1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
# This script runs a set of small benchmarks to help identify scaling
# bottlenecks in the free-threaded interpreter. The benchmarks consist
# of patterns that ought to scale well, but haven't in the past. This is
# typically due to reference count contention or lock contention.
#
# This is not intended to be a general multithreading benchmark suite, nor
# are the benchmarks intended to be representative of real-world workloads.
#
# On Linux, to avoid confounding hardware effects, the script attempts to:
# * Use a single CPU socket (to avoid NUMA effects)
# * Use distinct physical cores (to avoid hyperthreading/SMT effects)
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and
# efficiency cores
#
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost")
#
# Intel:
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
#
# AMD:
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost
#
import math
import os
import queue
import sys
import threading
import time
# The iterations in individual benchmarks are scaled by this factor.
WORK_SCALE = 100
ALL_BENCHMARKS = {}
threads = []
in_queues = []
out_queues = []
def register_benchmark(func):
ALL_BENCHMARKS[func.__name__] = func
return func
@register_benchmark
def object_cfunction():
accu = 0
tab = [1] * 100
for i in range(1000 * WORK_SCALE):
tab.pop(0)
tab.append(i)
accu += tab[50]
return accu
@register_benchmark
def cmodule_function():
N = 1000 * WORK_SCALE
for i in range(N):
math.cos(i / N)
@register_benchmark
def object_lookup_special():
# round() uses `_PyObject_LookupSpecial()` internally.
N = 1000 * WORK_SCALE
for i in range(N):
round(i / N)
class MyContextManager:
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
pass
@register_benchmark
def context_manager():
N = 1000 * WORK_SCALE
for i in range(N):
with MyContextManager():
pass
@register_benchmark
def mult_constant():
x = 1.0
for i in range(3000 * WORK_SCALE):
x *= 1.01
def simple_gen():
for i in range(10):
yield i
@register_benchmark
def generator():
accu = 0
for i in range(100 * WORK_SCALE):
for v in simple_gen():
accu += v
return accu
class Counter:
def __init__(self):
self.i = 0
def next_number(self):
self.i += 1
return self.i
@register_benchmark
def pymethod():
c = Counter()
for i in range(1000 * WORK_SCALE):
c.next_number()
return c.i
def next_number(i):
return i + 1
@register_benchmark
def pyfunction():
accu = 0
for i in range(1000 * WORK_SCALE):
accu = next_number(i)
return accu
def double(x):
return x + x
module = sys.modules[__name__]
@register_benchmark
def module_function():
total = 0
for i in range(1000 * WORK_SCALE):
total += module.double(i)
return total
class MyObject:
pass
@register_benchmark
def load_string_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == 'a string':
accu += 7
else:
accu += 1
return accu
@register_benchmark
def load_tuple_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == (1, 2):
accu += 7
else:
accu += 1
return accu
@register_benchmark
def create_pyobject():
for i in range(1000 * WORK_SCALE):
o = MyObject()
@register_benchmark
def create_closure():
for i in range(1000 * WORK_SCALE):
def foo(x):
return x
foo(i)
@register_benchmark
def create_dict():
for i in range(1000 * WORK_SCALE):
d = {
"key": "value",
}
thread_local = threading.local()
@register_benchmark
def thread_local_read():
tmp = thread_local
tmp.x = 10
for i in range(500 * WORK_SCALE):
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
def bench_one_thread(func):
t0 = time.perf_counter_ns()
func()
t1 = time.perf_counter_ns()
return t1 - t0
def bench_parallel(func):
t0 = time.perf_counter_ns()
for inq in in_queues:
inq.put(func)
for outq in out_queues:
outq.get()
t1 = time.perf_counter_ns()
return t1 - t0
def benchmark(func):
delta_one_thread = bench_one_thread(func)
delta_many_threads = bench_parallel(func)
speedup = delta_one_thread * len(threads) / delta_many_threads
if speedup >= 1:
factor = speedup
direction = "faster"
else:
factor = 1 / speedup
direction = "slower"
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()
color = reset_color = ""
if use_color:
if speedup <= 1.1:
color = "\x1b[31m" # red
elif speedup < len(threads)/2:
color = "\x1b[33m" # yellow
reset_color = "\x1b[0m"
print(f"{color}{func.__name__:<25} {round(factor, 1):>4}x {direction}{reset_color}")
def determine_num_threads_and_affinity():
if sys.platform != "linux":
return [None] * os.cpu_count()
# Try to use `lscpu -p` on Linux
import subprocess
try:
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"],
text=True, env={"LC_NUMERIC": "C"})
except (FileNotFoundError, subprocess.CalledProcessError):
return [None] * os.cpu_count()
table = []
for line in output.splitlines():
if line.startswith("#"):
continue
cpu, node, core, maxhz = line.split(",")
if maxhz == "":
maxhz = "0"
table.append((int(cpu), int(node), int(core), float(maxhz)))
cpus = []
cores = set()
max_mhz_all = max(row[3] for row in table)
for cpu, node, core, maxmhz in table:
# Choose only CPUs on the same node, unique cores, and try to avoid
# "efficiency" cores.
if node == 0 and core not in cores and maxmhz == max_mhz_all:
cpus.append(cpu)
cores.add(core)
return cpus
def thread_run(cpu, in_queue, out_queue):
if cpu is not None and hasattr(os, "sched_setaffinity"):
# Set the affinity for the current thread
os.sched_setaffinity(0, (cpu,))
while True:
func = in_queue.get()
if func is None:
break
func()
out_queue.put(None)
def initialize_threads(opts):
if opts.threads == -1:
cpus = determine_num_threads_and_affinity()
else:
cpus = [None] * opts.threads # don't set affinity
print(f"Running benchmarks with {len(cpus)} threads")
for cpu in cpus:
inq = queue.Queue()
outq = queue.Queue()
in_queues.append(inq)
out_queues.append(outq)
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True)
threads.append(t)
t.start()
def main(opts):
global WORK_SCALE
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled():
sys.stderr.write("expected to be run with the GIL disabled\n")
benchmark_names = opts.benchmarks
if benchmark_names:
for name in benchmark_names:
if name not in ALL_BENCHMARKS:
sys.stderr.write(f"Unknown benchmark: {name}\n")
sys.exit(1)
else:
benchmark_names = ALL_BENCHMARKS.keys()
WORK_SCALE = opts.scale
if not opts.baseline_only:
initialize_threads(opts)
do_bench = not opts.baseline_only and not opts.parallel_only
for name in benchmark_names:
func = ALL_BENCHMARKS[name]
if do_bench:
benchmark(func)
continue
if opts.parallel_only:
delta_ns = bench_parallel(func)
else:
delta_ns = bench_one_thread(func)
time_ms = delta_ns / 1_000_000
print(f"{func.__name__:<18} {time_ms:.1f} ms")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--threads", type=int, default=-1,
help="number of threads to use")
parser.add_argument("--scale", type=int, default=100,
help="work scale factor for the benchmark (default=100)")
parser.add_argument("--baseline-only", default=False, action="store_true",
help="only run the baseline benchmarks (single thread)")
parser.add_argument("--parallel-only", default=False, action="store_true",
help="only run the parallel benchmark (many threads)")
parser.add_argument("benchmarks", nargs="*",
help="benchmarks to run")
options = parser.parse_args()
main(options)
|