1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
#
# Copyright (c) 2003, 2004 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
#
# functions for handling tangent circles on multiple objects
#
import math
from PythonCAD.Generic import hcline
from PythonCAD.Generic import vcline
from PythonCAD.Generic import acline
from PythonCAD.Generic import cline
from PythonCAD.Generic import ccircle
#
# common constants
#
_dtr = math.pi/180.0
_piover2 = math.pi/2.0
#
# find the projection point of point (x, y) on a line
# from (x1, y1) to (x2, y2)
#
def _get_two_point_projection(x1, y1, x2, y2, x, y):
_sqlen = pow((x2 - x1), 2) + pow((y2 - y1), 2)
_rn = ((x - x1) * (x2 - x1)) + ((y - y1) * (y2 - y1))
_r = _rn/_sqlen
_px = x1 + _r * (x2 - x1)
_py = y1 + _r * (y2 - y1)
return _px, _py
#
# find the projection point of point (x, y) on a line
# defined by an angle and y intercept
#
def _get_angled_projection(angle, yint, x, y):
_x1 = 0.0
_y1 = yint
_x2 = _x1 + math.cos(angle)
_y2 = _y1 + math.sin(angle)
return _get_two_point_projection(_x1, _y1, _x2, _y2, x, y)
def _two_line_tangent(x1, y1, x2, y2, x3, y3, x4, y4, x, y):
#
# this function calculates the apprpriate tangent circle
# for two lines (x1, y1)->(x2, y2) and (x3, y3)->(x4, y4)
# using a point (x, y) to determine which tangent circle
# should be defined
#
# test if lines are parallel
#
_cx = _cy = _radius = None
_denom = ((x2 - x1) * (y4 - y3)) - ((y2 - y1) * (x4 - x3))
# print "denom: %g" % _denom
if abs(_denom) < 1e-10:
# print "parallel ..."
if abs(x2 - x1) < 1e-10: # both vertical
if x < min(x1, x3) or x > max(x1, x3):
return None
_cx = (x3 + x1)/2.0
_cy = y
_radius = abs(x3 - x1)/2.0
elif abs(y2 - y1) < 1e-10: # both horizontal
if y < min(y1, y3) or y > max(y1, y3):
return None
_cx = x
_cy = (y3 + y1)/2.0
_radius = abs(y3 - y1)/2.0
else: # both at equal angles
_ax1, _ay1 = _get_two_point_projection(x1, y1, x2, y2, x, y)
# print "ax1: %g; ay1: %g" % (_ax1, _ay1)
_ax2, _ay2 = _get_two_point_projection(x3, y3, x4, y4, x, y)
# print "ax2: %g; ay2: %g" % (_ax2, _ay2)
if (x < min(_ax1, _ax2) or
x > max(_ax1, _ax2) or
y < min(_ay1, _ay2) or
y > max(_ay1, _ay2)):
return None
_cx = (_ax1 + _ax2)/2.0
_cy = (_ay1 + _ay2)/2.0
_radius = math.hypot((_ax1 - _cx), (_ay1 - _cy))
return _cx, _cy, _radius
#
# the lines are not parallel, so we have to test for the
# different combinations of horizontal/vertical/sloped lines ...
#
if abs(y2 - y1) < 1e-10: # horizontal line 1
# print "horizontal line 1 ..."
if abs(y4 - y3) < 1e-10: # this should be handled above ...
# print "horizontal line 2 ..."
if y < min(y1, y3) or y > max(y1, y3):
return None
_cx = x
_cy = (y1 + y3)/2.0
_radius = abs(_cy - y1)
elif abs(x4 - x3) < 1e-10: # vertical line 2
# print "vertical line 2 ..."
_a1 = math.pi/4.0
_a2 = -_a1
else:
_angle = math.atan2((y4 - y3), (x4 - x3))
_a1 = _angle/2.0
if _a1 > 0.0:
_a2 = _a1 - _piover2
else:
_a2 = _a1 + _piover2
elif abs(x2 - x1) < 1e-10: # vertical line 1
# print "vertical line 1 ..."
if abs(y4 - y3) < 1e-10: # horizontal line2
# print "horizontal line 2 ..."
_a1 = math.pi/4.0
_a2 = -_a1
elif abs(x4 - x3) < 1e-10: # this should be handled above ...
if x < min(x1, x3) or x > max(x1, x3):
return None
_cx = (x1 + x3)/2.0
_cy = y
_radius = abs(_cx - x1)
else:
_angle = math.atan2((y4 - y3), (x4 - x3))
if _angle > 0.0:
_a1 = (_angle + _piover2)/2.0
_a2 = _a1 - _piover2
else:
_a1 = (_angle - _piover2)/2.0
_a2 = _a1 + _piover2
else:
_angle1 = math.atan2((y2 - y1), (x2 - x1))
if abs(y4 - y3) < 1e-10: # horizontal line2
_a1 = _angle1/2.0
if _a1 > 0.0:
_a2 = _a1 - _piover2
else:
_a2 = _a1 + _piover2
elif abs(x4 - x3) < 1e-10: # vertical line2
if _angle1 > 0.0:
_a1 = (_angle1 + _piover2)/2.0
_a2 = _a1 - _piover2
else:
_a1 = (_angle1 - _piover2)/2.0
_a2 = _a1 + _piover2
else:
_angle2 = math.atan2((y4 - y3), (x4 - x3))
_a1 = (_angle1 + _angle2)/2.0
if _a1 > 0.0:
_a2 = _a1 - _piover2
else:
_a2 = _a1 + _piover2
if _cx is not None and _cy is not None and _radius is not None:
return _cx, _cy, _radius
#
# handle the general case of two lines at arbitrary angles
#
# print "arbitrary angles ..."
# print "a1: %g" % (_a1/_dtr)
# print "a2: %g" % (_a2/_dtr)
_rn = ((y1 - y3) * (x4 - x3)) - ((x1 - x3) * (y4 - y3))
# print "rn: %g" % _rn
_r = _rn/_denom
# print "r: %g" % _r
_ix = x1 + _r * (x2 - x1)
_iy = y1 + _r * (y2 - y1)
# print "ix: %g; iy: %g" % (_ix, _iy)
_m1 = math.tan(_a1)
_b1 = _iy - (_m1 * _ix)
# print "line1: m: %g; b: %g" % (_m1, _b1)
_m2 = math.tan(_a2)
_b2 = _iy - (_m2 * _ix)
# print "line2: m: %g; b: %g" % (_m2, _b2)
_px1, _py1 = _get_angled_projection(_a1, _b1, x, y)
# print "px1: %g; py1: %g" % (_px1, _py1)
_sep1 = math.hypot((_px1 - x), (_py1 - y))
_px2, _py2 = _get_angled_projection(_a2, _b2, x, y)
# print "px2: %g; py2: %g" % (_px2, _py2)
_sep2 = math.hypot((_px2 - x), (_py2 - y))
if _sep1 < _sep2:
_cx = _px1
_cy = _py1
else:
_cx = _px2
_cy = _py2
_px, _py = _get_two_point_projection(x1, y1, x2, y2, _cx, _cy)
_radius = math.hypot((_px - _cx), (_py - _cy))
return _cx, _cy, _radius
#
# horizontal construction line tangents
#
def _hcl_hcl_tangent(hcla, hclb, x, y):
_hx1, _hy1 = hcla.getLocation().getCoords()
_hx2, _hy2 = hclb.getLocation().getCoords()
if y < min(_hy1, _hy2) or y > max(_hy1, _hy2):
return None
_cx = x
_cy = (_hy1 + _hy2)/2.0
_radius = abs(_cy - _hy1)
return _cx, _cy, _radius
def _hcl_vcl_tangent(hcl, vcl, x, y):
_hx, _hy = hcl.getLocation().getCoords()
_hx2 = _hx + 1.0
_vx, _vy = vcl.getLocation().getCoords()
_vy2 = _vy + 1.0
return _two_line_tangent(_hx, _hy, _hx2, _hy, _vx, _vy, _vx, _vy2, x, y)
def _hcl_acl_tangent(hcl, acl, x, y):
_hx, _hy = hcl.getLocation().getCoords()
_hx2 = _hx + 1.0
_ax, _ay = acl.getLocation().getCoords()
_angle = acl.getAngle() * _dtr
_ax2 = _ax + math.cos(_angle)
_ay2 = _ay + math.sin(_angle)
return _two_line_tangent(_hx, _hy, _hx2, _hy, _ax, _ay, _ax2, _ay2, x, y)
def _hcl_cl_tangent(hcl, cl, x, y):
_hx, _hy = hcl.getLocation().getCoords()
_hx2 = _hx + 1.0
_p1, _p2 = cl.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
return _two_line_tangent(_hx, _hy, _hx2, _hy, _x1, _y1, _x2, _y2, x, y)
#
# the HCLine-CCircle tangent circle problem has been generalized
# to solve the {VCLine/ACLine/CLine}-CCircle tangent calculation
#
def _gen_cline_ccircle_tangent(radius, hy, x):
#
# center of ccircle : (0,0)
# radius of ccircle : r
# distance between ccircle and hcl: hy
# x-coordinate of mouse: x
#
# center of tangent circle : (px, py)
#
# projection point on hcl: (px, hy)
#
# Projection point outside the radius of the circle gives:
#
# math.hypot((px - cx), (py - cy)) == math.hypot((px - px), (py - hy)) + r
#
# Projection point inside the radius of the circle gives:
#
# math.hypot((px - cx), (py - cy)) + rt = r
#
# rt == radius of tangent circle
#
# Distance from projection point to tangent circle center
#
# math.hypot((px - px), (py - hy)) = rt
#
# lots of algebra reduces to the following two cases
#
_cx = x
if hy > 0.0:
_num = pow(x, 2) - pow(hy, 2) - (2.0 * hy * radius) - pow(radius, 2)
_den = (-2.0 * hy) - (2.0 * radius)
else:
_num = pow(x, 2) - pow(hy, 2) + (2.0 * hy * radius) - pow(radius, 2)
_den = (2.0 * radius) - (2.0 * hy)
# print "num: %g" % _num
# print "den: %g" % _den
_cy = _num/_den
_radius = abs(_cy - hy)
return _cx, _cy, _radius
def _hcl_cc_tangent(hcl, cc, x, y):
_hx, _hy = hcl.getLocation().getCoords()
# print "hy: %g" % _hy
_ccx, _ccy = cc.getCenter().getCoords()
_rad = cc.getRadius()
#
# transform the coords into system where circle center is (0,0)
#
_sep = _hy - _ccy
_xproj = x - _ccx
_tcx, _tcy, _tcrad = _gen_cline_ccircle_tangent(_rad, _sep, _xproj)
#
# transform result back into real coordinates
#
_cx = _tcx + _ccx
_cy = _tcy + _ccy
return _cx, _cy, _tcrad
#
# vertical construction line
#
def _vcl_vcl_tangent(vcl1, vcl2, x, y):
_vx1, _vy1 = vcl1.getLocation().getCoords()
_vx2, _vy2 = vcl2.getLocation().getCoords()
if x < min(_vx1, _vx2) or x > max(_vx1, _vx2):
return None
_cx = (_vx1 + _vx2)/2.0
_cy = y
_radius = abs(_cx - _vx1)
return _cx, _cy, _radius
def _vcl_acl_tangent(vcl, acl, x, y):
_vx, _vy = vcl.getLocation().getCoords()
_vy2 = _vy + 1.0
_ax, _ay = acl.getLocation().getCoords()
_angle = acl.getAngle() * _dtr
_ax2 = _ax + math.cos(_angle)
_ay2 = _ay + math.sin(_angle)
return _two_line_tangent(_vx, _vy, _vx, _vy2, _ax, _ay, _ax2, _ay2, x, y)
def _vcl_cl_tangent(hcl, cl, x, y):
_vx, _vy = hcl.getLocation().getCoords()
_vy2 = _vy + 1.0
_p1, _p2 = cl.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
return _two_line_tangent(_vx, _vy, _vx, _vy2, _x1, _y1, _x2, _y2, x, y)
def _vcl_cc_tangent(vcl, cc, x, y):
_vx, _vy = vcl.getLocation().getCoords()
# print "vx: %g" % _vx
_ccx, _ccy = cc.getCenter().getCoords()
_rad = cc.getRadius()
#
# transform the coords into system where circle center is (0,0) and
# rotate 90 degrees
#
_sep = _vx - _ccx
_xproj = y - _ccy
_tcx, _tcy, _tcrad = _gen_cline_ccircle_tangent(_rad, _sep, _xproj)
#
# transform result back into real coordinates
#
_cx = _tcy + _ccx
_cy = _tcx + _ccy
return _cx, _cy, _tcrad
#
# angular construction line
#
def _acl_acl_tangent(acl1, acl2, x, y):
_ax1, _ay1 = acl1.getLocation().getCoords()
_angle1 = acl1.getAngle() * _dtr
_ax2 = _ax1 + math.cos(_angle1)
_ay2 = _ay1 + math.sin(_angle1)
_ax3, _ay3 = acl2.getLocation().getCoords()
_angle2 = acl2.getAngle() * _dtr
_ax4 = _ax3 + math.cos(_angle2)
_ay4 = _ay3 + math.sin(_angle2)
return _two_line_tangent(_ax1, _ay1, _ax2, _ay2, _ax3, _ay3, _ax4, _ay4,
x, y)
def _acl_cl_tangent(acl, cl, x, y):
_ax1, _ay1 = acl.getLocation().getCoords()
_angle = acl.getAngle() * _dtr
_ax2 = _ax1 + math.cos(_angle)
_ay2 = _ay1 + math.sin(_angle)
_p1, _p2 = cl.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
return _two_line_tangent(_ax1, _ay1, _ax2, _ay2, _x1, _y1, _x2, _y2, x, y)
def _acl_cc_tangent(acl, cc, x, y):
_ax, _ay = acl.getLocation().getCoords()
# print "ax: %g; ay: %g" % (_ax, _ay)
_angle = acl.getAngle()
_ccx, _ccy = cc.getCenter().getCoords()
_rad = cc.getRadius()
#
# transform the coords into the system where the circle center is (0,0)
# and rotate so the ACLine is horizontal
#
_apx, _apy = acl.getProjection(_ccx, _ccy)
_sep = math.hypot((_apx - _ccx), (_apy - _ccy))
if abs(_angle) < 1e-10: # horizontal
_sine = 0.0
if _apy > _ccy: # system rotated 0.0
_cosine = 1.0
else: # system rotated 180.0
_cosine = -1.0
elif abs(abs(_angle) - 90.0) < 1e-10: # vertical
_cosine = 0.0
if _apx > _ccx: # system rotated 90.0
_sine = 1.0
else: # system rotated -90.0
_sine = -1.0
else:
_angle = _piover2 - math.atan2((_apy - _ccy), (_apx - _ccx))
_sine = math.sin(_angle)
_cosine = math.cos(_angle)
#
# transform (x, y)
#
_tx1 = x - _ccx
_ty1 = y - _ccy
#
# transform by rotating through _negative_ angle to
# map to horizontal line
#
_tx = (_tx1 * _cosine) - (_ty1 * _sine)
_ty = (_tx1 * _sine) + (_ty1 * _cosine)
_tcx, _tcy, _tcrad = _gen_cline_ccircle_tangent(_rad, _sep, _tx)
#
# transform result back into real coordinates
#
_cx = ((_tcx * _cosine) + (_tcy * _sine)) + _ccx
_cy = (-(_tcx * _sine) + (_tcy * _cosine)) + _ccy
return _cx, _cy, _tcrad
#
# two-point construction line
#
def _cl_cl_tangent(cl1, cl2, x, y):
_p1, _p2 = cl1.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
_p3, _p4 = cl2.getKeypoints()
_x3, _y3 = _p3.getCoords()
_x4, _y4 = _p4.getCoords()
return _two_line_tangent(_x1, _y1, _x2, _y2, _x3, _y3, _x4, _y4, x, y)
def _cl_cc_tangent(cl, cc, x, y):
_p1, _p2 = cl.getKeypoints()
_x1, _y1 = _p1.getCoords()
# print "x1: %g; y1: %g" % (_x1, _y1)
_x2, _y2 = _p2.getCoords()
# print "x2: %g; y2: %g" % (_x2, _y2)
_ccx, _ccy = cc.getCenter().getCoords()
# print "ccx: %g; ccy: %g" % (_ccx, _ccy)
_rad = cc.getRadius()
#
# transform the coords into the system where the circle center is (0,0)
# and rotate so the CLine is horizontal
#
_apx, _apy = cl.getProjection(_ccx, _ccy)
# print "apx: %g; apy: %g" % (_apx, _apy)
_sep = math.hypot((_apx - _ccx), (_apy - _ccy))
# print "sep: %g" % _sep
#
# use the line (ccx, ccy) to (apx, apy) to determine the
# angular rotation
#
if abs(_apx - _ccx) < 1e-10: # cline is horizontal
_sine = 0.0
if _apy > _ccy: # system rotated 0.0
_cosine = 1.0
else: # system rotated 180.0
_cosine = -1.0
elif abs(_apy - _ccy) < 1e-10: # cline is vertical; system rotated -90.0
_cosine = 0.0
if _apx > _ccx: # system rotated 90.0
_sine = 1.0
else: # system rotated -90.0
_sine = -1.0
else:
_angle = _piover2 - math.atan2((_apy - _ccy), (_apx - _ccx))
# print "angle: %g" % _angle
_sine = math.sin(_angle)
_cosine = math.cos(_angle)
# print "sin(angle): %g" % _sine
# print "cos(angle): %g" % _cosine
#
# transform (x, y) into
_tx1 = x - _ccx
_ty1 = y - _ccy
# print "tx1: %g; ty1: %g" % (_tx1, _ty1)
#
# transform by rotating through angle to
# map to horizontal line
#
_tx = (_tx1 * _cosine) - (_ty1 * _sine)
_ty = (_tx1 * _sine) + (_ty1 * _cosine)
# print "tx: %g; ty: %g" % (_tx, _ty)
_tcx, _tcy, _tcrad = _gen_cline_ccircle_tangent(_rad, _sep, _tx)
#
# transform result back into real coordinates
#
# print "tcx: %g: tcy: %g" % (_tcx, _tcy)
_cx = ((_tcx * _cosine) + (_tcy * _sine)) + _ccx
_cy = (-(_tcx * _sine) + (_tcy * _cosine)) + _ccy
# print "cx: %g; cy %g" % (_cx, _cy)
return _cx, _cy, _tcrad
def calc_tangent_circle(obja, objb, x, y):
_x = x
if not isinstance(_x, float):
_x = float(x)
_y = y
if not isinstance(_y, float):
_y = float(y)
_tandata = None
if isinstance(obja, hcline.HCLine):
if isinstance(objb, hcline.HCLine):
_tandata = _hcl_hcl_tangent(obja, objb, _x, _y)
elif isinstance(objb, vcline.VCLine):
_tandata = _hcl_vcl_tangent(obja, objb, _x, _y)
elif isinstance(objb, acline.ACLine):
_tandata = _hcl_acl_tangent(obja, objb, _x, _y)
elif isinstance(objb, cline.CLine):
_tandata = _hcl_cl_tangent(obja, objb, _x, _y)
elif isinstance(objb, ccircle.CCircle):
_tandata = _hcl_cc_tangent(obja, objb, _x, _y)
elif isinstance(obja, vcline.VCLine):
if isinstance(objb, hcline.HCLine):
_tandata = _hcl_vcl_tangent(objb, obja, _x, _y)
elif isinstance(objb, vcline.VCLine):
_tandata = _vcl_vcl_tangent(obja, objb, _x, _y)
elif isinstance(objb, acline.ACLine):
_tandata = _vcl_acl_tangent(obja, objb, _x, _y)
elif isinstance(objb, cline.CLine):
_tandata = _vcl_cl_tangent(obja, objb, _x, _y)
elif isinstance(objb, ccircle.CCircle):
_tandata = _vcl_cc_tangent(obja, objb, _x, _y)
elif isinstance(obja, acline.ACLine):
if isinstance(objb, hcline.HCLine):
_tandata = _hcl_acl_tangent(objb, obja, _x, _y)
elif isinstance(objb, vcline.VCLine):
_tandata = _vcl_acl_tangent(objb, obja, _x, _y)
elif isinstance(objb, acline.ACLine):
_tandata = _acl_acl_tangent(obja, objb, _x, _y)
elif isinstance(objb, cline.CLine):
_tandata = _acl_cl_tangent(obja, objb, _x, _y)
elif isinstance(objb, ccircle.CCircle):
_tandata = _acl_cc_tangent(obja, objb, _x, _y)
elif isinstance(obja, cline.CLine):
if isinstance(objb, hcline.HCLine):
_tandata = _hcl_cl_tangent(objb, obja, _x, _y)
elif isinstance(objb, vcline.VCLine):
_tandata = _vcl_cl_tangent(objb, obja, _x, _y)
elif isinstance(objb, acline.ACLine):
_tandata = _acl_cl_tangent(objb, obja, _x, _y)
elif isinstance(objb, cline.CLine):
_tandata = _cl_cl_tangent(obja, objb, _x, _y)
elif isinstance(objb, ccircle.CCircle):
_cl_cc_tangent(obja, objb, _x, _y)
elif isinstance(obja, ccircle.CCircle):
if isinstance(objb, hcline.HCLine):
_tandata = _hcl_cc_tangent(objb, obja, _x, _y)
elif isinstance(objb, vcline.VCLine):
_tandata = _vcl_cc_tangent(objb, obja, _x, _y)
elif isinstance(objb, acline.ACLine):
_tandata = _acl_cc_tangent(objb, obja, _x, _y)
elif isinstance(objb, cline.CLine):
_tandata = _cl_cc_tangent(objb, obja, _x, _y)
else:
pass # CCircle/CCircle tangent circles to do later ...
return _tandata
#
# calculate the possible tangent lines between two circles
#
def _calc_values(ax, ay, bx, by, cx, cy):
"""This function was used for debugging"""
_den = pow((bx - ax), 2) + pow((by - ay), 2)
_num = ((cx - ax) * (bx - ax)) + ((cy - ay) * (by - ay))
_r = _num/_den
# print "r: %g" % _r
_num = ((ay - cy) * (bx - ax)) - ((ax - cx) * (by - ay))
_s = _num/_den
# print "s: %g" % _s
_sep = abs(_s) * math.sqrt(_den)
# print "sep: %g" % _sep
# return _r, _s, _sep
def _calc_tangent_triangle(r1, r2, sep, ip):
_sine = r1/abs(ip)
# print "sin: %g" % _sine
_angle = math.asin(_sine)
# print "angle: %g" % (_angle * (180.0/math.pi))
_tan = math.tan(_angle)
# print "tan(angle): %g" % _tan
_cosine = math.cos(_angle)
# print "cos(angle): %g" % _cosine
_tanlen = r1/_tan
# print "tanlen: %g" % _tanlen
if ip < 0.0: # r1 < r2 and intersection point left of r1
assert abs(ip) > r1, "Expected ip beyond radius: %g < %g" % (ip, r1)
_tx1 = ip + (_tanlen * _cosine)
else:
_tx1 = ip - (_tanlen * _cosine)
# print "tx1: %g" % _tx1
_ty1 = _tanlen * _sine
# print "ty1: %g" % _ty1
_dist = math.hypot(_tx1, _ty1)
# print "dist: %g" % _dist
assert abs(_dist - r1) < 1e-10, "Invalid tangent point for circle 1"
_tanlen = r2/_tan
# print "tanlen: %g" % _tanlen
if ip < 0.0: # see above
_tx2 = ip + (_tanlen * _cosine)
_ty2 = _tanlen * _sine
elif ip > (sep + r2): # only possible if r1 > r2
_tx2 = ip - (_tanlen * _cosine)
_ty2 = _tanlen * _sine
else:
_tx2 = ip + (_tanlen * _cosine)
_ty2 = -1.0 * _tanlen * _sine
# print "tx2: %g" % _tx2
# print "ty2: %g" % _ty2
_dist = math.hypot((_tx2 - sep), _ty2)
# print "dist: %g" % _dist
assert abs(_dist - r2) < 1e-10, "Invalid tangent point for circle 2"
return _tx1, _ty1, _tx2, _ty2
def calc_two_circle_tangents(r1, r2, sep):
# print "in calc_two_circle_tangents() ..."
_r1 = r1
if not isinstance(_r1, float):
_r1 = float(r1)
if not _r1 > 0.0:
raise ValueError, "Invalid radius: %g" % _r1
_r2 = r2
if not isinstance(_r2, float):
_r2 = float(r2)
if not _r2 > 0.0:
raise ValueError, "Invalid radius: %g" % _r2
_sep = sep
if not isinstance(_sep, float):
_sep = float(sep)
_tangents = []
if (abs(_sep) + min(_r1, _r2)) > max(_r1, _r2): # small circle not within larger
if abs(_r1 - _r2) < 1e-10:
# print "same radii ..."
_tangents.append((0.0, _r1, _sep, _r2))
_tangents.append((0.0, -_r1, _sep, -_r2))
if abs(_sep) > _r1 + _r2:
_mid = _sep/2.0
_angle = math.asin(_r1/_mid)
_tanlen = _r1/math.tan(_angle)
_xt = _tanlen * math.cos(_angle)
_yt = _tanlen * math.sin(_angle)
_tx1 = _mid - _xt
_ty1 = _yt
_tx2 = _mid + _xt
_ty2 = -_yt
_tangents.append((_tx1, _ty1, _tx2, _ty2))
# _calc_values(_tx1, _ty1, _tx2, _ty2, 0.0, 0.0)
# _calc_values(_tx1, _ty1, _tx2, _ty2, _sep, 0.0)
_tangents.append((_tx1, -_ty1, _tx2, -_ty2))
# _calc_values(_tx1, -_ty1, _tx2, -_ty2, 0.0, 0.0)
# _calc_values(_tx1, -_ty1, _tx2, -_ty2, _sep, 0.0)
else:
_alpha = pow((_r1/_r2), 2)
# print "alpha: %g" % _alpha
_a = (1.0 - _alpha)
# print "a: %g" % _a
_b = (2.0 * _alpha * _sep)
# print "b: %g" % _b
_c = (-1.0 * _alpha * pow(_sep, 2))
# print "c: %g" % _c
_det = pow(_b, 2) - (4.0 * _a * _c)
# print "det: %g" % _det
if _det > 0.0: # can this ever be negative?
# print "r1: %g" % _r1
# print "r2: %g" % _r2
# print "sep: %g" % _sep
_denom = 2.0 * _a
_det_sqrt = math.sqrt(_det)
_num = (-1.0 * _b) + _det_sqrt
_offset = _num/_denom
# print "offset: %g" % _offset
if (_r1 > _r2):
# print "r1 > r2"
if ((_offset > (_sep + _r2)) or
((_offset > _r1) and (_offset < (_sep - _r2)))):
_tpts = _calc_tangent_triangle(_r1, _r2, _sep, _offset)
_tangents.append(_tpts)
_tx1, _ty1, _tx2, _ty2 = _tpts
# _calc_values(_tx1, _ty1, _tx2, _ty2, 0.0, 0.0)
# _calc_values(_tx1, _ty1, _tx2, _ty2, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, 0.0, 0.0)
_tpts = (_tx1, - _ty1, _tx2, -_ty2)
_tangents.append(_tpts)
# _calc_values(_tx1, -_ty1, _tx2,-_ty2, 0.0, 0.0)
# _calc_values(_tx1, -_ty1, _tx2, -_ty2, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, 0.0, 0.0)
else: # _r1 < _r2
# print "r1 < r2"
if ((_offset < -_r1) or
((_offset > _r1) and (_offset < (_sep - _r2)))):
_tpts = _calc_tangent_triangle(_r1, _r2, _sep, _offset)
_tangents.append(_tpts)
_tx1, _ty1, _tx2, _ty2 = _tpts
# _calc_values(_tx1, _ty1, _tx2, _ty2, 0.0, 0.0)
# _calc_values(_tx1, _ty1, _tx2, _ty2, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, 0.0, 0.0)
_tpts = (_tx1, - _ty1, _tx2, -_ty2)
_tangents.append(_tpts)
# _calc_values(_tx1, -_ty1, _tx2,-_ty2, 0.0, 0.0)
# _calc_values(_tx1, -_ty1, _tx2, -_ty2, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, 0.0, 0.0)
_num = (-1.0 * _b) - _det_sqrt
_offset = _num/_denom
# print "offset: %g" % _offset
if (_r1 > _r2):
# print "r1 > r2"
if ((_offset > (_sep + _r2)) or
((_offset > _r1) and (_offset < (_sep - _r2)))):
_tpts = _calc_tangent_triangle(_r1, _r2, _sep, _offset)
_tangents.append(_tpts)
_tx1, _ty1, _tx2, _ty2 = _tpts
_tpts = (_tx1, - _ty1, _tx2, -_ty2)
_tangents.append(_tpts)
else: # _r1 < _r2
# print "r1 < r2"
if ((_offset < -_r1) or
((_offset > _r1) and (_offset < (_sep - _r2)))):
_tpts = _calc_tangent_triangle(_r1, _r2, _sep, _offset)
_tangents.append(_tpts)
_tx1, _ty1, _tx2, _ty2 = _tpts
# _calc_values(_tx1, _ty1, _tx2, _ty2, 0.0, 0.0)
# _calc_values(_tx1, _ty1, _tx2, _ty2, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, _sep, 0.0)
# _calc_values(_tx2, _ty2, _tx1, _ty1, 0.0, 0.0)
_tpts = (_tx1, - _ty1, _tx2, -_ty2)
_tangents.append(_tpts)
# _calc_values(_tx1, -_ty1, _tx2,-_ty2, 0.0, 0.0)
# _calc_values(_tx1, -_ty1, _tx2, -_ty2, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, _sep, 0.0)
# _calc_values(_tx2, -_ty2, _tx1, -_ty1, 0.0, 0.0)
return _tangents
|