1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
|
#
# Copyright (c) 2002, 2003, 2004, 2005 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
#
# hatching code
#
import math
from PythonCAD.Generic import point
from PythonCAD.Generic import segment
from PythonCAD.Generic import circle
from PythonCAD.Generic import arc
from PythonCAD.Generic import segjoint
from PythonCAD.Generic import layer
from PythonCAD.Generic import util
class Path(object):
"""The class for maintaining a list of objects defining a hatch border.
A Path object contains one or more objects defining the boundary
of a hatching. If the Path length is 1, the boundary is either a
circle or an arc where the start angle and end angle are equal.
There is no upper limit to the number of objects in the path.
If a Path consists of Segments, Arcs, Chamfer, or Fillets, the
Path can only be valid if starting at any point in any object
in the Path the connections between the objects lead back to the
starting point.
A Path has the following methods:
isExternal(): Check if the Path is an outer boundary
isCircular(): Check if the Path is a Circle or closed Arc.
getPath(): Return the objects comprising the Path
inPath(): Test if a coordinate is inside a Path.
"""
def __init__(self, objs, external=True):
"""Initialize a Path.
p = Path(objs[, external])
The required argument 'objs' is a list of objects defining
the path. The valid objects are circles, arcs, segments,
chamfers and fillets.
The optional argument 'external' is by default True, meaning
that this Path is an outer boundary. If the argument is False,
then the Path represents an internal non-hatched area inside
another Path.
"""
if not isinstance(objs, list):
raise TypeError, "Unexpected list type: " + `type(objs)`
if not len(objs):
raise ValueError, "Invalid empty object list"
for _obj in objs:
_valid = False
if (isinstance(_obj, segment.Segment) or
isinstance(_obj, arc.Arc) or
isinstance(_obj, circle.Circle) or
isinstance(_obj, segjoint.Chamfer) or
isinstance(_obj, segjoint.Fillet)):
_valid = True
if not _valid:
raise TypeError, "Invalid object type in list: " + `type(_obj)`
_circular = False
if len(objs) == 1:
_circular = True
_obj = objs[0]
_valid = False
if isinstance(_obj, arc.Arc):
_sa = _obj.getStartAngle()
_ea = _obj.getEndAngle()
if abs(_sa - _ea) < 1e-10:
_valid = True
if not _valid:
raise ValueError, "Invalid single Arc path: " + str(_obj)
elif isinstance(_obj, circle.Circle):
pass
else:
raise TypeError, "Invalid single entity path: " + str(_obj)
else:
_valid = True
for _obj in objs:
if isinstance(_obj, circle.Circle):
if not isinstance(_obj, arc.Arc):
_valid = False
break
if not _valid:
raise TypeError, "Circle found in multi-object path"
_valid = True # _validate_path(objlist)
if not _valid:
raise ValueError, "Objlist objects do not make a closed path."
util.test_boolean(external)
self.__objs = objs[:]
self.__circular = _circular
self.__external = external
def __len__(self):
return len(self.__objs)
def __str__(self):
if self.__external:
print "External Path: ["
else:
print "Internal Path: ["
for _obj in self.__objs:
print str(_obj)
print "]"
def isExternal(self):
"""Test if the Path is an external border.
isExternal()
"""
return self.__external
def isCircular(self):
"""Test if the Path is a Circle or closed Arc.
isCircular()
"""
def getPath(self):
"""Return the objects defining the Path.
getPath()
This method returns a list of objects.
"""
return self.__objs[:]
def inPath(self, x, y):
"""Test if a coordinate pair are inside a Path.
inPath(x, y)
This method has two required arguments:
x: A float giving the 'x' coordinate.
y: A float giving the 'y' coordinate.
This method returns True if the Point is inside the
Path, and False otherwise.
"""
_x = util.get_float(x)
_y = util.get_float(y)
_inside = False
if self.__circular:
assert len(self.__objs) == 1, "Invalid circular path length"
_circ = self.__objs[0]
_cx, _cy = _circ.getCenter().getCoords()
_sep = math.hypot((_cx - _x), (_cy - _y))
if _sep < _circ.getRadius():
_inside = True
else:
_xp = 0.0
_yp = 0.0
_idx = None
for _i in range(len(self.__objs)):
_obj = self.__objs[_i]
if isinstance(_obj, segment.Segment):
_p1, _p2 = _obj.getEndpoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
elif isinstance(_obj, arc.Arc):
_ep1, _ep2 = _obj.getEndpoints()
_p1x, _p1y = _ep1
_p2x, _p2y = _ep2
elif isinstance(_obj, (segjoint.Chamfer, segjoint.Fillet)):
_p1, _p2 = _obj.getMovingPoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
_xdiff = _p2x - _p1x
_ydiff = _p2y - _p1y
_sqlen = pow(_xdiff, 2) + pow(_ydiff, 2)
_r = ((_x - _p1x)*(_xdiff) + (_y - _p1y)*(_ydiff))/_sqlen
if 0.0 < _r < 1.0:
_s = ((_p1y - _y)*(_xdiff) - (_p1x - _x)*(_ydiff))/_sqlen
if abs(_s) > 1e-10:
_xp = _p1x + (_r * _xdiff)
_yp = _p1y + (_r * _ydiff)
_idx = _i
break
if _idx is not None:
_count = 1
for _i in range(len(self.__objs)):
if _i == _idx:
continue
_obj = self.__objs[_i]
if isinstance(_obj, segment.Segment):
_p1, _p2 = _obj.getEndpoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
elif isinstance(_obj, arc.Arc):
_ep1, _ep2 = _obj.getEndpoints()
_p1x, _p1y = _ep1
_p2x, _p2y = _ep2
elif isinstance(_obj, (segjoint.Chamfer, segjoint.Fillet)):
_p1, _p2 = _obj.getMovingPoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
_d = ((_p2x - _p1x)*(_yp - _y)) - ((_p2y - _p1y)*(_xp - _x))
if abs(_d) > 1e-10:
_n = ((_p1y - _y)*(_xp - _x)) - ((_p1x - _x)*(_yp - _y))
_r = _n/_d
if 0.0 < _r < 1.0:
_count = _count + 1
if _count % 2: # need to test if point is in an arc ...
_inside = True
return _inside
class HatchRegion(object):
"""The class defining a hatched area.
A HatchRegion object consists of one Path object defining
the external boundary of the hatching, and a list of zero
or more Paths defining any areas inside the enclosing Path
that are not hatched.
"""
def __init__(self, extpath, voids=[]):
"""Initialize a HatchRegion.
h = HatchRegion(extpath[, voids])
The required argument 'extpath' is a Path object defining
the external boundary of the hatching. The optional argument
'voids' is a list of Path objects defining areas within the
external Path that are not to be hatched.
A HatchRegion has the following methods:
"""
if not isinstance(extpath, Path):
raise TypeError, "Invalid external path: " + `extpath`
if not extpath.isExternal():
raise ValueError, "Path not defined to be an external path: " + `extpath`
if not isinstance(voids, list):
raise TypeError, "Invalid void list: " + `voids`
for _void in voids:
if not isinstance(_void, Path):
raise TypeError, "Invalid path in void list: " + `_void`
if _void.isExternal():
raise ValueError, "Void area defined as external: " + `_void`
self.__ext_path = extpath
self.__voids = voids[:]
def getExternalPath(self):
"""Return the external Path for the HatchRegion.
getExternalPath()
"""
return self.__ext_path
def hasVoids(self):
"""Test if the HatchRegion has any internal non-hatched areas.
hasVoids()
"""
return len(self.__voids) > 0
def getVoids(self):
"""Get any internal areas in the HatchRegion.
getVoids()
"""
return self.__voids[:]
def _seg_seg_touch(sega, segb):
_touch = False
_pa1, _pa2 = sega.getEndpoints()
_pb1, _pb2 = segb.getEndpoints()
if _pa1 is _pb1 or _pa1 is _pb2 or _pa2 is _pb1 or _pa2 is _pb2:
_touch = True
return _touch
def _seg_arc_touch(seg, a):
_touch = False
_p1, _p2 = seg.getEndpoints()
_ep1, _ep2 = a.getEndpoints()
if _p1 == _ep1 or _p1 == _ep2 or _p2 == _ep1 or _p2 == _ep2:
_touch = True
return _touch
def _arc_arc_touch(arca, arcb):
_touch = False
_aep1, _aep2 = arca.getEndpoints()
_bep1, _bep2 = arcb.getEndpoints()
if _aep1 == _bep1 or _aep1 == _bep2 or _aep2 == _bep1 or _aep2 == _bep2:
_touch = True
return _touch
def _seg_joint_touch(seg, joint):
_touch = False
_s1, _s2 = joint.getSegments()
if _s1 is seg or _s2 is seg:
_touch = True
return _touch
def _old_validate_path(objlist):
"""Test if the objects in the objlist make a closed path.
_validate_path(objlist)
This function is private the the hatching code.
"""
if not isinstance(objlist, list):
raise TypeError, "Invalid object list: " + `objlist`
_startpt = None
_nextpt = None
_valid = False
for _obj in objlist:
print "testing object: " + `_obj`
print "start: " + `_startpt`
print "next: " + `_nextpt`
if isinstance(_obj, segment.Segment):
_p1, _p2 = _obj.getEndpoints()
if _startpt is None:
_startpt = _p1
_nextpt = _p2
else:
if _nextpt == _p1:
_nextpt = _p2
elif _nextpt == _p2:
_nextpt = _p1
else:
break
elif isinstance(_obj, arc.Arc):
_ep1, _ep2 = _obj.getEndpoints()
if _startpt is None:
_startpt = _ep1
_nextpt = _ep2
else:
if _nextpt == _ep1:
_nextpt = _ep2
elif _startpt == _ep2:
_nextpt = _ep1
else:
break
elif isinstance(_obj, (segjoint.Chamfer, segjoint.Fillet)):
_p1, _p2 = _obj.getMovingPoints()
if _startpt is None:
_startpt = _p1
_nextpt = _p2
else:
if _nextpt == _p1:
_nextpt = _p2
elif _nextpt == _p2:
_nextpt = _p1
else:
break
else:
raise TypeError, "Invalid object in path: " + `_obj`
if _startpt == _nextpt:
_valid = True
return _valid
def _can_touch(obja, objb):
_touch = False
if isinstance(obja, segment.Segment):
if isinstance(objb, segment.Segment):
_touch = _seg_seg_touch(obja, objb)
elif isinstance(objb, arc.Arc):
_touch = _seg_arc_touch(obja, objb)
elif isinstance(objb, segjoint.SegJoint):
_touch = _seg_joint_touch(obja, objb)
elif isinstance(obja, arc.Arc):
if isinstance(objb, segment.Segment):
_touch = _seg_arc_touch(objb, obja)
elif isinstance(objb, arc.Arc):
_touch = _arc_arc_touch(obja, objb)
elif isinstance(obja, segjoint.SegJoint):
if isinstance(objb, segment.Segment):
_touch = _seg_joint_touch(objb, obja)
return _touch
def _validate_path(lyr, objlist):
"""Test if the objects in the objlist make a closed path.
_validate_path(objlist)
This function is private the the hatching code.
"""
if not isinstance(objlist, list):
raise TypeError, "Invalid object list: " + `objlist`
for _obj in objlist:
_lobj = lyr.findObject(_obj)
if _lobj is not _obj:
raise ValueError, "Object not in layer: " + `_obj`
_valid = True
for _i in range(len(objlist) - 1):
_obja = objlist[_i]
_objb = objlist[_i+1]
if not _can_touch(_obja, _objb):
_valid = False
break
if _valid:
_valid = _can_touch(objlist[0], objlist[-1])
return _valid
def point_boundaries(plist):
_xmin = None
_xmax = None
_ymin = None
_ymax = None
_set = False
if len(plist) > 1:
for _pt in plist:
_x, _y = _pt.getCoords()
if not _set:
_xmin = _x
_xmax = _x
_ymin = _y
_ymax = _y
else:
if _x < _xmin:
_xmin = _x
if _x > _xmax:
_xmax = _x
if _y < _ymin:
_ymin = _y
if _y > _ymax:
_ymax = _y
return (_xmin, _ymin, _xmax, _ymax)
def point_in_path(path):
hits = 0
for seg in path:
p1, p2 = seg.getEndpoints()
p1x, p1y = p1.getEndpoints()
p2x, p2y = p2.getEndpoints()
xmin = min(p1x, p2x)
xmax = max(p1x, p2x)
ymin = min(p1y, p2y)
ymax = max(p1y, p2y)
# if hx < xmin or hx > max or hy > ymax:
# continue
hits = 1 - hits
return hits
def draw_path(path):
if len(path):
print "path: ["
for seg in path:
print seg
print "]"
def make_paths(pt, seg, sdict):
paths = []
print "initial segment: " + str(seg)
sp1, sp2 = seg.getEndpoints()
if pt is sp1:
sp = sp1
else:
sp = sp2
print "start point: " + str(sp)
segkeys = {}
path = []
segkeys[seg] = pt
path.append(seg)
draw_path(path)
paths.append(path)
while(len(paths)):
path = paths.pop()
draw_path(path)
seg = path[-1]
print "path final segment: " + str(seg)
# print "segkey: " + str(segkeys[seg])
p1, p2 = seg.getEndpoints()
print "p1: " + str(p1)
if p1 in sdict and segkeys[seg] is not p1:
if p1 is sp:
print "complete path:"
draw_path(path)
else:
for p1seg in sdict[p1]:
if p1seg not in path:
segkeys[p1seg] = p1
path.append(p1seg)
# print "new path:"
draw_path(path)
paths.append(path)
print "p2: " + str(p2)
if p2 in sdict and segkeys[seg] is not p2:
if p2 is sp:
print "complete path:"
draw_path(path)
else:
for p2seg in sdict[p2]:
if p2seg not in path:
segkeys[p2seg] = p2
path.append(p2seg)
# print "new_path:"
draw_path(path)
paths.append(path)
def check_clist(ct, clist):
xct, yct = ct.getCenter().getCoords()
rct = ct.getRadius()
add_flag = True
i = 0
while (i < len(clist)):
_c = clist[i]
x, y = _c.getCenter().getCoords()
r = _c.getRadius()
sep = math.hypot((xct - x), (yct - y))
if sep < r: # ct center point inside _c
if sep + rct < r:
add_flag = False
else:
i = i + 1
elif sep < rct: # _c center point inside ct
if sep + r < rct:
del clist[i]
else:
i = i + 1
else: # two circle that may or may not overlap
i = i + 1
if not add_flag:
break
return add_flag
def get_contained_circles(l, c):
clist = []
xc, yc = c.getCenter().getCoords()
rc = c.getRadius()
for _cir in l.getLayerEntities("circle"):
if _cir is c:
continue
x, y = _cir.getCenter().getCoords()
r = _cir.getCoords()
sep = math.hypot((xc - x), (yc - y))
if sep + r < rc:
if(check_clist(_cir, clist)):
clist.append(_cir)
return clist
def make_hatch_area(lyr, x, y):
_x = util.get_float(x)
_y = util.get_float(y)
if not isinstance(lyr, layer.Layer):
raise TypeError, "Invalid layer: " + `lyr`
#
# see if we're in a circle
#
_circle = None
for _c in lyr.getLayerEntities("circle"):
_xc, _yc = _c.getCenter().getCoords()
_r = _c.getRadius()
_sep = math.hypot((_xc - _x), (_yc - _y))
if _sep < _r:
if _circle is None:
_circle = _c
else:
_rc = _circle.getRadius()
if _r < _rc:
_circle = _c
#
# get the eligible points in the layer and
# store any circles that may be fully inside
# the bounding circle
#
_pts = {}
_circle_voids = []
if _circle is not None:
_cx, _cy = _circle.getCenter().getCoords()
_rad = _circle.getRadius()
_xmin = _cx - _rad
_ymin = _cy - _rad
_xmax = _cx + _rad
_ymax = _cy + _rad
for _pt in lyr.getLayerEntities("point"):
_x, _y = _pt.getCoords()
if _x < _xmin or _y < _ymin or _y > _ymax:
continue
if _x > _xmax:
break
_sep = math.hypot((_cx - _x), (_cy - _y))
if _sep < _rad:
_addpt = True
if lyr.countUsers(_pt) == 1:
_obj = lyr.usesObject(_pt)
if not isinstance(_obj, circle.Circle):
_addpt = False
if _addpt:
_pts[_pt] = True
for _circ in lyr.getLayerEntities("circle"):
if _circ is _circle:
continue
_tcx, _tcy = _circ.getCenter().getCoords()
_tr = _circ.getRadius()
if (_tcx + _tr) > _xmax:
break
if ((_tcx - _tr) < _xmin or
(_tcy - _tr) < _ymin or
(_tcy + _tr) > _ymax):
continue
_sepmax = math.hypot((_cx - _tcx), (_cy - _tcy)) + _tr
if _sepmax < _rad:
_circle_voids.append(_circ)
else:
for _pt in lyr.getLayerEntities("point"):
_addpt = True
if lyr.countUsers(_pt) == 1:
_obj = lyr.usesObject(_pt)
if not isinstance(_obj, circle.Circle):
_addpt = False
if _addpt:
_pts[_pt] = True
#
# find the entites that can make closed paths
#
_objs = {}
for _pt in _pts:
for _user in lyr.usesObject(_pt):
if isinstance(_user, (segment.Segment, arc.Arc,
segjoint.Chamfer, segjoint.Fillet)):
_objs[_user] = True
if isinstance(_user, segment.Segment):
for _seguser in lyr.usesObject(_user):
_objs[_seguser] = True
_paths = {}
for _obj in _objs:
_p1 = None
_p2 = None
if isinstance(_obj, segment.Segment):
if _obj not in _paths:
_paths[_obj] = []
for _user in lyr.usesObject(_obj):
if isinstance(_user, (segjoint.Chamfer, segjoint.Fillet)):
_paths[_obj].append(_user)
_p1, _p2 = _obj.getEndpoints()
elif isinstance(_obj, arc.Arc):
_ep1, _ep2 = _obj.getEndpoints()
for _pt in _pts:
if _pt == _ep1:
_p1 = _pt
elif _p2 == _ep2:
_p2 = _pt
if _p1 is not None and _p2 is not None:
break
if _p1 is None or _p2 is None:
continue # only one arc endpoint in list
else:
_s1, _s2 = _obj.getSegments()
if _obj not in _paths:
_paths[_obj] = []
_paths[_obj].append(_s1)
_paths[_obj].append(_s2)
if _p1 is not None:
for _user in lyr.usesObject(_p1):
if _user is not _obj:
if isinstance(_user, (segment.Segment, arc.Arc)):
_paths[_obj].append(_user)
if _p2 is not None:
for _user in lyr.usesObject(_p2):
if _user is not _obj:
if isinstance(_user, (segment.Segment, arc.Arc)):
_paths[_obj].append(_user)
#
# remove any object that doesn't connect to another object
#
_objlist = _paths.keys()
for _obj in _objlist:
if len(_paths[_obj]) < 1:
del _paths[_obj]
#
# try to make paths from the selected objects
#
_routes = {}
_objlist = _paths.keys()
_objcount = len(_objlist)
for _obj in _objlist:
_objpaths = []
_path = [_obj]
for _fullpath in _make_paths(_paths, _objcount, _obj, _path):
print "path: " + str(_fullpath)
_valid = _validate_path(lyr, _fullpath)
if _valid:
_objpaths.append(_fullpath)
else:
print "invalid path"
_routes[_obj] = _objpaths
def _make_paths(pathdict, maxlen, tail, path):
_paths = []
_pathlen = len(path)
_head = None
if _pathlen <= maxlen and tail in pathdict:
if _pathlen:
_head = path[0]
for _next in pathdict[tail]:
if _next is _head:
_good = True
if _pathlen == 2:
if (isinstance(path[0], segment.Segment) and
isinstance(path[1], segment.Segment)):
_good = False
if _good:
_paths.append(path)
elif _next not in path:
_path = path + [_next]
for _newpath in _make_paths(pathdict, maxlen, _next, _path):
_paths.append(_newpath)
else:
pass
return _paths
hpx = 3.0
hpy = 4.0
def hatchtests():
p1 = point.Point(0,0)
p2 = point.Point(10,0)
p3 = point.Point(10,10)
p4 = point.Point(0,10)
s1 = segment.Segment(p1,p2)
s2 = segment.Segment(p2,p3)
s3 = segment.Segment(p3,p4)
s4 = segment.Segment(p4,p1)
l1 = layer.Layer('foo')
l1.addObject(p1)
l1.addObject(p2)
l1.addObject(p3)
l1.addObject(p4)
l1.addObject(s1)
l1.addObject(s2)
l1.addObject(s3)
l1.addObject(s4)
# find_hatched_area(l1, hpx, hpy)
p5 = point.Point(2.95, 3.95)
l1.addObject(p5)
c1 = circle.Circle(p5, 1)
l1.addObject(c1)
# find_hatched_area(l1, hpx, hpy)
if __name__ == '__main__':
hatchtests()
|