1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/* Thread package.
This is intended to be usable independently from Python.
The implementation for system foobar is in a file thread_foobar.h
which is included by this file dependent on config settings.
Stuff shared by all thread_*.h files is collected here. */
#include "Python.h"
#include "pycore_ceval.h" // _PyEval_MakePendingCalls()
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_pythread.h" // _POSIX_THREADS
#include "pycore_runtime.h" // _PyRuntime
#include "pycore_structseq.h" // _PyStructSequence_FiniBuiltin()
#ifndef DONT_HAVE_STDIO_H
# include <stdio.h>
#endif
#include <stdlib.h>
// Define PY_TIMEOUT_MAX constant.
#ifdef _POSIX_THREADS
// PyThread_acquire_lock_timed() uses (us * 1000) to convert microseconds
// to nanoseconds.
# define PY_TIMEOUT_MAX_VALUE (LLONG_MAX / 1000)
#elif defined (NT_THREADS)
// WaitForSingleObject() accepts timeout in milliseconds in the range
// [0; 0xFFFFFFFE] (DWORD type). INFINITE value (0xFFFFFFFF) means no
// timeout. 0xFFFFFFFE milliseconds is around 49.7 days.
# if 0xFFFFFFFELL < LLONG_MAX / 1000
# define PY_TIMEOUT_MAX_VALUE (0xFFFFFFFELL * 1000)
# else
# define PY_TIMEOUT_MAX_VALUE LLONG_MAX
# endif
#else
# define PY_TIMEOUT_MAX_VALUE LLONG_MAX
#endif
const long long PY_TIMEOUT_MAX = PY_TIMEOUT_MAX_VALUE;
static void PyThread__init_thread(void); /* Forward */
#define initialized _PyRuntime.threads.initialized
void
PyThread_init_thread(void)
{
if (initialized) {
return;
}
initialized = 1;
PyThread__init_thread();
}
#if defined(HAVE_PTHREAD_STUBS)
# define PYTHREAD_NAME "pthread-stubs"
# include "thread_pthread_stubs.h"
#elif defined(_USE_PTHREADS) /* AKA _PTHREADS */
# if defined(__EMSCRIPTEN__) && !defined(__EMSCRIPTEN_PTHREADS__)
# define PYTHREAD_NAME "pthread-stubs"
# else
# define PYTHREAD_NAME "pthread"
# endif
# include "thread_pthread.h"
#elif defined(NT_THREADS)
# define PYTHREAD_NAME "nt"
# include "thread_nt.h"
#else
# error "Require native threads. See https://bugs.python.org/issue31370"
#endif
/* return the current thread stack size */
size_t
PyThread_get_stacksize(void)
{
return _PyInterpreterState_GET()->threads.stacksize;
}
/* Only platforms defining a THREAD_SET_STACKSIZE() macro
in thread_<platform>.h support changing the stack size.
Return 0 if stack size is valid,
-1 if stack size value is invalid,
-2 if setting stack size is not supported. */
int
PyThread_set_stacksize(size_t size)
{
#if defined(THREAD_SET_STACKSIZE)
return THREAD_SET_STACKSIZE(size);
#else
return -2;
#endif
}
int
PyThread_ParseTimeoutArg(PyObject *arg, int blocking, PY_TIMEOUT_T *timeout_p)
{
assert(_PyTime_FromSeconds(-1) == PyThread_UNSET_TIMEOUT);
if (arg == NULL || arg == Py_None) {
*timeout_p = blocking ? PyThread_UNSET_TIMEOUT : 0;
return 0;
}
if (!blocking) {
PyErr_SetString(PyExc_ValueError,
"can't specify a timeout for a non-blocking call");
return -1;
}
PyTime_t timeout;
if (_PyTime_FromSecondsObject(&timeout, arg, _PyTime_ROUND_TIMEOUT) < 0) {
return -1;
}
if (timeout < 0) {
PyErr_SetString(PyExc_ValueError,
"timeout value must be a non-negative number");
return -1;
}
if (_PyTime_AsMicroseconds(timeout,
_PyTime_ROUND_TIMEOUT) > PY_TIMEOUT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"timeout value is too large");
return -1;
}
*timeout_p = timeout;
return 0;
}
PyLockStatus
PyThread_acquire_lock_timed_with_retries(PyThread_type_lock lock,
PY_TIMEOUT_T timeout)
{
PyThreadState *tstate = _PyThreadState_GET();
PyTime_t endtime = 0;
if (timeout > 0) {
endtime = _PyDeadline_Init(timeout);
}
PyLockStatus r;
do {
PyTime_t microseconds;
microseconds = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_CEILING);
/* first a simple non-blocking try without releasing the GIL */
r = PyThread_acquire_lock_timed(lock, 0, 0);
if (r == PY_LOCK_FAILURE && microseconds != 0) {
Py_BEGIN_ALLOW_THREADS
r = PyThread_acquire_lock_timed(lock, microseconds, 1);
Py_END_ALLOW_THREADS
}
if (r == PY_LOCK_INTR) {
/* Run signal handlers if we were interrupted. Propagate
* exceptions from signal handlers, such as KeyboardInterrupt, by
* passing up PY_LOCK_INTR. */
if (_PyEval_MakePendingCalls(tstate) < 0) {
return PY_LOCK_INTR;
}
/* If we're using a timeout, recompute the timeout after processing
* signals, since those can take time. */
if (timeout > 0) {
timeout = _PyDeadline_Get(endtime);
/* Check for negative values, since those mean block forever.
*/
if (timeout < 0) {
r = PY_LOCK_FAILURE;
}
}
}
} while (r == PY_LOCK_INTR); /* Retry if we were interrupted. */
return r;
}
/* Thread Specific Storage (TSS) API
Cross-platform components of TSS API implementation.
*/
Py_tss_t *
PyThread_tss_alloc(void)
{
Py_tss_t *new_key = (Py_tss_t *)PyMem_RawMalloc(sizeof(Py_tss_t));
if (new_key == NULL) {
return NULL;
}
new_key->_is_initialized = 0;
return new_key;
}
void
PyThread_tss_free(Py_tss_t *key)
{
if (key != NULL) {
PyThread_tss_delete(key);
PyMem_RawFree((void *)key);
}
}
int
PyThread_tss_is_created(Py_tss_t *key)
{
assert(key != NULL);
return key->_is_initialized;
}
PyDoc_STRVAR(threadinfo__doc__,
"sys.thread_info\n\
\n\
A named tuple holding information about the thread implementation.");
static PyStructSequence_Field threadinfo_fields[] = {
{"name", "name of the thread implementation"},
{"lock", "name of the lock implementation"},
{"version", "name and version of the thread library"},
{0}
};
static PyStructSequence_Desc threadinfo_desc = {
"sys.thread_info", /* name */
threadinfo__doc__, /* doc */
threadinfo_fields, /* fields */
3
};
static PyTypeObject ThreadInfoType;
PyObject*
PyThread_GetInfo(void)
{
PyObject *threadinfo, *value;
int pos = 0;
#if (defined(_POSIX_THREADS) && defined(HAVE_CONFSTR) \
&& defined(_CS_GNU_LIBPTHREAD_VERSION))
char buffer[255];
int len;
#endif
PyInterpreterState *interp = _PyInterpreterState_GET();
if (_PyStructSequence_InitBuiltin(interp, &ThreadInfoType, &threadinfo_desc) < 0) {
return NULL;
}
threadinfo = PyStructSequence_New(&ThreadInfoType);
if (threadinfo == NULL)
return NULL;
value = PyUnicode_FromString(PYTHREAD_NAME);
if (value == NULL) {
Py_DECREF(threadinfo);
return NULL;
}
PyStructSequence_SET_ITEM(threadinfo, pos++, value);
#ifdef HAVE_PTHREAD_STUBS
value = Py_NewRef(Py_None);
#elif defined(_POSIX_THREADS)
#ifdef USE_SEMAPHORES
value = PyUnicode_FromString("semaphore");
#else
value = PyUnicode_FromString("mutex+cond");
#endif
if (value == NULL) {
Py_DECREF(threadinfo);
return NULL;
}
#else
value = Py_NewRef(Py_None);
#endif
PyStructSequence_SET_ITEM(threadinfo, pos++, value);
#if (defined(_POSIX_THREADS) && defined(HAVE_CONFSTR) \
&& defined(_CS_GNU_LIBPTHREAD_VERSION))
value = NULL;
len = confstr(_CS_GNU_LIBPTHREAD_VERSION, buffer, sizeof(buffer));
if (1 < len && (size_t)len < sizeof(buffer)) {
value = PyUnicode_DecodeFSDefaultAndSize(buffer, len-1);
if (value == NULL)
PyErr_Clear();
}
if (value == NULL)
#endif
{
value = Py_NewRef(Py_None);
}
PyStructSequence_SET_ITEM(threadinfo, pos++, value);
return threadinfo;
}
void
_PyThread_FiniType(PyInterpreterState *interp)
{
_PyStructSequence_FiniBuiltin(interp, &ThreadInfoType);
}
|