File: acline.py

package info (click to toggle)
pythoncad 0.1.23-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 3,044 kB
  • ctags: 3,568
  • sloc: python: 54,867; sh: 100; makefile: 39
file content (874 lines) | stat: -rw-r--r-- 30,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
#
# Copyright (c) 2002, 2003, 2004, 2005 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
#
# single point construction lines at an arbitrary angle
#

from __future__ import generators

import math

from PythonCAD.Generic import conobject
from PythonCAD.Generic import tolerance
from PythonCAD.Generic import util
from PythonCAD.Generic import point
from PythonCAD.Generic import quadtree

_dtr = math.pi/180.0

class ACLine(conobject.ConstructionObject):
    """A class for single point construction lines at a specified angle.

A ACLine object is derived from an Spcline,so it has
all that objects properties.

There is one additional attribute for an ACLine:

angle: A float value listing the angle at which this line rises or declines

The limits of the float value: -90.0 < value < 90.0. Any values outside
that range are adjusted to fall between those limits.

A ACLine has the following addtional methods:

{get/set}Angle(): Get/Set the angle of the ACLine.
mapCoords(): Test if a coordinate pair is within some distance to an ACLine.
inRegion(): Return whether or not a ACLine passes through a bounded region.
clone(): Return an identical copy of an ACLine.
    """
    messages = {
        'moved' : True,
        'keypoint_changed' : True,
        'rotated' : True
    }
    def __init__(self, p, a, **kw):
        """Initialize an ACLine object.

ACLine(p, a)

p: A Point object the line passes through
a: The angle at which the line rises or declines
        """
        _a = util.make_angle(a)
        _p = p
        if not isinstance(p, point.Point):
            _p = point.Point(p)
        super(ACLine, self).__init__(**kw)
        self.__keypoint = _p
        self.__angle = _a
        _p.storeUser(self)
        _p.connect('moved', self._movePoint)

    def __eq__(self, obj):
        """Compare one ACLine to another for equality.
        """
        if not isinstance(obj, ACLine):
            return False
        if obj is self:
            return True
        _as = self.__angle
        _ao = obj.getAngle()
        _xs, _ys = self.getLocation().getCoords()
        _xo, _yo = obj.getLocation().getCoords()
        _val = False
        if (self.isVertical() and
            obj.isVertical() and
            abs(_xs - _xo) < 1e-10):
            _val = True
        elif (self.isHorizontal() and
              obj.isHorizontal() and
              abs(_ys - _yo) < 1e-10):
              _val = True
        else:
            if abs(_as - _ao) < 1e-10: # same angle
                _ms = math.tan(_as * _dtr)
                _bs = _ys - (_ms * _xs)
                _y = (_ms * _xo) + _bs
                if abs(_y - _yo) < 1e-10:
                    _val = True
        return _val

    def __ne__(self, obj):
        """Compare one ACLine to another for inequality.
        """
        if not isinstance(obj, ACLine):
            return False
        if obj is self:
            return False
        _as = self.__angle
        _ao = obj.getAngle()
        _xs, _ys = self.getLocation().getCoords()
        _xo, _yo = obj.getLocation().getCoords()
        _val = True
        if (self.isVertical() and
            obj.isVertical() and
            abs(_xs - _xo) < 1e-10):
            _val = False
        elif (self.isHorizontal() and
              obj.isHorizontal() and
              abs(_ys - _yo) < 1e-10):
              _val = False
        else:
            if abs(_as - _ao) < 1e-10: # same angle
                _ms = math.tan(_as * _dtr)
                _bs = _ys - (_ms * _xs)
                _y = (_ms * _xo) + _bs
                if abs(_y - _yo) < 1e-10:
                    _val = False
        return _val

    def __str__(self):
        _point = self.getLocation()
        _angle = self.__angle
        return "Angled construction line through %s at %g degrees" % (_point, _angle)

    def finish(self):
        self.__keypoint.disconnect(self)
        self.__keypoint.freeUser(self)
        self.__keypoint = self.__angle = None
        super(ACLine, self).finish()

    def getValues(self):
        _data = super(ACLine, self).getValues()
        _data.setValue('type', 'acline')
        _data.setValue('keypoint', self.__keypoint.getID())
        _data.setValue('angle', self.__angle)
        return _data

    def getAngle(self):
        """Return the angle of the ACLine.

getAngle()
        """
        return self.__angle

    def setAngle(self, angle):
        """

setAngle(angle)

The argument a should be a float representing the angle
of the ACLine in degrees.
        """
        if self.isLocked():
            raise RuntimeError, "Setting angle not allowed - object locked."
        _a = util.make_angle(angle)
        _oa = self.__angle
        if abs(_a - _oa) > 1e-10:
            self.__angle = _a
            self.sendMessage('rotated', _oa)
            _x, _y = self.__keypoint.getCoords()
            self.sendMessage('moved', _x, _y, _oa)
            self.modified()

    angle = property(getAngle, setAngle, None, "Angle of inclination.")

    def isVertical(self):
        return abs(abs(self.__angle) - 90.0) < 1e-10

    def isHorizontal(self):
        return abs(self.__angle) < 1e-10

    def getLocation(self):
        return self.__keypoint

    def setLocation(self, p):
        if self.isLocked():
            raise RuntimeError, "Setting keypoint not allowed - object locked."
        if not isinstance(p, point.Point):
            raise TypeError, "Unexpected type for point: " + `type(p)`
        _kp = self.__keypoint
        if p is not _kp:
            _x, _y = _kp.getCoords()
            _kp.disconnect(self)
            _kp.freeUser(self)
            self.__keypoint = p
            self.sendMessage('keypoint_changed', _kp)
            p.connect('moved', self._movePoint)
            p.storeUser(self)
            _px, _py = p.getCoords()
            if abs(_px - _x) > 1e-10 or abs(_py - _y) > 1e-10:
                self.sendMessage('moved', _x, _y, self.getAngle())
            self.modified()

    def mapCoords(self, x, y, tol=tolerance.TOL):
        """Return the nearest Point on the ACLine to a coordinate pair.

mapCoords(x, y[, tol])

The function has two required arguments:

x: A Float value giving the x-coordinate
y: A Float value giving the y-coordinate

There is a single optional argument:

tol: A float value equal or greater than 0.0

This function is used to map a possibly near-by coordinate pair to
an actual Point on the ACLine. If the distance between the actual
Point and the coordinates used as an argument is less than the tolerance,
the actual Point is returned. Otherwise, this function returns None.
        """
        _x = util.get_float(x)
        _y = util.get_float(y)
        _t = tolerance.toltest(tol)
        _xs, _ys = self.getLocation().getCoords()
        _angle = self.__angle
        #
        # the second point is 1 unit away - this simplifies things ...
        #
        if self.isHorizontal():
            _x2 = _xs + 1.0
            _y2 = _ys
        elif self.isVertical():
            _x2 = _xs
            _y2 = _ys + 1.0
        else:
            _x2 = _xs + math.cos(_angle * _dtr)
            _y2 = _ys + math.sin(_angle * _dtr)
        _r = ((_x - _xs)*(_x2 - _xs) + (_y - _ys)*(_y2 - _ys))
        _px = _xs + (_r * (_x2 - _xs))
        _py = _ys + (_r * (_y2 - _ys))
        if abs(_px - _x) < _t and abs(_py - _y) < _t:
            return _px, _py
        return None

    def getProjection(self, x, y):
        """Find the projection point of some coordinates on the ACLine.

getProjection(x, y)

Arguments 'x' and 'y' should be float values.
        """
        _x = util.get_float(x)
        _y = util.get_float(y)
        _x1, _y1 = self.getLocation().getCoords()
        _angle = self.__angle
        if self.isHorizontal():
            _px = _x
            _py = _y1
        elif self.isVertical():
            _px = _x1
            _py = _y
        else:
            _rangle = _angle * _dtr
            _dx = math.cos(_rangle)
            _dy = math.sin(_rangle)
            _sqlen = pow(_dx, 2) + pow(_dy, 2)
            _rn = ((_x - _x1) * _dx) + ((_y - _y1) * _dy)
            _r = _rn/_sqlen
            _px = _x1 + (_r * _dx)
            _py = _y1 + (_r * _dy)
        return _px, _py

    def inRegion(self, xmin, ymin, xmax, ymax, fully=False):
        """Return whether or not an ACLine passes through a region.

inRegion(xmin, ymin, xmax, ymax)

The first four arguments define the boundary. The method
will return True if the ACLine passes through the boundary.
Otherwise the function will return False.
        """
        _xmin = util.get_float(xmin)
        _ymin = util.get_float(ymin)
        _xmax = util.get_float(xmax)
        if _xmax < _xmin:
            raise ValueError, "Illegal values: xmax < xmin"
        _ymax = util.get_float(ymax)
        if _ymax < _ymin:
            raise ValueError, "Illegal values: ymax < ymin"
        util.test_boolean(fully)
        if fully:
            return False
        _x, _y = self.getLocation().getCoords()
        _angle = self.__angle
        _val = False
        if _xmin < _x < _xmax and _ymin < _y < _ymax:
            _val = True
        elif self.isHorizontal() and _ymin < _y < _ymax:
            _val = True
        elif self.isVertical() and _xmin < _x < _xmax:
            _val = True
        else:
            #
            # the ACLine can be parameterized as
            #
            # x = u * (x2 - x1) + x1
            # y = u * (y2 - y1) + y1
            #
            # for u = 0, x => x1, y => y1
            # for u = 1, x => x2, y => y2
            #
            # if the ACLine passes through the region then there
            # will be valid u occuring at the region boundary
            #
            _rangle = _angle * _dtr
            _dx = math.cos(_rangle)
            _dy = math.sin(_rangle)
            #
            # x = xmin
            #
            _u = (_xmin - _x)/_dx
            _yt = (_u * _dy) + _y
            if (_ymin - 1e-10) < _yt < (_ymax + 1e-10): # catch endpoints
                _val = True
            if not _val:
                #
                # x = xmax
                #
                _u = (_xmax - _x)/_dx
                _yt = (_u * _dy) + _y
                if (_ymin - 1e-10) < _yt < (_ymax + 1e-10): # catch endpoints
                    _val = True
                if not _val:
                    #
                    # y = ymin
                    #
                    # if this fails there is no way the ACLine can be in
                    # region because it cannot pass through only one side
                    #
                    _u = (_ymin - _y)/_dy
                    _xt = (_u * _dx) + _x
                    if _xmin < _xt < _xmax:
                        _val = True
        return _val

    def clone(self):
        """Return a copy of a ACLine.

clone()
        """
        _loc = self.getLocation().clone()
        return ACLine(_loc, self.__angle)

    def move(self, dx, dy):
        """Move an ACLine

move(dx, dy)

The first argument gives the x-coordinate displacement,
and the second gives the y-coordinate displacement. Both
values should be floats.
        """
        if self.isLocked() or self.__keypoint.isLocked():
            raise RuntimeError, "Moving ACLine not allowed - object locked."
        _dx = util.get_float(dx)
        _dy = util.get_float(dy)
        if abs(_dx) > 1e-10 or abs(_dy) > 1e-10:
            _x, _y = self.__keypoint.getCoords()
            self.ignore('moved')
            try:
                self.__keypoint.move(_dx, _dy)
            finally:
                self.receive('moved')
            self.sendMessage('moved', _x, _y, self.getAngle())
            self.modified()

    def _movePoint(self, p, *args):
        _plen = len(args)
        if _plen < 2:
            raise ValueError, "Invalid argument count: %d" % _plen
        _x = util.get_float(args[0])
        _y = util.get_float(args[1])
        if p is not self.__keypoint:
            raise ValueError, "Invalid point for ACLine::movePoint()" + `p`
        _px, _py = p.getCoords()
        if abs(_px - _x) > 1e-10 or abs(_py - _y) > 1e-10:
            self.sendMessage('moved', _x, _y, self.getAngle())

    def clipToRegion(self, xmin, ymin, xmax, ymax):
        _xmin = util.get_float(xmin)
        _ymin = util.get_float(ymin)
        _xmax = util.get_float(xmax)
        if _xmax < _xmin:
            raise ValueError, "Illegal values: xmax < xmin"
        _ymax = util.get_float(ymax)
        if _ymax < _ymin:
            raise ValueError, "Illegal values: ymax < ymin"
        _x, _y = self.getLocation().getCoords()
        _angle = self.__angle
        _coords = None
        if self.isVertical() and _xmin < _x < _xmax:
            _coords = (_x, _ymin, _x, _ymax)
        elif self.isHorizontal() and _ymin < _y < _ymax:
            _coords = (_xmin, _y, _xmax, _y)
        else:
            #
            # the ACLine can be parameterized as
            #
            # x = u * (x2 - x1) + x1
            # y = u * (y2 - y1) + y1
            #
            # for u = 0, x => x1, y => y1
            # for u = 1, x => x2, y => y2
            #
            # The following is the Liang-Barsky Algorithm
            # for segment clipping modified slightly for
            # construction lines
            #
            _rangle = _angle * _dtr
            _dx = math.cos(_rangle)
            _dy = math.sin(_rangle)
            _P = [-_dx, _dx, -_dy, _dy]
            _q = [(_x - _xmin), (_xmax - _x), (_y - _ymin), (_ymax - _y)]
            _u1 = None
            _u2 = None
            _valid = True
            for _i in range(4):
                _pi = _P[_i]
                _qi = _q[_i]
                if abs(_pi) < 1e-10: # this should be caught earlier ...
                    if _qi < 0.0:
                        _valid = False
                        break
                else:
                    _r = _qi/_pi
                    if _pi < 0.0:
                        if _u2 is not None and _r > _u2:
                            _valid = False
                            break
                        if _u1 is None or _r > _u1:
                            _u1 = _r
                    else:
                        if _u1 is not None and _r < _u1:
                            _valid = False
                            break
                        if _u2 is None or _r < _u2:
                            _u2 = _r
            if _valid:
                _coords = (((_u1 * _dx) + _x),
                           ((_u1 * _dy) + _y),
                           ((_u2 * _dx) + _x),
                           ((_u2 * _dy) + _y))
        return _coords

    def sendsMessage(self, m):
        if m in ACLine.messages:
            return True
        return super(ACLine, self).sendsMessage(m)

def intersect_region(acl, xmin, ymin, xmax, ymax):
    if not isinstance(acl, ACLine):
        raise TypeError, "Argument not an ACLine: " + `type(acl)`
    _xmin = util.get_float(xmin)
    _ymin = util.get_float(ymin)
    _xmax = util.get_float(xmax)
    if _xmax < _xmin:
        raise ValueError, "Illegal values: xmax < xmin"
    _ymax = util.get_float(ymax)
    if _ymax < _ymin:
        raise ValueError, "Illegal values: ymax < ymin"
    _x, _y = acl.getLocation().getCoords()
    _x1 = _y1 = _x2 = _y2 = None
    if acl.isVertical() and _xmin < _x < _xmax:
        _x1 = _x
        _y1 = _ymin
        _x2 = _x
        _y2 = _ymax
    elif acl.isHorizontal() and _ymin < _y < _ymax:
        _x1 = _xmin
        _y1 = _y
        _x2 = _xmax
        _y2 = _y
    else:
        _angle = acl.getAngle()
        _slope = math.tan(_angle * _dtr)
        _yint = _y - (_x * _slope)
        _xt = _x + math.cos(_angle * _dtr)
        _yt = _y + math.sin(_angle * _dtr)
        #
        # find y for x = xmin
        #
        _yt = (_slope * _xmin) + _yint
        if _ymin < _yt < _ymax:
            # print "hit at y for x=xmin"
            _x1 = _xmin
            _y1 = _yt
        #
        # find y for x = xmax
        #
        _yt = (_slope * _xmax) + _yint
        if _ymin < _yt < _ymax:
            # print "hit at y for x=xmax"
            if _x1 is None:
                _x1 = _xmax
                _y1 = _yt
            else:
                _x2 = _xmax
                _y2 = _yt
        if _x2 is None:
            #
            # find x for y = ymin
            #
            _xt = (_ymin - _yint)/_slope
            if _xmin < _xt < _xmax:
                # print "hit at x for y=ymin"
                if _x1 is None:
                    _x1 = _xt
                    _y1 = _ymin
                else:
                    _x2 = _xt
                    _y2 = _ymin
        if _x2 is None:
            #
            # find x for y = ymax
            #
            _xt = (_ymax - _yint)/_slope
            if _xmin < _xt < _xmax:
                # print "hit at x for y=ymax"
                if _x1 is None:
                    _x1 = _xt
                    _y1 = _ymax
                else:
                    _x2 = _xt
                    _y2 = _ymax
    return _x1, _y1, _x2, _y2

#
# Quadtree ACLine storage
#

class ACLineQuadtree(quadtree.Quadtree):
    def __init__(self):
        super(ACLineQuadtree, self).__init__()

    def getNodes(self, *args):
        _alen = len(args)
        if _alen != 3:
            raise ValueError, "Expected 3 arguments, got %d" % _alen
        _x = util.get_float(args[0])
        _y = util.get_float(args[1])
        _angle = util.get_float(args[2])
        _v = abs(abs(_angle) - 90.0) < 1e-10
        _h = abs(_angle) < 1e-10
        _nodes = [self.getTreeRoot()]
        while len(_nodes):
            _node = _nodes.pop()
            _xmin, _ymin, _xmax, _ymax = _node.getBoundary()
            if _node.hasSubnodes():
                _ne = _nw = _sw = _se = False
                if _v:
                    if _x < _xmin or _x > _xmax:
                        continue
                    _xmid = (_xmin + _xmax)/2.0
                    if _x < _xmid: # left of midpoint
                        _nw = _sw = True
                    else:
                        _se = _ne = True
                elif _h:
                    if _y < _ymin or _y > _ymax:
                        continue
                    _ymid = (_ymin + _ymax)/2.0
                    if _y < _ymid: # below midpoint
                        _sw = _se = True
                    else:
                        _nw = _ne = True
                else:
                    _ne = _nw = _sw = _se = True
                if _ne:
                    _nodes.append(_node.getSubnode(quadtree.QTreeNode.NENODE))
                if _nw:
                    _nodes.append(_node.getSubnode(quadtree.QTreeNode.NWNODE))
                if _sw:
                    _nodes.append(_node.getSubnode(quadtree.QTreeNode.SWNODE))
                if _se:
                    _nodes.append(_node.getSubnode(quadtree.QTreeNode.SENODE))
            else:
                yield _node

    def addObject(self, obj):
        if not isinstance(obj, ACLine):
            raise TypeError, "Argument not an ACLine: " + `type(obj)`
        if obj in self:
            return
        _x, _y = obj.getLocation().getCoords()
        _angle = obj.getAngle()
        _bounds = self.getTreeRoot().getBoundary()
        _xmin = _ymin = _xmax = _ymax = None
        _resize = False
        if _bounds is None: # first node in tree
            _resize = True
            _xmin = _x - 1.0
            _ymin = _y - 1.0
            _xmax = _x + 1.0
            _ymax = _y + 1.0
        else:
            _xmin, _ymin, _xmax, _ymax = _bounds
            if _x < _xmin:
                _xmin = _x - 1.0
                _resize = True
            if _x > _xmax:
                _xmax = _x + 1.0
                _resize = True
            if _y < _ymin:
                _ymin = _y - 1.0
                _resize = True
            if _y > _ymax:
                _ymax = _y + 1.0
                _resize = True
        if _resize:
            self.resize(_xmin, _ymin, _xmax, _ymax)
        for _node in self.getNodes(_x, _y, _angle):
            _xmin, _ymin, _xmax, _ymax = _node.getBoundary()
            if obj.inRegion(_xmin, _ymin, _xmax, _ymax):
                _node.addObject(obj)
        super(ACLineQuadtree, self).addObject(obj)
        obj.connect('moved', self._moveACLine)

    def delObject(self, obj):
        if obj not in self:
            return
        _x, _y = obj.getLocation().getCoords()
        _angle = obj.getAngle()
        _pdict = {}
        for _node in self.getNodes(_x, _y, _angle):
            _node.delObject(obj)
            _parent = _node.getParent()
            if _parent is not None:
                _pid = id(_parent)
                if _pid not in _pdict:
                    _pdict[_pid] = _parent
        super(ACLineQuadtree, self).delObject(obj)
        obj.disconnect(self)
        for _parent in _pdict.values():
            self.purgeSubnodes(_parent)

    def find(self, *args):
        _alen = len(args)
        if _alen < 3:
            raise ValueError, "Invalid argument count: %d" % _alen
        _x = util.get_float(args[0])
        _y = util.get_float(args[1])
        _angle = util.make_angle(args[2])
        _t = tolerance.TOL
        if _alen > 3:
            _t = tolerance.toltest(args[3])
        if not len(self):
            return None
        _nodes = [self.getTreeRoot()]
        _acl = _tsep = None
        _adict = {}
        _vert = abs(abs(_angle) - 90.0) < 1e-10
        _horiz = abs(_angle) < 1e-10
        while len(_nodes):
            _node = _nodes.pop()
            _xmin, _ymin, _xmax, _ymax = _node.getBoundary()
            if _node.hasSubnodes():
                if _vert:
                    _xmid = (_xmin + _xmax)/2.0
                    if _x < (_xmid - _t): # left of midpoint
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.NWNODE))
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.SWNODE))
                    else:
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.NENODE))
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.SENODE))

                elif _horiz:
                    _ymid = (_ymin + _ymax)/2.0
                    if _y < (_ymid - _t): # below midpoint
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.SWNODE))
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.SENODE))
                    else:
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.NENODE))
                        _nodes.append(_node.getSubnode(quadtree.QTreeNode.SWNODE))
                else:
                    _nodes.extend(_node.getSubnodes())
            else:
                for _a in _node.getObjects():
                    _aid = id(_a)
                    if _aid not in _adict:
                        if abs(_angle - _a.getAngle()) < 1e-10:
                            _xp, _yp = _a.getProjection(_x, _y)
                            _sep = math.hypot((_xp - _x), (_yp - _y))
                            if _sep < _t:
                                if _acl is None:
                                    _acl = _a
                                    _tsep = _sep
                                else:
                                    if _sep < _tsep:
                                        _acl = _a
                                        _tsep = _sep
                        _adict[_aid] = True
        return _acl

    def _moveACLine(self, obj, *args):
        if obj not in self:
            raise ValueError, "ACLine not stored in Quadtree: " + `obj`
        _alen = len(args)
        if _alen < 3:
            raise ValueError, "Invalid argument count: %d" % _alen
        _x = util.get_float(args[0])
        _y = util.get_float(args[1])
        _angle = util.get_float(args[2])
        for _node in self.getNodes(_x, _y, _angle):
            _node.delObject(obj) # acline may not be in node
        super(ACLineQuadtree, self).delObject(obj)
        obj.disconnect(self)
        self.addObject(obj)

    def getClosest(self, x, y, tol=tolerance.TOL):
        _x = util.get_float(x)
        _y = util.get_float(y)
        _t = tolerance.toltest(tol)
        _acline = _tsep = None
        _adict = {}
        _nodes = [self.getTreeRoot()]
        while len(_nodes):
            _node = _nodes.pop()
            if _node.hasSubnodes():
                _nodes.extend(_node.getSubnodes())
            else:
                for _a in _node.getObjects():
                    _aid = id(_a)
                    if _aid not in _adict:
                        _ax, _ay = _a.getProjection(_x, _y)
                        if abs(_ax - _x) < _t and abs(_ay - _y) < _t:
                            _sep = math.hypot((_ax - _x), (_ay - _y))
                            if _tsep is None:
                                _tsep = _sep
                                _acline = _a
                            else:
                                if _sep < _tsep:
                                    _tsep = _sep
                                    _acline = _a
        return _acline


    def getInRegion(self, xmin, ymin, xmax, ymax):
        _xmin = util.get_float(xmin)
        _ymin = util.get_float(ymin)
        _xmax = util.get_float(xmax)
        if _xmax < _xmin:
            raise ValueError, "Illegal values: xmax < xmin"
        _ymax = util.get_float(ymax)
        if _ymax < _ymin:
            raise ValueError, "Illegal values: ymax < ymin"
        _acls = []
        if not len(self):
            return _acls
        _nodes = [self.getTreeRoot()]
        _adict = {}
        while len(_nodes):
            _node = _nodes.pop()
            if _node.hasSubnodes():
                _nodes.extend(_node.getSubnodes())
            else:
                for _acl in _node.getObjects():
                    _aid = id(_acl)
                    if _aid not in _adict:
                        if _acl.inRegion(_xmin, _ymin, _xmax, _ymax):
                            _acls.append(_acl)
                        _adict[_aid] = True
        return _acls

#
# ACLine history class
#

class ACLineLog(conobject.ConstructionObjectLog):
    def __init__(self, a):
        if not isinstance(a, ACLine):
            raise TypeError, "Argument not an ACLine: " + `type(a)`
        super(ACLineLog, self).__init__(a)
        a.connect('keypoint_changed', self._keypointChange)
        a.connect('rotated', self._rotateACLine)

    def _rotateACLine(self, a, *args):
        _alen = len(args)
        if _alen < 1:
            raise ValueError, "Invalid argument count: %d" % _alen
        _angle = args[0]
        if not isinstance(_angle, float):
            raise TypeError, "Unexpected type for angle: " + `type(_angle)`
        self.saveUndoData('rotated', _angle)

    def _keypointChange(self, a, *args):
        _alen = len(args)
        if _alen < 1:
            raise ValueError, "Invalid argument count: %d" % _alen
        _old = args[0]
        if not isinstance(_old, point.Point):
            raise TypeError, "Argument not a Point: " + `type(_old)`
        self.saveUndoData('keypoint_changed', _old.getID())

    def execute(self, undo, *args):
        util.test_boolean(undo)
        _alen = len(args)
        if _alen == 0:
            raise ValueError, "No arguments to execute()"
        _a = self.getObject()
        _p = _a.getLocation()
        _op = args[0]
        if _op == 'rotated':
            if len(args) < 2:
                raise ValueError, "Invalid argument count: %d" % _alen
            _angle = args[1]
            if not isinstance(_angle, float):
                raise TypeError, "Unexpected type for angle: " + `type(_angle)`
            _sdata = _a.getAngle()
            self.ignore(_op)
            try:
                if undo:
                    _a.startUndo()
                    try:
                        _a.setAngle(_angle)
                    finally:
                        _a.endUndo()
                else:
                    _a.startRedo()
                    try:
                        _a.setAngle(_angle)
                    finally:
                        _a.endRedo()
            finally:
                self.receive(_op)
            self.saveData(undo, _op, _sdata)
        elif _op == 'keypoint_changed':
            if _alen < 2:
                raise ValueError, "Invalid argument count: %d" % _alen
            _oid = args[1]
            _parent = _a.getParent()
            if _parent is None:
                raise ValueError, "ACLine has no parent - cannot undo"
            _pt = _parent.getObject(_oid)
            if _pt is None or not isinstance(_pt, point.Point):
                raise ValueError, "Keypoint missing: id=%d" % _oid
            _sdata = _p.getID()
            self.ignore(_op)
            try:
                if undo:
                    _a.startUndo()
                    try:
                        _a.setLocation(_pt)
                    finally:
                        _a.endUndo()
                else:
                    _a.startRedo()
                    try:
                        _a.setLocation(_pt)
                    finally:
                        _a.endRedo()
            finally:
                self.receive(_op)
            self.saveData(undo, _op, _sdata)
        else:
            super(ACLineLog, self).execute(undo, *args)