1;
if (pool->szidx == size) {
/* Luckily, this pool last contained blocks
* of the same size class, so its header
* and free list are already initialized.
*/
bp = pool->freeblock;
assert(bp != NULL);
pool->freeblock = *(pymem_block **)bp;
return bp;
}
/*
* Initialize the pool header, set up the free list to
* contain just the second block, and return the first
* block.
*/
pool->szidx = size;
size = INDEX2SIZE(size);
bp = (pymem_block *)pool + POOL_OVERHEAD;
pool->nextoffset = POOL_OVERHEAD + (size << 1);
pool->maxnextoffset = POOL_SIZE - size;
pool->freeblock = bp + size;
*(pymem_block **)(pool->freeblock) = NULL;
return bp;
}
/* pymalloc allocator
Return a pointer to newly allocated memory if pymalloc allocated memory.
Return NULL if pymalloc failed to allocate the memory block: on bigger
requests, on error in the code below (as a last chance to serve the request)
or when the max memory limit has been reached.
*/
static inline void*
pymalloc_alloc(OMState *state, void *Py_UNUSED(ctx), size_t nbytes)
{
#ifdef WITH_VALGRIND
if (UNLIKELY(running_on_valgrind == -1)) {
running_on_valgrind = RUNNING_ON_VALGRIND;
}
if (UNLIKELY(running_on_valgrind)) {
return NULL;
}
#endif
if (UNLIKELY(nbytes == 0)) {
return NULL;
}
if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
return NULL;
}
uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
poolp pool = usedpools[size + size];
pymem_block *bp;
if (LIKELY(pool != pool->nextpool)) {
/*
* There is a used pool for this size class.
* Pick up the head block of its free list.
*/
++pool->ref.count;
bp = pool->freeblock;
assert(bp != NULL);
if (UNLIKELY((pool->freeblock = *(pymem_block **)bp) == NULL)) {
// Reached the end of the free list, try to extend it.
pymalloc_pool_extend(pool, size);
}
}
else {
/* There isn't a pool of the right size class immediately
* available: use a free pool.
*/
bp = allocate_from_new_pool(state, size);
}
return (void *)bp;
}
void *
_PyObject_Malloc(void *ctx, size_t nbytes)
{
OMState *state = get_state();
void* ptr = pymalloc_alloc(state, ctx, nbytes);
if (LIKELY(ptr != NULL)) {
return ptr;
}
ptr = PyMem_RawMalloc(nbytes);
if (ptr != NULL) {
raw_allocated_blocks++;
}
return ptr;
}
void *
_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
{
assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
size_t nbytes = nelem * elsize;
OMState *state = get_state();
void* ptr = pymalloc_alloc(state, ctx, nbytes);
if (LIKELY(ptr != NULL)) {
memset(ptr, 0, nbytes);
return ptr;
}
ptr = PyMem_RawCalloc(nelem, elsize);
if (ptr != NULL) {
raw_allocated_blocks++;
}
return ptr;
}
static void
insert_to_usedpool(OMState *state, poolp pool)
{
assert(pool->ref.count > 0); /* else the pool is empty */
uint size = pool->szidx;
poolp next = usedpools[size + size];
poolp prev = next->prevpool;
/* insert pool before next: prev <-> pool <-> next */
pool->nextpool = next;
pool->prevpool = prev;
next->prevpool = pool;
prev->nextpool = pool;
}
static void
insert_to_freepool(OMState *state, poolp pool)
{
poolp next = pool->nextpool;
poolp prev = pool->prevpool;
next->prevpool = prev;
prev->nextpool = next;
/* Link the pool to freepools. This is a singly-linked
* list, and pool->prevpool isn't used there.
*/
struct arena_object *ao = &allarenas[pool->arenaindex];
pool->nextpool = ao->freepools;
ao->freepools = pool;
uint nf = ao->nfreepools;
/* If this is the rightmost arena with this number of free pools,
* nfp2lasta[nf] needs to change. Caution: if nf is 0, there
* are no arenas in usable_arenas with that value.
*/
struct arena_object* lastnf = nfp2lasta[nf];
assert((nf == 0 && lastnf == NULL) ||
(nf > 0 &&
lastnf != NULL &&
lastnf->nfreepools == nf &&
(lastnf->nextarena == NULL ||
nf < lastnf->nextarena->nfreepools)));
if (lastnf == ao) { /* it is the rightmost */
struct arena_object* p = ao->prevarena;
nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
}
ao->nfreepools = ++nf;
/* All the rest is arena management. We just freed
* a pool, and there are 4 cases for arena mgmt:
* 1. If all the pools are free, return the arena to
* the system free(). Except if this is the last
* arena in the list, keep it to avoid thrashing:
* keeping one wholly free arena in the list avoids
* pathological cases where a simple loop would
* otherwise provoke needing to allocate and free an
* arena on every iteration. See bpo-37257.
* 2. If this is the only free pool in the arena,
* add the arena back to the `usable_arenas` list.
* 3. If the "next" arena has a smaller count of free
* pools, we have to "slide this arena right" to
* restore that usable_arenas is sorted in order of
* nfreepools.
* 4. Else there's nothing more to do.
*/
if (nf == ao->ntotalpools && ao->nextarena != NULL) {
/* Case 1. First unlink ao from usable_arenas.
*/
assert(ao->prevarena == NULL ||
ao->prevarena->address != 0);
assert(ao ->nextarena == NULL ||
ao->nextarena->address != 0);
/* Fix the pointer in the prevarena, or the
* usable_arenas pointer.
*/
if (ao->prevarena == NULL) {
usable_arenas = ao->nextarena;
assert(usable_arenas == NULL ||
usable_arenas->address != 0);
}
else {
assert(ao->prevarena->nextarena == ao);
ao->prevarena->nextarena =
ao->nextarena;
}
/* Fix the pointer in the nextarena. */
if (ao->nextarena != NULL) {
assert(ao->nextarena->prevarena == ao);
ao->nextarena->prevarena =
ao->prevarena;
}
/* Record that this arena_object slot is
* available to be reused.
*/
ao->nextarena = unused_arena_objects;
unused_arena_objects = ao;
#if WITH_PYMALLOC_RADIX_TREE
/* mark arena region as not under control of obmalloc */
arena_map_mark_used(state, ao->address, 0);
#endif
/* Free the entire arena. */
_PyObject_Arena.free(_PyObject_Arena.ctx,
(void *)ao->address, ARENA_SIZE);
ao->address = 0; /* mark unassociated */
--narenas_currently_allocated;
return;
}
if (nf == 1) {
/* Case 2. Put ao at the head of
* usable_arenas. Note that because
* ao->nfreepools was 0 before, ao isn't
* currently on the usable_arenas list.
*/
ao->nextarena = usable_arenas;
ao->prevarena = NULL;
if (usable_arenas)
usable_arenas->prevarena = ao;
usable_arenas = ao;
assert(usable_arenas->address != 0);
if (nfp2lasta[1] == NULL) {
nfp2lasta[1] = ao;
}
return;
}
/* If this arena is now out of order, we need to keep
* the list sorted. The list is kept sorted so that
* the "most full" arenas are used first, which allows
* the nearly empty arenas to be completely freed. In
* a few un-scientific tests, it seems like this
* approach allowed a lot more memory to be freed.
*/
/* If this is the only arena with nf, record that. */
if (nfp2lasta[nf] == NULL) {
nfp2lasta[nf] = ao;
} /* else the rightmost with nf doesn't change */
/* If this was the rightmost of the old size, it remains in place. */
if (ao == lastnf) {
/* Case 4. Nothing to do. */
return;
}
/* If ao were the only arena in the list, the last block would have
* gotten us out.
*/
assert(ao->nextarena != NULL);
/* Case 3: We have to move the arena towards the end of the list,
* because it has more free pools than the arena to its right. It needs
* to move to follow lastnf.
* First unlink ao from usable_arenas.
*/
if (ao->prevarena != NULL) {
/* ao isn't at the head of the list */
assert(ao->prevarena->nextarena == ao);
ao->prevarena->nextarena = ao->nextarena;
}
else {
/* ao is at the head of the list */
assert(usable_arenas == ao);
usable_arenas = ao->nextarena;
}
ao->nextarena->prevarena = ao->prevarena;
/* And insert after lastnf. */
ao->prevarena = lastnf;
ao->nextarena = lastnf->nextarena;
if (ao->nextarena != NULL) {
ao->nextarena->prevarena = ao;
}
lastnf->nextarena = ao;
/* Verify that the swaps worked. */
assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
assert((usable_arenas == ao && ao->prevarena == NULL)
|| ao->prevarena->nextarena == ao);
}
/* Free a memory block allocated by pymalloc_alloc().
Return 1 if it was freed.
Return 0 if the block was not allocated by pymalloc_alloc(). */
static inline int
pymalloc_free(OMState *state, void *Py_UNUSED(ctx), void *p)
{
assert(p != NULL);
#ifdef WITH_VALGRIND
if (UNLIKELY(running_on_valgrind > 0)) {
return 0;
}
#endif
poolp pool = POOL_ADDR(p);
if (UNLIKELY(!address_in_range(state, p, pool))) {
return 0;
}
/* We allocated this address. */
/* Link p to the start of the pool's freeblock list. Since
* the pool had at least the p block outstanding, the pool
* wasn't empty (so it's already in a usedpools[] list, or
* was full and is in no list -- it's not in the freeblocks
* list in any case).
*/
assert(pool->ref.count > 0); /* else it was empty */
pymem_block *lastfree = pool->freeblock;
*(pymem_block **)p = lastfree;
pool->freeblock = (pymem_block *)p;
pool->ref.count--;
if (UNLIKELY(lastfree == NULL)) {
/* Pool was full, so doesn't currently live in any list:
* link it to the front of the appropriate usedpools[] list.
* This mimics LRU pool usage for new allocations and
* targets optimal filling when several pools contain
* blocks of the same size class.
*/
insert_to_usedpool(state, pool);
return 1;
}
/* freeblock wasn't NULL, so the pool wasn't full,
* and the pool is in a usedpools[] list.
*/
if (LIKELY(pool->ref.count != 0)) {
/* pool isn't empty: leave it in usedpools */
return 1;
}
/* Pool is now empty: unlink from usedpools, and
* link to the front of freepools. This ensures that
* previously freed pools will be allocated later
* (being not referenced, they are perhaps paged out).
*/
insert_to_freepool(state, pool);
return 1;
}
void
_PyObject_Free(void *ctx, void *p)
{
/* PyObject_Free(NULL) has no effect */
if (p == NULL) {
return;
}
OMState *state = get_state();
if (UNLIKELY(!pymalloc_free(state, ctx, p))) {
/* pymalloc didn't allocate this address */
PyMem_RawFree(p);
raw_allocated_blocks--;
}
}
/* pymalloc realloc.
If nbytes==0, then as the Python docs promise, we do not treat this like
free(p), and return a non-NULL result.
Return 1 if pymalloc reallocated memory and wrote the new pointer into
newptr_p.
Return 0 if pymalloc didn't allocated p. */
static int
pymalloc_realloc(OMState *state, void *ctx,
void **newptr_p, void *p, size_t nbytes)
{
void *bp;
poolp pool;
size_t size;
assert(p != NULL);
#ifdef WITH_VALGRIND
/* Treat running_on_valgrind == -1 the same as 0 */
if (UNLIKELY(running_on_valgrind > 0)) {
return 0;
}
#endif
pool = POOL_ADDR(p);
if (!address_in_range(state, p, pool)) {
/* pymalloc is not managing this block.
If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
over this block. However, if we do, we need to copy the valid data
from the C-managed block to one of our blocks, and there's no
portable way to know how much of the memory space starting at p is
valid.
As bug 1185883 pointed out the hard way, it's possible that the
C-managed block is "at the end" of allocated VM space, so that a
memory fault can occur if we try to copy nbytes bytes starting at p.
Instead we punt: let C continue to manage this block. */
return 0;
}
/* pymalloc is in charge of this block */
size = INDEX2SIZE(pool->szidx);
if (nbytes <= size) {
/* The block is staying the same or shrinking.
If it's shrinking, there's a tradeoff: it costs cycles to copy the
block to a smaller size class, but it wastes memory not to copy it.
The compromise here is to copy on shrink only if at least 25% of
size can be shaved off. */
if (4 * nbytes > 3 * size) {
/* It's the same, or shrinking and new/old > 3/4. */
*newptr_p = p;
return 1;
}
size = nbytes;
}
bp = _PyObject_Malloc(ctx, nbytes);
if (bp != NULL) {
memcpy(bp, p, size);
_PyObject_Free(ctx, p);
}
*newptr_p = bp;
return 1;
}
void *
_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
{
void *ptr2;
if (ptr == NULL) {
return _PyObject_Malloc(ctx, nbytes);
}
OMState *state = get_state();
if (pymalloc_realloc(state, ctx, &ptr2, ptr, nbytes)) {
return ptr2;
}
return PyMem_RawRealloc(ptr, nbytes);
}
#else /* ! WITH_PYMALLOC */
/*==========================================================================*/
/* pymalloc not enabled: Redirect the entry points to malloc. These will
* only be used by extensions that are compiled with pymalloc enabled. */
Py_ssize_t
_PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp))
{
return 0;
}
Py_ssize_t
_Py_GetGlobalAllocatedBlocks(void)
{
return 0;
}
void
_PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp))
{
return;
}
void
_Py_FinalizeAllocatedBlocks(_PyRuntimeState *Py_UNUSED(runtime))
{
return;
}
#endif /* WITH_PYMALLOC */
/*==========================================================================*/
/* A x-platform debugging allocator. This doesn't manage memory directly,
* it wraps a real allocator, adding extra debugging info to the memory blocks.
*/
/* Uncomment this define to add the "serialno" field */
/* #define PYMEM_DEBUG_SERIALNO */
#ifdef PYMEM_DEBUG_SERIALNO
static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
/* serialno is always incremented via calling this routine. The point is
* to supply a single place to set a breakpoint.
*/
static void
bumpserialno(void)
{
++serialno;
}
#endif
#define SST SIZEOF_SIZE_T
#ifdef PYMEM_DEBUG_SERIALNO
# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
#else
# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
#endif
/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
static size_t
read_size_t(const void *p)
{
const uint8_t *q = (const uint8_t *)p;
size_t result = *q++;
int i;
for (i = SST; --i > 0; ++q)
result = (result << 8) | *q;
return result;
}
/* Write n as a big-endian size_t, MSB at address p, LSB at
* p + sizeof(size_t) - 1.
*/
static void
write_size_t(void *p, size_t n)
{
uint8_t *q = (uint8_t *)p + SST - 1;
int i;
for (i = SST; --i >= 0; --q) {
*q = (uint8_t)(n & 0xff);
n >>= 8;
}
}
static void
fill_mem_debug(debug_alloc_api_t *api, void *data, int c, size_t nbytes,
bool is_alloc)
{
#ifdef Py_GIL_DISABLED
if (api->api_id == 'o') {
// Don't overwrite the first few bytes of a PyObject allocation in the
// free-threaded build
_PyThreadStateImpl *tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
size_t debug_offset;
if (is_alloc) {
debug_offset = tstate->mimalloc.current_object_heap->debug_offset;
}
else {
char *alloc = (char *)data - 2*SST; // start of the allocation
debug_offset = _mi_ptr_page(alloc)->debug_offset;
}
debug_offset -= 2*SST; // account for pymalloc extra bytes
if (debug_offset < nbytes) {
memset((char *)data + debug_offset, c, nbytes - debug_offset);
}
return;
}
#endif
memset(data, c, nbytes);
}
/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and
fills them with useful stuff, here calling the underlying malloc's result p:
p[0: S]
Number of bytes originally asked for. This is a size_t, big-endian (easier
to read in a memory dump).
p[S]
API ID. See PEP 445. This is a character, but seems undocumented.
p[S+1: 2*S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
p[2*S: 2*S+n]
The requested memory, filled with copies of PYMEM_CLEANBYTE.
Used to catch reference to uninitialized memory.
&p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
handled the request itself.
p[2*S+n: 2*S+n+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
p[2*S+n+S: 2*S+n+2*S]
A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
and _PyMem_DebugRealloc.
This is a big-endian size_t.
If "bad memory" is detected later, the serial number gives an
excellent way to set a breakpoint on the next run, to capture the
instant at which this block was passed out.
If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
for 3 * S extra bytes, and omits the last serialno field.
*/
static void *
_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
{
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
uint8_t *p; /* base address of malloc'ed pad block */
uint8_t *data; /* p + 2*SST == pointer to data bytes */
uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */
if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
/* integer overflow: can't represent total as a Py_ssize_t */
return NULL;
}
total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
/* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
^--- p ^--- data ^--- tail
S: nbytes stored as size_t
I: API identifier (1 byte)
F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
C: Clean bytes used later to store actual data
N: Serial number stored as size_t
If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
is omitted. */
if (use_calloc) {
p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
}
else {
p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
}
if (p == NULL) {
return NULL;
}
data = p + 2*SST;
#ifdef PYMEM_DEBUG_SERIALNO
bumpserialno();
#endif
/* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
write_size_t(p, nbytes);
p[SST] = (uint8_t)api->api_id;
memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
if (nbytes > 0 && !use_calloc) {
fill_mem_debug(api, data, PYMEM_CLEANBYTE, nbytes, true);
}
/* at tail, write pad (SST bytes) and serialno (SST bytes) */
tail = data + nbytes;
memset(tail, PYMEM_FORBIDDENBYTE, SST);
#ifdef PYMEM_DEBUG_SERIALNO
write_size_t(tail + SST, serialno);
#endif
return data;
}
void *
_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
{
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
}
void *
_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
{
size_t nbytes;
assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
nbytes = nelem * elsize;
return _PyMem_DebugRawAlloc(1, ctx, nbytes);
}
/* The debug free first checks the 2*SST bytes on each end for sanity (in
particular, that the FORBIDDENBYTEs with the api ID are still intact).
Then fills the original bytes with PYMEM_DEADBYTE.
Then calls the underlying free.
*/
void
_PyMem_DebugRawFree(void *ctx, void *p)
{
/* PyMem_Free(NULL) has no effect */
if (p == NULL) {
return;
}
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
size_t nbytes;
_PyMem_DebugCheckAddress(__func__, api->api_id, p);
nbytes = read_size_t(q);
nbytes += PYMEM_DEBUG_EXTRA_BYTES - 2*SST;
memset(q, PYMEM_DEADBYTE, 2*SST);
fill_mem_debug(api, p, PYMEM_DEADBYTE, nbytes, false);
api->alloc.free(api->alloc.ctx, q);
}
void *
_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
{
if (p == NULL) {
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
}
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
uint8_t *head; /* base address of malloc'ed pad block */
uint8_t *data; /* pointer to data bytes */
uint8_t *r;
uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
size_t total; /* 2 * SST + nbytes + 2 * SST */
size_t original_nbytes;
#define ERASED_SIZE 64
_PyMem_DebugCheckAddress(__func__, api->api_id, p);
data = (uint8_t *)p;
head = data - 2*SST;
original_nbytes = read_size_t(head);
if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
/* integer overflow: can't represent total as a Py_ssize_t */
return NULL;
}
total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
tail = data + original_nbytes;
#ifdef PYMEM_DEBUG_SERIALNO
size_t block_serialno = read_size_t(tail + SST);
#endif
#ifndef Py_GIL_DISABLED
/* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
*/
uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
if (original_nbytes <= sizeof(save)) {
memcpy(save, data, original_nbytes);
memset(data - 2 * SST, PYMEM_DEADBYTE,
original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
}
else {
memcpy(save, data, ERASED_SIZE);
memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
}
#endif
/* Resize and add decorations. */
r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
if (r == NULL) {
/* if realloc() failed: rewrite header and footer which have
just been erased */
nbytes = original_nbytes;
}
else {
head = r;
#ifdef PYMEM_DEBUG_SERIALNO
bumpserialno();
block_serialno = serialno;
#endif
}
data = head + 2*SST;
write_size_t(head, nbytes);
head[SST] = (uint8_t)api->api_id;
memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
tail = data + nbytes;
memset(tail, PYMEM_FORBIDDENBYTE, SST);
#ifdef PYMEM_DEBUG_SERIALNO
write_size_t(tail + SST, block_serialno);
#endif
#ifndef Py_GIL_DISABLED
/* Restore saved bytes. */
if (original_nbytes <= sizeof(save)) {
memcpy(data, save, Py_MIN(nbytes, original_nbytes));
}
else {
size_t i = original_nbytes - ERASED_SIZE;
memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
if (nbytes > i) {
memcpy(data + i, &save[ERASED_SIZE],
Py_MIN(nbytes - i, ERASED_SIZE));
}
}
#endif
if (r == NULL) {
return NULL;
}
if (nbytes > original_nbytes) {
/* growing: mark new extra memory clean */
memset(data + original_nbytes, PYMEM_CLEANBYTE,
nbytes - original_nbytes);
}
return data;
}
static inline void
_PyMem_DebugCheckGIL(const char *func)
{
PyThreadState *tstate = _PyThreadState_GET();
if (tstate == NULL) {
#ifndef Py_GIL_DISABLED
_Py_FatalErrorFunc(func,
"Python memory allocator called "
"without holding the GIL");
#else
_Py_FatalErrorFunc(func,
"Python memory allocator called "
"without an active thread state. "
"Are you trying to call it inside of a Py_BEGIN_ALLOW_THREADS block?");
#endif
}
}
void *
_PyMem_DebugMalloc(void *ctx, size_t nbytes)
{
_PyMem_DebugCheckGIL(__func__);
return _PyMem_DebugRawMalloc(ctx, nbytes);
}
void *
_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
{
_PyMem_DebugCheckGIL(__func__);
return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
}
void
_PyMem_DebugFree(void *ctx, void *ptr)
{
_PyMem_DebugCheckGIL(__func__);
_PyMem_DebugRawFree(ctx, ptr);
}
void *
_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
{
_PyMem_DebugCheckGIL(__func__);
return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
}
/* Check the forbidden bytes on both ends of the memory allocated for p.
* If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
* and call Py_FatalError to kill the program.
* The API id, is also checked.
*/
static void
_PyMem_DebugCheckAddress(const char *func, char api, const void *p)
{
assert(p != NULL);
const uint8_t *q = (const uint8_t *)p;
size_t nbytes;
const uint8_t *tail;
int i;
char id;
/* Check the API id */
id = (char)q[-SST];
if (id != api) {
_PyObject_DebugDumpAddress(p);
_Py_FatalErrorFormat(func,
"bad ID: Allocated using API '%c', "
"verified using API '%c'",
id, api);
}
/* Check the stuff at the start of p first: if there's underwrite
* corruption, the number-of-bytes field may be nuts, and checking
* the tail could lead to a segfault then.
*/
for (i = SST-1; i >= 1; --i) {
if (*(q-i) != PYMEM_FORBIDDENBYTE) {
_PyObject_DebugDumpAddress(p);
_Py_FatalErrorFunc(func, "bad leading pad byte");
}
}
nbytes = read_size_t(q - 2*SST);
tail = q + nbytes;
for (i = 0; i < SST; ++i) {
if (tail[i] != PYMEM_FORBIDDENBYTE) {
_PyObject_DebugDumpAddress(p);
_Py_FatalErrorFunc(func, "bad trailing pad byte");
}
}
}
/* Display info to stderr about the memory block at p. */
static void
_PyObject_DebugDumpAddress(const void *p)
{
const uint8_t *q = (const uint8_t *)p;
const uint8_t *tail;
size_t nbytes;
int i;
int ok;
char id;
fprintf(stderr, "Debug memory block at address p=%p:", p);
if (p == NULL) {
fprintf(stderr, "\n");
return;
}
id = (char)q[-SST];
fprintf(stderr, " API '%c'\n", id);
nbytes = read_size_t(q - 2*SST);
fprintf(stderr, " %zu bytes originally requested\n", nbytes);
/* In case this is nuts, check the leading pad bytes first. */
fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
ok = 1;
for (i = 1; i <= SST-1; ++i) {
if (*(q-i) != PYMEM_FORBIDDENBYTE) {
ok = 0;
break;
}
}
if (ok)
fputs("FORBIDDENBYTE, as expected.\n", stderr);
else {
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
PYMEM_FORBIDDENBYTE);
for (i = SST-1; i >= 1; --i) {
const uint8_t byte = *(q-i);
fprintf(stderr, " at p-%d: 0x%02x", i, byte);
if (byte != PYMEM_FORBIDDENBYTE)
fputs(" *** OUCH", stderr);
fputc('\n', stderr);
}
fputs(" Because memory is corrupted at the start, the "
"count of bytes requested\n"
" may be bogus, and checking the trailing pad "
"bytes may segfault.\n", stderr);
}
tail = q + nbytes;
fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail);
ok = 1;
for (i = 0; i < SST; ++i) {
if (tail[i] != PYMEM_FORBIDDENBYTE) {
ok = 0;
break;
}
}
if (ok)
fputs("FORBIDDENBYTE, as expected.\n", stderr);
else {
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
PYMEM_FORBIDDENBYTE);
for (i = 0; i < SST; ++i) {
const uint8_t byte = tail[i];
fprintf(stderr, " at tail+%d: 0x%02x",
i, byte);
if (byte != PYMEM_FORBIDDENBYTE)
fputs(" *** OUCH", stderr);
fputc('\n', stderr);
}
}
#ifdef PYMEM_DEBUG_SERIALNO
size_t serial = read_size_t(tail + SST);
fprintf(stderr,
" The block was made by call #%zu to debug malloc/realloc.\n",
serial);
#endif
if (nbytes > 0) {
i = 0;
fputs(" Data at p:", stderr);
/* print up to 8 bytes at the start */
while (q < tail && i < 8) {
fprintf(stderr, " %02x", *q);
++i;
++q;
}
/* and up to 8 at the end */
if (q < tail) {
if (tail - q > 8) {
fputs(" ...", stderr);
q = tail - 8;
}
while (q < tail) {
fprintf(stderr, " %02x", *q);
++q;
}
}
fputc('\n', stderr);
}
fputc('\n', stderr);
fflush(stderr);
_PyMem_DumpTraceback(fileno(stderr), p);
}
static size_t
printone(FILE *out, const char* msg, size_t value)
{
int i, k;
char buf[100];
size_t origvalue = value;
fputs(msg, out);
for (i = (int)strlen(msg); i < 35; ++i)
fputc(' ', out);
fputc('=', out);
/* Write the value with commas. */
i = 22;
buf[i--] = '\0';
buf[i--] = '\n';
k = 3;
do {
size_t nextvalue = value / 10;
unsigned int digit = (unsigned int)(value - nextvalue * 10);
value = nextvalue;
buf[i--] = (char)(digit + '0');
--k;
if (k == 0 && value && i >= 0) {
k = 3;
buf[i--] = ',';
}
} while (value && i >= 0);
while (i >= 0)
buf[i--] = ' ';
fputs(buf, out);
return origvalue;
}
void
_PyDebugAllocatorStats(FILE *out,
const char *block_name, int num_blocks, size_t sizeof_block)
{
char buf1[128];
char buf2[128];
PyOS_snprintf(buf1, sizeof(buf1),
"%d %ss * %zd bytes each",
num_blocks, block_name, sizeof_block);
PyOS_snprintf(buf2, sizeof(buf2),
"%48s ", buf1);
(void)printone(out, buf2, num_blocks * sizeof_block);
}
// Return true if the obmalloc state structure is heap allocated,
// by PyMem_RawCalloc(). For the main interpreter, this structure
// allocated in the BSS. Allocating that way gives some memory savings
// and a small performance win (at least on a demand paged OS). On
// 64-bit platforms, the obmalloc structure is 256 kB. Most of that
// memory is for the arena_map_top array. Since normally only one entry
// of that array is used, only one page of resident memory is actually
// used, rather than the full 256 kB.
bool _PyMem_obmalloc_state_on_heap(PyInterpreterState *interp)
{
#if WITH_PYMALLOC
return interp->obmalloc && interp->obmalloc != &obmalloc_state_main;
#else
return false;
#endif
}
#ifdef WITH_PYMALLOC
static void
init_obmalloc_pools(PyInterpreterState *interp)
{
// initialize the obmalloc->pools structure. This must be done
// before the obmalloc alloc/free functions can be called.
poolp temp[OBMALLOC_USED_POOLS_SIZE] =
_obmalloc_pools_INIT(interp->obmalloc->pools);
memcpy(&interp->obmalloc->pools.used, temp, sizeof(temp));
}
#endif /* WITH_PYMALLOC */
int _PyMem_init_obmalloc(PyInterpreterState *interp)
{
#ifdef WITH_PYMALLOC
/* Initialize obmalloc, but only for subinterpreters,
since the main interpreter is initialized statically. */
if (_Py_IsMainInterpreter(interp)
|| _PyInterpreterState_HasFeature(interp,
Py_RTFLAGS_USE_MAIN_OBMALLOC)) {
interp->obmalloc = &obmalloc_state_main;
if (!obmalloc_state_initialized) {
init_obmalloc_pools(interp);
obmalloc_state_initialized = true;
}
} else {
interp->obmalloc = PyMem_RawCalloc(1, sizeof(struct _obmalloc_state));
if (interp->obmalloc == NULL) {
return -1;
}
init_obmalloc_pools(interp);
}
#endif /* WITH_PYMALLOC */
return 0; // success
}
#ifdef WITH_PYMALLOC
static void
free_obmalloc_arenas(PyInterpreterState *interp)
{
OMState *state = interp->obmalloc;
for (uint i = 0; i < maxarenas; ++i) {
// free each obmalloc memory arena
struct arena_object *ao = &allarenas[i];
_PyObject_Arena.free(_PyObject_Arena.ctx,
(void *)ao->address, ARENA_SIZE);
}
// free the array containing pointers to all arenas
PyMem_RawFree(allarenas);
#if WITH_PYMALLOC_RADIX_TREE
#ifdef USE_INTERIOR_NODES
// Free the middle and bottom nodes of the radix tree. These are allocated
// by arena_map_mark_used() but not freed when arenas are freed.
for (int i1 = 0; i1 < MAP_TOP_LENGTH; i1++) {
arena_map_mid_t *mid = arena_map_root.ptrs[i1];
if (mid == NULL) {
continue;
}
for (int i2 = 0; i2 < MAP_MID_LENGTH; i2++) {
arena_map_bot_t *bot = arena_map_root.ptrs[i1]->ptrs[i2];
if (bot == NULL) {
continue;
}
PyMem_RawFree(bot);
}
PyMem_RawFree(mid);
}
#endif
#endif
}
#ifdef Py_DEBUG
/* Is target in the list? The list is traversed via the nextpool pointers.
* The list may be NULL-terminated, or circular. Return 1 if target is in
* list, else 0.
*/
static int
pool_is_in_list(const poolp target, poolp list)
{
poolp origlist = list;
assert(target != NULL);
if (list == NULL)
return 0;
do {
if (target == list)
return 1;
list = list->nextpool;
} while (list != NULL && list != origlist);
return 0;
}
#endif
#ifdef WITH_MIMALLOC
struct _alloc_stats {
size_t allocated_blocks;
size_t allocated_bytes;
size_t allocated_with_overhead;
size_t bytes_reserved;
size_t bytes_committed;
};
static bool _collect_alloc_stats(
const mi_heap_t* heap, const mi_heap_area_t* area,
void* block, size_t block_size, void* arg)
{
struct _alloc_stats *stats = (struct _alloc_stats *)arg;
stats->allocated_blocks += area->used;
stats->allocated_bytes += area->used * area->block_size;
stats->allocated_with_overhead += area->used * area->full_block_size;
stats->bytes_reserved += area->reserved;
stats->bytes_committed += area->committed;
return 1;
}
static void
py_mimalloc_print_stats(FILE *out)
{
fprintf(out, "Small block threshold = %zu, in %u size classes.\n",
(size_t)MI_SMALL_OBJ_SIZE_MAX, MI_BIN_HUGE);
fprintf(out, "Medium block threshold = %zu\n",
(size_t)MI_MEDIUM_OBJ_SIZE_MAX);
fprintf(out, "Large object max size = %zu\n",
(size_t)MI_LARGE_OBJ_SIZE_MAX);
mi_heap_t *heap = mi_heap_get_default();
struct _alloc_stats stats;
memset(&stats, 0, sizeof(stats));
mi_heap_visit_blocks(heap, false, &_collect_alloc_stats, &stats);
fprintf(out, " Allocated Blocks: %zd\n", stats.allocated_blocks);
fprintf(out, " Allocated Bytes: %zd\n", stats.allocated_bytes);
fprintf(out, " Allocated Bytes w/ Overhead: %zd\n", stats.allocated_with_overhead);
fprintf(out, " Bytes Reserved: %zd\n", stats.bytes_reserved);
fprintf(out, " Bytes Committed: %zd\n", stats.bytes_committed);
}
#endif
static void
pymalloc_print_stats(FILE *out)
{
OMState *state = get_state();
uint i;
const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
/* # of pools, allocated blocks, and free blocks per class index */
size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
/* total # of allocated bytes in used and full pools */
size_t allocated_bytes = 0;
/* total # of available bytes in used pools */
size_t available_bytes = 0;
/* # of free pools + pools not yet carved out of current arena */
uint numfreepools = 0;
/* # of bytes for arena alignment padding */
size_t arena_alignment = 0;
/* # of bytes in used and full pools used for pool_headers */
size_t pool_header_bytes = 0;
/* # of bytes in used and full pools wasted due to quantization,
* i.e. the necessarily leftover space at the ends of used and
* full pools.
*/
size_t quantization = 0;
/* # of arenas actually allocated. */
size_t narenas = 0;
/* running total -- should equal narenas * ARENA_SIZE */
size_t total;
char buf[128];
fprintf(out, "Small block threshold = %d, in %u size classes.\n",
SMALL_REQUEST_THRESHOLD, numclasses);
for (i = 0; i < numclasses; ++i)
numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
/* Because full pools aren't linked to from anything, it's easiest
* to march over all the arenas. If we're lucky, most of the memory
* will be living in full pools -- would be a shame to miss them.
*/
for (i = 0; i < maxarenas; ++i) {
uintptr_t base = allarenas[i].address;
/* Skip arenas which are not allocated. */
if (allarenas[i].address == (uintptr_t)NULL)
continue;
narenas += 1;
numfreepools += allarenas[i].nfreepools;
/* round up to pool alignment */
if (base & (uintptr_t)POOL_SIZE_MASK) {
arena_alignment += POOL_SIZE;
base &= ~(uintptr_t)POOL_SIZE_MASK;
base += POOL_SIZE;
}
/* visit every pool in the arena */
assert(base <= (uintptr_t) allarenas[i].pool_address);
for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) {
poolp p = (poolp)base;
const uint sz = p->szidx;
uint freeblocks;
if (p->ref.count == 0) {
/* currently unused */
#ifdef Py_DEBUG
assert(pool_is_in_list(p, allarenas[i].freepools));
#endif
continue;
}
++numpools[sz];
numblocks[sz] += p->ref.count;
freeblocks = NUMBLOCKS(sz) - p->ref.count;
numfreeblocks[sz] += freeblocks;
#ifdef Py_DEBUG
if (freeblocks > 0)
assert(pool_is_in_list(p, usedpools[sz + sz]));
#endif
}
}
assert(narenas == narenas_currently_allocated);
fputc('\n', out);
fputs("class size num pools blocks in use avail blocks\n"
"----- ---- --------- ------------- ------------\n",
out);
for (i = 0; i < numclasses; ++i) {
size_t p = numpools[i];
size_t b = numblocks[i];
size_t f = numfreeblocks[i];
uint size = INDEX2SIZE(i);
if (p == 0) {
assert(b == 0 && f == 0);
continue;
}
fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
i, size, p, b, f);
allocated_bytes += b * size;
available_bytes += f * size;
pool_header_bytes += p * POOL_OVERHEAD;
quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
}
fputc('\n', out);
#ifdef PYMEM_DEBUG_SERIALNO
if (_PyMem_DebugEnabled()) {
(void)printone(out, "# times object malloc called", serialno);
}
#endif
(void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
(void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
(void)printone(out, "# arenas highwater mark", narenas_highwater);
(void)printone(out, "# arenas allocated current", narenas);
PyOS_snprintf(buf, sizeof(buf),
"%zu arenas * %d bytes/arena",
narenas, ARENA_SIZE);
(void)printone(out, buf, narenas * ARENA_SIZE);
fputc('\n', out);
/* Account for what all of those arena bytes are being used for. */
total = printone(out, "# bytes in allocated blocks", allocated_bytes);
total += printone(out, "# bytes in available blocks", available_bytes);
PyOS_snprintf(buf, sizeof(buf),
"%u unused pools * %d bytes", numfreepools, POOL_SIZE);
total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
total += printone(out, "# bytes lost to quantization", quantization);
total += printone(out, "# bytes lost to arena alignment", arena_alignment);
(void)printone(out, "Total", total);
assert(narenas * ARENA_SIZE == total);
#if WITH_PYMALLOC_RADIX_TREE
fputs("\narena map counts\n", out);
#ifdef USE_INTERIOR_NODES
(void)printone(out, "# arena map mid nodes", arena_map_mid_count);
(void)printone(out, "# arena map bot nodes", arena_map_bot_count);
fputc('\n', out);
#endif
total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root));
#ifdef USE_INTERIOR_NODES
total += printone(out, "# bytes lost to arena map mid",
sizeof(arena_map_mid_t) * arena_map_mid_count);
total += printone(out, "# bytes lost to arena map bot",
sizeof(arena_map_bot_t) * arena_map_bot_count);
(void)printone(out, "Total", total);
#endif
#endif
}
/* Print summary info to "out" about the state of pymalloc's structures.
* In Py_DEBUG mode, also perform some expensive internal consistency
* checks.
*
* Return 0 if the memory debug hooks are not installed or no statistics was
* written into out, return 1 otherwise.
*/
int
_PyObject_DebugMallocStats(FILE *out)
{
#ifdef WITH_MIMALLOC
if (_PyMem_MimallocEnabled()) {
py_mimalloc_print_stats(out);
return 1;
}
else
#endif
if (_PyMem_PymallocEnabled()) {
pymalloc_print_stats(out);
return 1;
}
else {
return 0;
}
}
#endif /* #ifdef WITH_PYMALLOC */
|