1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
#
# Copyright (c) 2003 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
import struct
import sys
_debug = 0
dbg_handle = sys.stdout
#
# bitstream reading functions for DWG files
#
# these functions are used in R13/R14/R15 file decoding
#
# data: an array.array instance of unsigned bytes ("B")
# offset: the current bit offset where the value begins
#
def read_extended_data(data, offset):
_bitpos = offset
_extdata = []
while True:
_bitpos, _size = get_bit_short(data, _bitpos)
if _size == 0:
break
_bitpos, _handle = get_handle(data, _bitpos)
_eedata = []
while (_size > 0):
_bitpos, _cb = get_raw_char(data, _bitpos)
_size = _size - 1
if _cb == 0x0: # string
_bitpos, _len = get_raw_char(data, _bitpos)
_bitpos, _cp = get_raw_short(data, _bitpos)
_chars = []
for _i in range(_len):
_bitpos, _char = get_raw_char(data, _bitpos)
_chars.append(chr(_char))
_eedata.append("".join(_chars))
_size = _size - _len - 3
elif _cb == 0x1:
raise ValueError, "invalid EEX code byte: 0x1"
elif _cb == 0x2: # either '{' or '}'
_bitpos, _char = get_raw_char(data, _bitpos)
if _char == 0x0:
_eedata.append("{")
elif _char == 0x1:
_eedata.append("}")
else:
raise ValueError, "Unexpected EEX char: %#02x" % _char
_size = _size - 1
elif (_cb == 0x3 or # layer table reference
_cb == 0x5): # entity handle reference
_chars = []
for _i in range(8):
_bitpos, _char = get_raw_char(data, _bitpos)
_chars.append(_char)
_eedata.append(tuple(_chars)) # this seems odd ...
_size = _size - 8
elif _cb == 0x4: # binary data
_bitpos, _len = get_raw_char(data, _bitpos)
_chars = []
for _i in range(_len):
_bitpos, _char = get_raw_char(data, _bitpos)
_chars.append(_char)
_eedata.append(_chars)
_size = _size - _len - 1
elif (0xa <= _cb <= 0xd): # three doubles
_bitpos, _d1 = get_raw_double(data, _bitpos)
_bitpos, _d2 = get_raw_double(data, _bitpos)
_bitpos, _d3 = get_raw_double(data, _bitpos)
_eedata.append((_d1, _d2, _d3))
_size = _size - 24
elif (0x28 <= _cb <= 0x2a): # one double
_bitpos, _d = get_raw_double(data, _bitpos)
_eedata.append(_d)
_size = _size - 8
elif _cb == 0x46: # short int
_bitpos, _short = get_raw_short(data, _bitpos)
_eedata.append(_short)
_size = _size - 2
elif _cb == 0x47: # long int
_bitpos, _long = get_raw_long(data, _bitpos)
_eedata.append(_long)
_size = _size - 4
else:
raise ValueError, "Unexpected code byte: %#02x" % _cb
_extdata.append((_handle, _eedata))
return _bitpos, _extdata
def get_default_double(data, offset, defval):
_flags = get_bits(data, 2, offset)
_read = 2
if (_flags == 0x0):
_val = defval
else:
_offset = offset + 2
if (_flags == 0x3):
_dstr = get_bits(data, 64, _offset)
_val = struct.unpack('<d', _dstr)[0]
_read = 66
else:
_dstr = list(struct.pack('<d', defval))
if (_flags == 0x1):
_dd = get_bits(data, 32, _offset)
_dstr[0] = _dd[0]
_dstr[1] = _dd[1]
_dstr[2] = _dd[2]
_dstr[3] = _dd[3]
_read = 34
else: # flags == 0x2
_dd = get_bits(data, 48, _offset)
_dstr[4] = _dd[0]
_dstr[5] = _dd[1]
_dstr[0] = _dd[2]
_dstr[1] = _dd[3]
_dstr[2] = _dd[4]
_dstr[3] = _dd[5]
_read = 50
_val = struct.unpack('<d', "".join(_dstr))[0]
return (offset + _read), _val
def get_bit_double(data, offset):
_type = get_bits(data, 2, offset)
_read = 2
_val = None
if _type == 0x00:
_db = get_bits(data, 64, (offset + 2))
_val = struct.unpack('<d', _db)[0]
_read = 66
elif _type == 0x01:
_val = 1.0
elif _type == 0x02:
_val = 0.0
else:
raise ValueError, "bad type at bit offset %d: 0x3" % offset
return (offset + _read), _val
def get_raw_double(data, offset):
_db = get_bits(data, 64, offset)
_val = struct.unpack('<d', _db)[0]
return (offset + 64), _val
def get_bit_short(data, offset):
_type = get_bits(data, 2, offset)
_read = 2
_val = None
if _type == 0x00:
_sh = get_bits(data, 16, (offset + 2))
_val = struct.unpack('<h', _sh)[0]
_read = 18
elif _type == 0x01:
_val = get_bits(data, 8, (offset + 2))
_read = 10
elif _type == 0x02:
_val = 0
elif _type == 0x03:
_val = 256
return (offset + _read), _val
def get_raw_short(data, offset):
_sh = get_bits(data, 16, offset)
_val = struct.unpack('<h', _sh)[0]
return (offset + 16), _val
def get_bit_long(data, offset):
_type = get_bits(data, 2, offset)
_read = 2
_val = None
if _type == 0x0:
_long = get_bits(data, 32, (offset + 2))
_val = struct.unpack('<l', _long)[0]
_read = 34
elif _type == 0x01:
_val = get_bits(data, 8, (offset + 2))
_read = 10
elif _type == 0x02:
_val = 0
else:
raise ValueError, "Bad type at bit offset %d: 0x03" % offset
return (offset + _read), _val
def get_raw_long(data, offset):
_long = get_bits(data, 32, offset)
_val = struct.unpack('<l', _long)[0]
return (offset + 32), _val
def get_raw_char(data, offset):
_char = get_bits(data, 8, offset)
return (offset + 8), _char
def get_modular_char(data, offset):
_bytes = []
_read = True
_offset = offset
_fac = 1
while _read:
_byte = get_bits(data, 8, _offset)
_offset = _offset + 8
if not (_byte & 0x80): # final byte has 0 in high bit
_read = False
if (_byte & 0x40): # negation
_fac = -1
_byte = _byte & 0xbf # turn off negative bit
_bytes.append(_byte & 0x7f) # turn off high bit
if len(_bytes) == 1:
_val = _bytes[0]
elif len(_bytes) == 2:
_val = _bytes[0] | (_bytes[1] << 7)
elif len(_bytes) == 3: # possible?
_val = _bytes[0] | (_bytes[1] << 7) | (_bytes[2] << 14)
elif len(_bytes) == 4:
_val = _bytes[0] | (_bytes[1] << 7) | (_bytes[2] << 14) | (_bytes[3] << 21)
else:
raise ValueError, "unexpected byte array length: %d" % len(_bytes)
return _offset, (_fac * _val)
def get_text_string(data, offset):
_bitpos, _len = get_bit_short(data, offset)
_bitlen = _len * 8
_string = get_bits(data, _bitlen, _bitpos)
_bitpos = _bitpos + _bitlen
return _bitpos, _string
def get_handle(data, offset):
_code = get_bits(data, 4, offset)
_counter = get_bits(data, 4, (offset + 4))
_read = 8
_hlist = []
if _counter:
_hlen = _counter * 8
_handle = get_bits(data, _hlen, (offset + 8))
_read = _read + _hlen
if _hlen > 8: # convert string into list of bytes
for _chr in _handle:
_hlist.append(ord(_chr))
else:
_hlist.append(_handle)
return (offset + _read), (_code, _counter) + tuple(_hlist)
def get_modular_short(handle):
_shorts = []
_short = struct.unpack('>h', handle.read(2))[0] # msb first
while (_short & 0x80): # test high bit in lsb byte
_shorts.append(_short)
_short = struct.unpack('>h', handle.read(2))[0] # msb first
_shorts.append(_short)
for _i in range(len(_shorts)): # reverse bytes in shorts
_short = _shorts[_i]
_shorts[_i] = ((_short & 0xff00) >> 8) | ((_short & 0xff) << 8)
_slen = len(_shorts)
if _slen == 1:
_size = _shorts[0] & 0x7fff
elif _slen == 2:
_tmp = _shorts[0]
_shorts[0] = _shorts[1]
_shorts[1] = _tmp
_size = ((_shorts[0] & 0x7fff) << 15) | (_shorts[1] & 0x7fff)
else:
raise ValueError, "Unexpected array length: %d" % _slen
return _size
#
# mask1: bit mask to apply to the current byte
# lshift: left shift amount of mask results
# mask2: bit mask to apply to the next byte
# rshift: right shift amount of the mask results
#
_mask_table = [
(0xff, 0, 0x00, 0), # bit offset == 0
(0x7f, 1, 0x80, 7), # bit offset == 1
(0x3f, 2, 0xc0, 6), # bit offset == 2
(0x1f, 3, 0xe0, 5), # bit offset == 3
(0x0f, 4, 0xf0, 4), # bit offset == 4
(0x07, 5, 0xf8, 3), # bit offset == 5
(0x03, 6, 0xfc, 2), # bit offset == 6
(0x01, 7, 0xfe, 1), # bit offset == 7
]
def get_bits(data, count, offset):
# dbg_print("debugging on")
dbg_print("passed %d data length with %d count at %d offset" %
(len(data), count, offset))
_idx = offset / 8 # index to the byte offset
_bitidx = offset % 8 # index to the bit offset within the byte
_mask1, _lsh, _mask2, _rsh = _mask_table[_bitidx]
_binc = 8 - _bitidx # bits available in current byte
_read = 0
_rem = count
_byte = 0x0
_bytes = []
while _read < count:
if _rem > _binc: # need more bits than this byte can provide
dbg_print("_rem > _binc")
_b1 = (data[_idx] & _mask1)
_read = _read + _binc
if not isinstance(_rem, int):
dbg_print("rem type: " + str(type(_rem)))
dbg_print("rem: " + str(_rem))
if not isinstance(_binc, int):
dbg_print("binc type: " + str(type(_binc)))
dbg_print("binc: " + str(_binc))
_rem = _rem - _binc
else: # this byte can give all the bits needed
dbg_print("_rem <= _binc")
_byte = _b1 = ((data[_idx] & _mask1) >> (8 - _bitidx - _rem))
_read = _read + _rem
_rem = 0
if _read < count: # need bits from next byte
dbg_print("_read %d < %d count" % (_read, count))
_idx = _idx + 1
if _rem > _bitidx: # use all bitidx bits - make a complete byte
dbg_print("_rem (%d) > (%d) _bitidx" % (_rem, _bitidx))
dbg_print("index %d of %d" % (_idx, len(data)))
_b2 = (data[_idx] & _mask2)
_byte = (_b1 << _lsh) | (_b2 >> _rsh)
_read = _read + _bitidx
_rem = _rem - _bitidx
else: # use some bitidx to complete bit count request
dbg_print("_rem <= _bitidx")
_mask = _mask_table[_rem][2] # mask for current byte
_b2 = data[_idx] & _mask
_byte = (_b1 << _rem) | (_b2 >> (8 - _rem))
_read = _read + _rem
_rem = 0
if count > 8:
_bytes.append(chr(_byte))
if len(_bytes):
return "".join(_bytes)
return _byte
def test_bit(data, offset):
_idx = offset / 8 # index to the byte offset
_bitidx = offset % 8 # index to the bit offset within the byte
_mask = 0x1 << (7 - _bitidx)
_val = False
if (data[_idx] & _mask):
_val = True
return (offset + 1), _val
#
# debug routines
#
def set_nodebug():
import dwgutil
dwgutil._debug = 0
def set_debug(filename=None):
import dwgutil
dwgutil._debug = 1
if filename != None:
dwgutil.dbg_handle = open(filename, 'w')
else:
dwgutil.dbg_handle = sys.stdout
def dbg_print(*s):
if _debug:
string = ""
for arg in s:
string += str(arg) + " "
string += "\n"
dbg_handle.write(string)
|