1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
:mod:`hashlib` --- Secure hashes and message digests
====================================================
.. module:: hashlib
:synopsis: Secure hash and message digest algorithms.
.. moduleauthor:: Gregory P. Smith <greg@krypto.org>
.. sectionauthor:: Gregory P. Smith <greg@krypto.org>
**Source code:** :source:`Lib/hashlib.py`
.. index::
single: message digest, MD5
single: secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512
.. testsetup::
import hashlib
--------------
This module implements a common interface to many different secure hash and
message digest algorithms. Included are the FIPS secure hash algorithms SHA1,
SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2) as well as RSA's MD5
algorithm (defined in Internet :rfc:`1321`). The terms "secure hash" and
"message digest" are interchangeable. Older algorithms were called message
digests. The modern term is secure hash.
.. note::
If you want the adler32 or crc32 hash functions, they are available in
the :mod:`zlib` module.
.. warning::
Some algorithms have known hash collision weaknesses, refer to the "See
also" section at the end.
.. _hash-algorithms:
Hash algorithms
---------------
There is one constructor method named for each type of :dfn:`hash`. All return
a hash object with the same simple interface. For example: use :func:`sha256` to
create a SHA-256 hash object. You can now feed this object with :term:`bytes-like
objects <bytes-like object>` (normally :class:`bytes`) using the :meth:`update` method.
At any point you can ask it for the :dfn:`digest` of the
concatenation of the data fed to it so far using the :meth:`digest` or
:meth:`hexdigest` methods.
.. note::
For better multithreading performance, the Python :term:`GIL` is released for
data larger than 2047 bytes at object creation or on update.
.. note::
Feeding string objects into :meth:`update` is not supported, as hashes work
on bytes, not on characters.
.. index:: single: OpenSSL; (use in module hashlib)
Constructors for hash algorithms that are always present in this module are
:func:`sha1`, :func:`sha224`, :func:`sha256`, :func:`sha384`,
:func:`sha512`, :func:`blake2b`, and :func:`blake2s`.
:func:`md5` is normally available as well, though it
may be missing if you are using a rare "FIPS compliant" build of Python.
Additional algorithms may also be available depending upon the OpenSSL
library that Python uses on your platform. On most platforms the
:func:`sha3_224`, :func:`sha3_256`, :func:`sha3_384`, :func:`sha3_512`,
:func:`shake_128`, :func:`shake_256` are also available.
.. versionadded:: 3.6
SHA3 (Keccak) and SHAKE constructors :func:`sha3_224`, :func:`sha3_256`,
:func:`sha3_384`, :func:`sha3_512`, :func:`shake_128`, :func:`shake_256`.
.. versionadded:: 3.6
:func:`blake2b` and :func:`blake2s` were added.
For example, to obtain the digest of the byte string ``b'Nobody inspects the
spammish repetition'``::
>>> import hashlib
>>> m = hashlib.sha256()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06'
>>> m.digest_size
32
>>> m.block_size
64
More condensed:
>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'
.. function:: new(name[, data])
Is a generic constructor that takes the string *name* of the desired
algorithm as its first parameter. It also exists to allow access to the
above listed hashes as well as any other algorithms that your OpenSSL
library may offer. The named constructors are much faster than :func:`new`
and should be preferred.
Using :func:`new` with an algorithm provided by OpenSSL:
>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'
Hashlib provides the following constant attributes:
.. data:: algorithms_guaranteed
A set containing the names of the hash algorithms guaranteed to be supported
by this module on all platforms. Note that 'md5' is in this list despite
some upstream vendors offering an odd "FIPS compliant" Python build that
excludes it.
.. versionadded:: 3.2
.. data:: algorithms_available
A set containing the names of the hash algorithms that are available in the
running Python interpreter. These names will be recognized when passed to
:func:`new`. :attr:`algorithms_guaranteed` will always be a subset. The
same algorithm may appear multiple times in this set under different names
(thanks to OpenSSL).
.. versionadded:: 3.2
The following values are provided as constant attributes of the hash objects
returned by the constructors:
.. data:: hash.digest_size
The size of the resulting hash in bytes.
.. data:: hash.block_size
The internal block size of the hash algorithm in bytes.
A hash object has the following attributes:
.. attribute:: hash.name
The canonical name of this hash, always lowercase and always suitable as a
parameter to :func:`new` to create another hash of this type.
.. versionchanged:: 3.4
The name attribute has been present in CPython since its inception, but
until Python 3.4 was not formally specified, so may not exist on some
platforms.
A hash object has the following methods:
.. method:: hash.update(data)
Update the hash object with the :term:`bytes-like object`.
Repeated calls are equivalent to a single call with the
concatenation of all the arguments: ``m.update(a); m.update(b)`` is
equivalent to ``m.update(a+b)``.
.. versionchanged:: 3.1
The Python GIL is released to allow other threads to run while hash
updates on data larger than 2047 bytes is taking place when using hash
algorithms supplied by OpenSSL.
.. method:: hash.digest()
Return the digest of the data passed to the :meth:`update` method so far.
This is a bytes object of size :attr:`digest_size` which may contain bytes in
the whole range from 0 to 255.
.. method:: hash.hexdigest()
Like :meth:`digest` except the digest is returned as a string object of
double length, containing only hexadecimal digits. This may be used to
exchange the value safely in email or other non-binary environments.
.. method:: hash.copy()
Return a copy ("clone") of the hash object. This can be used to efficiently
compute the digests of data sharing a common initial substring.
SHAKE variable length digests
-----------------------------
The :func:`shake_128` and :func:`shake_256` algorithms provide variable
length digests with length_in_bits//2 up to 128 or 256 bits of security.
As such, their digest methods require a length. Maximum length is not limited
by the SHAKE algorithm.
.. method:: shake.digest(length)
Return the digest of the data passed to the :meth:`update` method so far.
This is a bytes object of size *length* which may contain bytes in
the whole range from 0 to 255.
.. method:: shake.hexdigest(length)
Like :meth:`digest` except the digest is returned as a string object of
double length, containing only hexadecimal digits. This may be used to
exchange the value safely in email or other non-binary environments.
Key derivation
--------------
Key derivation and key stretching algorithms are designed for secure password
hashing. Naive algorithms such as ``sha1(password)`` are not resistant against
brute-force attacks. A good password hashing function must be tunable, slow, and
include a `salt <https://en.wikipedia.org/wiki/Salt_%28cryptography%29>`_.
.. function:: pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)
The function provides PKCS#5 password-based key derivation function 2. It
uses HMAC as pseudorandom function.
The string *hash_name* is the desired name of the hash digest algorithm for
HMAC, e.g. 'sha1' or 'sha256'. *password* and *salt* are interpreted as
buffers of bytes. Applications and libraries should limit *password* to
a sensible length (e.g. 1024). *salt* should be about 16 or more bytes from
a proper source, e.g. :func:`os.urandom`.
The number of *iterations* should be chosen based on the hash algorithm and
computing power. As of 2013, at least 100,000 iterations of SHA-256 are
suggested.
*dklen* is the length of the derived key. If *dklen* is ``None`` then the
digest size of the hash algorithm *hash_name* is used, e.g. 64 for SHA-512.
>>> import hashlib, binascii
>>> dk = hashlib.pbkdf2_hmac('sha256', b'password', b'salt', 100000)
>>> binascii.hexlify(dk)
b'0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'
.. versionadded:: 3.4
.. note::
A fast implementation of *pbkdf2_hmac* is available with OpenSSL. The
Python implementation uses an inline version of :mod:`hmac`. It is about
three times slower and doesn't release the GIL.
.. function:: scrypt(password, *, salt, n, r, p, maxmem=0, dklen=64)
The function provides scrypt password-based key derivation function as
defined in :rfc:`7914`.
*password* and *salt* must be :term:`bytes-like objects
<bytes-like object>`. Applications and libraries should limit *password*
to a sensible length (e.g. 1024). *salt* should be about 16 or more
bytes from a proper source, e.g. :func:`os.urandom`.
*n* is the CPU/Memory cost factor, *r* the block size, *p* parallelization
factor and *maxmem* limits memory (OpenSSL 1.1.0 defaults to 32 MiB).
*dklen* is the length of the derived key.
.. availability:: OpenSSL 1.1+.
.. versionadded:: 3.6
BLAKE2
------
.. sectionauthor:: Dmitry Chestnykh
.. index::
single: blake2b, blake2s
BLAKE2_ is a cryptographic hash function defined in :rfc:`7693` that comes in two
flavors:
* **BLAKE2b**, optimized for 64-bit platforms and produces digests of any size
between 1 and 64 bytes,
* **BLAKE2s**, optimized for 8- to 32-bit platforms and produces digests of any
size between 1 and 32 bytes.
BLAKE2 supports **keyed mode** (a faster and simpler replacement for HMAC_),
**salted hashing**, **personalization**, and **tree hashing**.
Hash objects from this module follow the API of standard library's
:mod:`hashlib` objects.
Creating hash objects
^^^^^^^^^^^^^^^^^^^^^
New hash objects are created by calling constructor functions:
.. function:: blake2b(data=b'', *, digest_size=64, key=b'', salt=b'', \
person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, \
node_depth=0, inner_size=0, last_node=False)
.. function:: blake2s(data=b'', *, digest_size=32, key=b'', salt=b'', \
person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, \
node_depth=0, inner_size=0, last_node=False)
These functions return the corresponding hash objects for calculating
BLAKE2b or BLAKE2s. They optionally take these general parameters:
* *data*: initial chunk of data to hash, which must be
:term:`bytes-like object`. It can be passed only as positional argument.
* *digest_size*: size of output digest in bytes.
* *key*: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
BLAKE2s).
* *salt*: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
bytes for BLAKE2s).
* *person*: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
for BLAKE2s).
The following table shows limits for general parameters (in bytes):
======= =========== ======== ========= ===========
Hash digest_size len(key) len(salt) len(person)
======= =========== ======== ========= ===========
BLAKE2b 64 64 16 16
BLAKE2s 32 32 8 8
======= =========== ======== ========= ===========
.. note::
BLAKE2 specification defines constant lengths for salt and personalization
parameters, however, for convenience, this implementation accepts byte
strings of any size up to the specified length. If the length of the
parameter is less than specified, it is padded with zeros, thus, for
example, ``b'salt'`` and ``b'salt\x00'`` is the same value. (This is not
the case for *key*.)
These sizes are available as module `constants`_ described below.
Constructor functions also accept the following tree hashing parameters:
* *fanout*: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).
* *depth*: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
sequential mode).
* *leaf_size*: maximal byte length of leaf (0 to 2**32-1, 0 if unlimited or in
sequential mode).
* *node_offset*: node offset (0 to 2**64-1 for BLAKE2b, 0 to 2**48-1 for
BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).
* *node_depth*: node depth (0 to 255, 0 for leaves, or in sequential mode).
* *inner_size*: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
BLAKE2s, 0 in sequential mode).
* *last_node*: boolean indicating whether the processed node is the last
one (`False` for sequential mode).
.. figure:: hashlib-blake2-tree.png
:alt: Explanation of tree mode parameters.
See section 2.10 in `BLAKE2 specification
<https://blake2.net/blake2_20130129.pdf>`_ for comprehensive review of tree
hashing.
Constants
^^^^^^^^^
.. data:: blake2b.SALT_SIZE
.. data:: blake2s.SALT_SIZE
Salt length (maximum length accepted by constructors).
.. data:: blake2b.PERSON_SIZE
.. data:: blake2s.PERSON_SIZE
Personalization string length (maximum length accepted by constructors).
.. data:: blake2b.MAX_KEY_SIZE
.. data:: blake2s.MAX_KEY_SIZE
Maximum key size.
.. data:: blake2b.MAX_DIGEST_SIZE
.. data:: blake2s.MAX_DIGEST_SIZE
Maximum digest size that the hash function can output.
Examples
^^^^^^^^
Simple hashing
""""""""""""""
To calculate hash of some data, you should first construct a hash object by
calling the appropriate constructor function (:func:`blake2b` or
:func:`blake2s`), then update it with the data by calling :meth:`update` on the
object, and, finally, get the digest out of the object by calling
:meth:`digest` (or :meth:`hexdigest` for hex-encoded string).
>>> from hashlib import blake2b
>>> h = blake2b()
>>> h.update(b'Hello world')
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
As a shortcut, you can pass the first chunk of data to update directly to the
constructor as the positional argument:
>>> from hashlib import blake2b
>>> blake2b(b'Hello world').hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
You can call :meth:`hash.update` as many times as you need to iteratively
update the hash:
>>> from hashlib import blake2b
>>> items = [b'Hello', b' ', b'world']
>>> h = blake2b()
>>> for item in items:
... h.update(item)
>>> h.hexdigest()
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
Using different digest sizes
""""""""""""""""""""""""""""
BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
the size of output, we can tell BLAKE2b to produce 20-byte digests:
>>> from hashlib import blake2b
>>> h = blake2b(digest_size=20)
>>> h.update(b'Replacing SHA1 with the more secure function')
>>> h.hexdigest()
'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
>>> h.digest_size
20
>>> len(h.digest())
20
Hash objects with different digest sizes have completely different outputs
(shorter hashes are *not* prefixes of longer hashes); BLAKE2b and BLAKE2s
produce different outputs even if the output length is the same:
>>> from hashlib import blake2b, blake2s
>>> blake2b(digest_size=10).hexdigest()
'6fa1d8fcfd719046d762'
>>> blake2b(digest_size=11).hexdigest()
'eb6ec15daf9546254f0809'
>>> blake2s(digest_size=10).hexdigest()
'1bf21a98c78a1c376ae9'
>>> blake2s(digest_size=11).hexdigest()
'567004bf96e4a25773ebf4'
Keyed hashing
"""""""""""""
Keyed hashing can be used for authentication as a faster and simpler
replacement for `Hash-based message authentication code
<https://en.wikipedia.org/wiki/Hash-based_message_authentication_code>`_ (HMAC).
BLAKE2 can be securely used in prefix-MAC mode thanks to the
indifferentiability property inherited from BLAKE.
This example shows how to get a (hex-encoded) 128-bit authentication code for
message ``b'message data'`` with key ``b'pseudorandom key'``::
>>> from hashlib import blake2b
>>> h = blake2b(key=b'pseudorandom key', digest_size=16)
>>> h.update(b'message data')
>>> h.hexdigest()
'3d363ff7401e02026f4a4687d4863ced'
As a practical example, a web application can symmetrically sign cookies sent
to users and later verify them to make sure they weren't tampered with::
>>> from hashlib import blake2b
>>> from hmac import compare_digest
>>>
>>> SECRET_KEY = b'pseudorandomly generated server secret key'
>>> AUTH_SIZE = 16
>>>
>>> def sign(cookie):
... h = blake2b(digest_size=AUTH_SIZE, key=SECRET_KEY)
... h.update(cookie)
... return h.hexdigest().encode('utf-8')
>>>
>>> def verify(cookie, sig):
... good_sig = sign(cookie)
... return compare_digest(good_sig, sig)
>>>
>>> cookie = b'user-alice'
>>> sig = sign(cookie)
>>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
user-alice,b'43b3c982cf697e0c5ab22172d1ca7421'
>>> verify(cookie, sig)
True
>>> verify(b'user-bob', sig)
False
>>> verify(cookie, b'0102030405060708090a0b0c0d0e0f00')
False
Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used
in HMAC construction with :mod:`hmac` module::
>>> import hmac, hashlib
>>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
>>> m.update(b'message')
>>> m.hexdigest()
'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'
Randomized hashing
""""""""""""""""""
By setting *salt* parameter users can introduce randomization to the hash
function. Randomized hashing is useful for protecting against collision attacks
on the hash function used in digital signatures.
Randomized hashing is designed for situations where one party, the message
preparer, generates all or part of a message to be signed by a second
party, the message signer. If the message preparer is able to find
cryptographic hash function collisions (i.e., two messages producing the
same hash value), then they might prepare meaningful versions of the message
that would produce the same hash value and digital signature, but with
different results (e.g., transferring $1,000,000 to an account, rather than
$10). Cryptographic hash functions have been designed with collision
resistance as a major goal, but the current concentration on attacking
cryptographic hash functions may result in a given cryptographic hash
function providing less collision resistance than expected. Randomized
hashing offers the signer additional protection by reducing the likelihood
that a preparer can generate two or more messages that ultimately yield the
same hash value during the digital signature generation process --- even if
it is practical to find collisions for the hash function. However, the use
of randomized hashing may reduce the amount of security provided by a
digital signature when all portions of the message are prepared
by the signer.
(`NIST SP-800-106 "Randomized Hashing for Digital Signatures"
<https://csrc.nist.gov/publications/detail/sp/800-106/final>`_)
In BLAKE2 the salt is processed as a one-time input to the hash function during
initialization, rather than as an input to each compression function.
.. warning::
*Salted hashing* (or just hashing) with BLAKE2 or any other general-purpose
cryptographic hash function, such as SHA-256, is not suitable for hashing
passwords. See `BLAKE2 FAQ <https://blake2.net/#qa>`_ for more
information.
..
>>> import os
>>> from hashlib import blake2b
>>> msg = b'some message'
>>> # Calculate the first hash with a random salt.
>>> salt1 = os.urandom(blake2b.SALT_SIZE)
>>> h1 = blake2b(salt=salt1)
>>> h1.update(msg)
>>> # Calculate the second hash with a different random salt.
>>> salt2 = os.urandom(blake2b.SALT_SIZE)
>>> h2 = blake2b(salt=salt2)
>>> h2.update(msg)
>>> # The digests are different.
>>> h1.digest() != h2.digest()
True
Personalization
"""""""""""""""
Sometimes it is useful to force hash function to produce different digests for
the same input for different purposes. Quoting the authors of the Skein hash
function:
We recommend that all application designers seriously consider doing this;
we have seen many protocols where a hash that is computed in one part of
the protocol can be used in an entirely different part because two hash
computations were done on similar or related data, and the attacker can
force the application to make the hash inputs the same. Personalizing each
hash function used in the protocol summarily stops this type of attack.
(`The Skein Hash Function Family
<http://www.skein-hash.info/sites/default/files/skein1.3.pdf>`_,
p. 21)
BLAKE2 can be personalized by passing bytes to the *person* argument::
>>> from hashlib import blake2b
>>> FILES_HASH_PERSON = b'MyApp Files Hash'
>>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
>>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
>>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
>>> h.update(b'the same content')
>>> h.hexdigest()
'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'
Personalization together with the keyed mode can also be used to derive different
keys from a single one.
>>> from hashlib import blake2s
>>> from base64 import b64decode, b64encode
>>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
>>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
>>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
>>> print(b64encode(enc_key).decode('utf-8'))
rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
>>> print(b64encode(mac_key).decode('utf-8'))
G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=
Tree mode
"""""""""
Here's an example of hashing a minimal tree with two leaf nodes::
10
/ \
00 01
This example uses 64-byte internal digests, and returns the 32-byte final
digest::
>>> from hashlib import blake2b
>>>
>>> FANOUT = 2
>>> DEPTH = 2
>>> LEAF_SIZE = 4096
>>> INNER_SIZE = 64
>>>
>>> buf = bytearray(6000)
>>>
>>> # Left leaf
... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=0, node_depth=0, last_node=False)
>>> # Right leaf
... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=1, node_depth=0, last_node=True)
>>> # Root node
... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
... node_offset=0, node_depth=1, last_node=True)
>>> h10.update(h00.digest())
>>> h10.update(h01.digest())
>>> h10.hexdigest()
'3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'
Credits
^^^^^^^
BLAKE2_ was designed by *Jean-Philippe Aumasson*, *Samuel Neves*, *Zooko
Wilcox-O'Hearn*, and *Christian Winnerlein* based on SHA-3_ finalist BLAKE_
created by *Jean-Philippe Aumasson*, *Luca Henzen*, *Willi Meier*, and
*Raphael C.-W. Phan*.
It uses core algorithm from ChaCha_ cipher designed by *Daniel J. Bernstein*.
The stdlib implementation is based on pyblake2_ module. It was written by
*Dmitry Chestnykh* based on C implementation written by *Samuel Neves*. The
documentation was copied from pyblake2_ and written by *Dmitry Chestnykh*.
The C code was partly rewritten for Python by *Christian Heimes*.
The following public domain dedication applies for both C hash function
implementation, extension code, and this documentation:
To the extent possible under law, the author(s) have dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along
with this software. If not, see
https://creativecommons.org/publicdomain/zero/1.0/.
The following people have helped with development or contributed their changes
to the project and the public domain according to the Creative Commons Public
Domain Dedication 1.0 Universal:
* *Alexandr Sokolovskiy*
.. _BLAKE2: https://blake2.net
.. _HMAC: https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
.. _BLAKE: https://131002.net/blake/
.. _SHA-3: https://en.wikipedia.org/wiki/NIST_hash_function_competition
.. _ChaCha: https://cr.yp.to/chacha.html
.. _pyblake2: https://pythonhosted.org/pyblake2/
.. seealso::
Module :mod:`hmac`
A module to generate message authentication codes using hashes.
Module :mod:`base64`
Another way to encode binary hashes for non-binary environments.
https://blake2.net
Official BLAKE2 website.
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
The FIPS 180-2 publication on Secure Hash Algorithms.
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
Wikipedia article with information on which algorithms have known issues and
what that means regarding their use.
https://www.ietf.org/rfc/rfc2898.txt
PKCS #5: Password-Based Cryptography Specification Version 2.0
|