1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
:mod:`statistics` --- Mathematical statistics functions
=======================================================
.. module:: statistics
:synopsis: mathematical statistics functions
.. moduleauthor:: Steven D'Aprano <steve+python@pearwood.info>
.. sectionauthor:: Steven D'Aprano <steve+python@pearwood.info>
.. versionadded:: 3.4
**Source code:** :source:`Lib/statistics.py`
.. testsetup:: *
from statistics import *
__name__ = '<doctest>'
--------------
This module provides functions for calculating mathematical statistics of
numeric (:class:`Real`-valued) data.
.. note::
Unless explicitly noted otherwise, these functions support :class:`int`,
:class:`float`, :class:`decimal.Decimal` and :class:`fractions.Fraction`.
Behaviour with other types (whether in the numeric tower or not) is
currently unsupported. Mixed types are also undefined and
implementation-dependent. If your input data consists of mixed types,
you may be able to use :func:`map` to ensure a consistent result, e.g.
``map(float, input_data)``.
Averages and measures of central location
-----------------------------------------
These functions calculate an average or typical value from a population
or sample.
======================= =============================================
:func:`mean` Arithmetic mean ("average") of data.
:func:`median` Median (middle value) of data.
:func:`median_low` Low median of data.
:func:`median_high` High median of data.
:func:`median_grouped` Median, or 50th percentile, of grouped data.
:func:`mode` Mode (most common value) of discrete data.
======================= =============================================
Measures of spread
------------------
These functions calculate a measure of how much the population or sample
tends to deviate from the typical or average values.
======================= =============================================
:func:`pstdev` Population standard deviation of data.
:func:`pvariance` Population variance of data.
:func:`stdev` Sample standard deviation of data.
:func:`variance` Sample variance of data.
======================= =============================================
Function details
----------------
Note: The functions do not require the data given to them to be sorted.
However, for reading convenience, most of the examples show sorted sequences.
.. function:: mean(data)
Return the sample arithmetic mean of *data*, a sequence or iterator of
real-valued numbers.
The arithmetic mean is the sum of the data divided by the number of data
points. It is commonly called "the average", although it is only one of many
different mathematical averages. It is a measure of the central location of
the data.
If *data* is empty, :exc:`StatisticsError` will be raised.
Some examples of use:
.. doctest::
>>> mean([1, 2, 3, 4, 4])
2.8
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625
>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)
>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')
.. note::
The mean is strongly affected by outliers and is not a robust estimator
for central location: the mean is not necessarily a typical example of the
data points. For more robust, although less efficient, measures of
central location, see :func:`median` and :func:`mode`. (In this case,
"efficient" refers to statistical efficiency rather than computational
efficiency.)
The sample mean gives an unbiased estimate of the true population mean,
which means that, taken on average over all the possible samples,
``mean(sample)`` converges on the true mean of the entire population. If
*data* represents the entire population rather than a sample, then
``mean(data)`` is equivalent to calculating the true population mean μ.
.. function:: median(data)
Return the median (middle value) of numeric data, using the common "mean of
middle two" method. If *data* is empty, :exc:`StatisticsError` is raised.
The median is a robust measure of central location, and is less affected by
the presence of outliers in your data. When the number of data points is
odd, the middle data point is returned:
.. doctest::
>>> median([1, 3, 5])
3
When the number of data points is even, the median is interpolated by taking
the average of the two middle values:
.. doctest::
>>> median([1, 3, 5, 7])
4.0
This is suited for when your data is discrete, and you don't mind that the
median may not be an actual data point.
.. seealso:: :func:`median_low`, :func:`median_high`, :func:`median_grouped`
.. function:: median_low(data)
Return the low median of numeric data. If *data* is empty,
:exc:`StatisticsError` is raised.
The low median is always a member of the data set. When the number of data
points is odd, the middle value is returned. When it is even, the smaller of
the two middle values is returned.
.. doctest::
>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3
Use the low median when your data are discrete and you prefer the median to
be an actual data point rather than interpolated.
.. function:: median_high(data)
Return the high median of data. If *data* is empty, :exc:`StatisticsError`
is raised.
The high median is always a member of the data set. When the number of data
points is odd, the middle value is returned. When it is even, the larger of
the two middle values is returned.
.. doctest::
>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5
Use the high median when your data are discrete and you prefer the median to
be an actual data point rather than interpolated.
.. function:: median_grouped(data, interval=1)
Return the median of grouped continuous data, calculated as the 50th
percentile, using interpolation. If *data* is empty, :exc:`StatisticsError`
is raised.
.. doctest::
>>> median_grouped([52, 52, 53, 54])
52.5
In the following example, the data are rounded, so that each value represents
the midpoint of data classes, e.g. 1 is the midpoint of the class 0.5--1.5, 2
is the midpoint of 1.5--2.5, 3 is the midpoint of 2.5--3.5, etc. With the data
given, the middle value falls somewhere in the class 3.5--4.5, and
interpolation is used to estimate it:
.. doctest::
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7
Optional argument *interval* represents the class interval, and defaults
to 1. Changing the class interval naturally will change the interpolation:
.. doctest::
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5
This function does not check whether the data points are at least
*interval* apart.
.. impl-detail::
Under some circumstances, :func:`median_grouped` may coerce data points to
floats. This behaviour is likely to change in the future.
.. seealso::
* "Statistics for the Behavioral Sciences", Frederick J Gravetter and
Larry B Wallnau (8th Edition).
* Calculating the `median <https://www.ualberta.ca/~opscan/median.html>`_.
* The `SSMEDIAN
<https://help.gnome.org/users/gnumeric/stable/gnumeric.html#gnumeric-function-SSMEDIAN>`_
function in the Gnome Gnumeric spreadsheet, including `this discussion
<https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html>`_.
.. function:: mode(data)
Return the most common data point from discrete or nominal *data*. The mode
(when it exists) is the most typical value, and is a robust measure of
central location.
If *data* is empty, or if there is not exactly one most common value,
:exc:`StatisticsError` is raised.
``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:
.. doctest::
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3
The mode is unique in that it is the only statistic which also applies
to nominal (non-numeric) data:
.. doctest::
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
.. function:: pstdev(data, mu=None)
Return the population standard deviation (the square root of the population
variance). See :func:`pvariance` for arguments and other details.
.. doctest::
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251
.. function:: pvariance(data, mu=None)
Return the population variance of *data*, a non-empty iterable of real-valued
numbers. Variance, or second moment about the mean, is a measure of the
variability (spread or dispersion) of data. A large variance indicates that
the data is spread out; a small variance indicates it is clustered closely
around the mean.
If the optional second argument *mu* is given, it should be the mean of
*data*. If it is missing or ``None`` (the default), the mean is
automatically calculated.
Use this function to calculate the variance from the entire population. To
estimate the variance from a sample, the :func:`variance` function is usually
a better choice.
Raises :exc:`StatisticsError` if *data* is empty.
Examples:
.. doctest::
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25
If you have already calculated the mean of your data, you can pass it as the
optional second argument *mu* to avoid recalculation:
.. doctest::
>>> mu = mean(data)
>>> pvariance(data, mu)
1.25
This function does not attempt to verify that you have passed the actual mean
as *mu*. Using arbitrary values for *mu* may lead to invalid or impossible
results.
Decimals and Fractions are supported:
.. doctest::
>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')
>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)
.. note::
When called with the entire population, this gives the population variance
σ². When called on a sample instead, this is the biased sample variance
s², also known as variance with N degrees of freedom.
If you somehow know the true population mean μ, you may use this function
to calculate the variance of a sample, giving the known population mean as
the second argument. Provided the data points are representative
(e.g. independent and identically distributed), the result will be an
unbiased estimate of the population variance.
.. function:: stdev(data, xbar=None)
Return the sample standard deviation (the square root of the sample
variance). See :func:`variance` for arguments and other details.
.. doctest::
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827
.. function:: variance(data, xbar=None)
Return the sample variance of *data*, an iterable of at least two real-valued
numbers. Variance, or second moment about the mean, is a measure of the
variability (spread or dispersion) of data. A large variance indicates that
the data is spread out; a small variance indicates it is clustered closely
around the mean.
If the optional second argument *xbar* is given, it should be the mean of
*data*. If it is missing or ``None`` (the default), the mean is
automatically calculated.
Use this function when your data is a sample from a population. To calculate
the variance from the entire population, see :func:`pvariance`.
Raises :exc:`StatisticsError` if *data* has fewer than two values.
Examples:
.. doctest::
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095
If you have already calculated the mean of your data, you can pass it as the
optional second argument *xbar* to avoid recalculation:
.. doctest::
>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095
This function does not attempt to verify that you have passed the actual mean
as *xbar*. Using arbitrary values for *xbar* can lead to invalid or
impossible results.
Decimal and Fraction values are supported:
.. doctest::
>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')
>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)
.. note::
This is the sample variance s² with Bessel's correction, also known as
variance with N-1 degrees of freedom. Provided that the data points are
representative (e.g. independent and identically distributed), the result
should be an unbiased estimate of the true population variance.
If you somehow know the actual population mean μ you should pass it to the
:func:`pvariance` function as the *mu* parameter to get the variance of a
sample.
Exceptions
----------
A single exception is defined:
.. exception:: StatisticsError
Subclass of :exc:`ValueError` for statistics-related exceptions.
..
# This modelines must appear within the last ten lines of the file.
kate: indent-width 3; remove-trailing-space on; replace-tabs on; encoding utf-8;
|