1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
#
# Copyright (c) 2003, 2004, 2005, 2006 Art Haas
#
# This file is part of PythonCAD.
#
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# mirror operations
#
import math
from PythonCAD.Generic.point import Point
from PythonCAD.Generic.segment import Segment
from PythonCAD.Generic.circle import Circle
from PythonCAD.Generic.arc import Arc
from PythonCAD.Generic.leader import Leader
from PythonCAD.Generic.polyline import Polyline
from PythonCAD.Generic.hcline import HCLine
from PythonCAD.Generic.vcline import VCLine
from PythonCAD.Generic.acline import ACLine
from PythonCAD.Generic.cline import CLine
from PythonCAD.Generic.ccircle import CCircle
def _test_point(layer, x, y):
_pts = layer.find('point', x, y)
if len(_pts) == 0:
_p = Point(x, y)
layer.addObject(_p)
else:
_p = _pts.pop()
_max = _p.countUsers()
for _pt in _pts:
_count = _pt.countUsers()
if _count > _max:
_max = _count
_p = _pt
return _p
def _horizontal_mirror(hy, objlist):
for _obj in objlist:
_layer = _obj.getParent()
if _layer is None:
continue
_mobj = None
if isinstance(_obj, Point):
_x, _y = _obj.getCoords()
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
elif isinstance(_obj, Segment):
_p1, _p2 = _obj.getEndpoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
if ((abs(hy - _p1y) > 1e-10) or
(abs(hy - _p2y) > 1e-10)):
_y1m = _p1y + (2.0 * (hy - _p1y))
_mp1 = _test_point(_layer, _p1x, _y1m)
_y2m = _p2y + (2.0 * (hy - _p2y))
_mp2 = _test_point(_layer, _p2x, _y2m)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
elif isinstance(_obj, Arc):
_x, _y = _obj.getCenter().getCoords()
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
_mobj = _obj.clone()
_mobj.setCenter(_mp)
_mobj.setStartAngle(360.0 - _obj.getEndAngle())
_mobj.setEndAngle(360.0 - _obj.getStartAngle())
elif isinstance(_obj, (Circle, CCircle)):
_x, _y = _obj.getCenter().getCoords()
if abs(hy - _y) > 1e-10:
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
_mobj = _obj.clone()
_mobj.setCenter(_mp)
elif isinstance(_obj, HCLine):
_x, _y = _obj.getLocation().getCoords()
if abs(hy - _y) > 1e-10:
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
_mobj = _obj.clone()
_mobj.setLocation(_mp)
elif isinstance(_obj, VCLine):
pass
elif isinstance(_obj, ACLine):
_angle = _obj.getAngle()
if abs(abs(_angle) - 90.0) > 1e-10: # not vertical
_x, _y = _obj.getLocation().getCoords()
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
_mobj = _obj.clone()
if abs(_angle) > 1e-10: # not horizontal
_mobj.setAngle(-1.0 * _angle)
_mobj.setLocation(_mp)
elif isinstance(_obj, CLine):
_p1, _p2 = _obj.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
if abs(_x2 - _x1) > 1e-10: # not vertical
_ym = _y1 + (2.0 * (hy - _y1))
_mp1 = _test_point(_layer, _x1, _ym)
_ym = _y2 + (2.0 * (hy - _y2))
_mp2 = _test_point(_layer, _x2, _ym)
_mobj = CLine(_mp1, _mp2)
elif isinstance(_obj, Leader):
_p1, _p2, _p3 = _obj.getPoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
_p3x, _p3y = _p3.getCoords()
if (abs(_p1y - hy) > 1e-10 or
abs(_p2y - hy) > 1e-10 or
abs(_p3y - hy) > 1e-10):
_ym = _p1y + (2.0 * (hy - _p1y))
_mp1 = _test_point(_layer, _p1x, _ym)
_ym = _p2y + (2.0 * (hy - _p2y))
_mp2 = _test_point(_layer, _p2x, _ym)
_ym = _p3y + (2.0 * (hy - _p3y))
_mp3 = _test_point(_layer, _p3x, _ym)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
_mobj.setP3(_mp3)
elif isinstance(_obj, Polyline):
_mobj = _obj.clone()
for _i in range(len(_mobj)):
_pt = _mobj.getPoint(_i)
_x, _y = _pt.getCoords()
_ym = _y + (2.0 * (hy - _y))
_mp = _test_point(_layer, _x, _ym)
_mobj.setPoint(_i, _mp)
else:
print "skipping obj: " + `_obj`
if _mobj is not None:
_layer.addObject(_mobj)
def _vertical_mirror(vx, objlist):
for _obj in objlist:
_layer = _obj.getParent()
if _layer is None:
continue
_mobj = None
if isinstance(_obj, Point):
_x, _y = _obj.getCoords()
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
elif isinstance(_obj, Segment):
_p1, _p2 = _obj.getEndpoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
if ((abs(vx - _p1x) > 1e-10) or
(abs(vx - _p2x) > 1e-10)):
_x1m = _p1x + (2.0 * (vx - _p1x))
_mp1 = _test_point(_layer, _x1m, _p1y)
_x2m = _p2x + (2.0 * (vx - _p2x))
_mp2 = _test_point(_layer, _x2m, _p2y)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
elif isinstance(_obj, Arc):
_x, _y = _obj.getCenter().getCoords()
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
_mobj = _obj.clone()
_mobj.setCenter(_mp)
_mobj.setStartAngle(180.0 - _obj.getEndAngle())
_mobj.setEndAngle(180.0 - _obj.getStartAngle())
elif isinstance(_obj, (Circle, CCircle)):
_x, _y = _obj.getCenter().getCoords()
if abs(vx - _x) > 1e-10:
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
_mobj = _obj.clone()
_mobj.setCenter(_mp)
elif isinstance(_obj, HCLine):
pass
elif isinstance(_obj, VCLine):
_x, _y = _obj.getLocation().getCoords()
if abs(vx - _x) > 1e-10:
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
_mobj = _obj.clone()
_mobj.setLocation(_mp)
elif isinstance(_obj, ACLine):
_angle = _obj.getAngle()
if abs(_angle) > 1e-10: # not horizontal
_x, _y = _obj.getLocation().getCoords()
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
_mobj = _obj.clone()
if abs(abs(_angle) - 90.0) > 1e-10: # not vertical
_mobj.setAngle(-1.0 * _angle)
_mobj.setLocation(_mp)
elif isinstance(_obj, CLine):
_p1, _p2 = _obj.getKeypoints()
_x1, _y1 = _p1.getCoords()
_x2, _y2 = _p2.getCoords()
if abs(_y2 - _y1) > 1e-10: # not horizontal
_xm = _x1 + (2.0 * (vx - _x1))
_mp1 = _test_point(_layer, _xm, _y1)
_xm = _x2 + (2.0 * (vx - _x2))
_mp2 = _test_point(_layer, _xm, _y2)
_mobj = CLine(_mp1, _mp2)
elif isinstance(_obj, Leader):
_p1, _p2, _p3 = _obj.getPoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
_p3x, _p3y = _p3.getCoords()
if (abs(_p1x - vx) > 1e-10 or
abs(_p2x - vx) > 1e-10 or
abs(_p3x - vx) > 1e-10):
_xm = _p1x + (2.0 * (vx - _p1x))
_mp1 = _test_point(_layer, _xm, _p1y)
_xm = _p2x + (2.0 * (vx - _p2x))
_mp2 = _test_point(_layer, _xm, _p2y)
_xm = _p3x + (2.0 * (vx - _p3x))
_mp3 = _test_point(_layer, _xm, _p3y)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
_mobj.setP3(_mp3)
elif isinstance(_obj, Polyline):
_mobj = _obj.clone()
for _i in range(len(_mobj)):
_pt = _mobj.getPoint(_i)
_x, _y = _pt.getCoords()
_xm = _x + (2.0 * (vx - _x))
_mp = _test_point(_layer, _xm, _y)
_mobj.setPoint(_i, _mp)
else:
print "skipping obj: " + `_obj`
if _mobj is not None:
_layer.addObject(_mobj)
def _reflect_point(t1, t2, t3, yint, x, y):
#
# reflect point in coordinate frame with
# origin at mirror line y-intersection, then
# convert reflected point back to global
# coordinates
#
_nx = (t1 * x) + (t3 * (y - yint))
_ny = (t3 * x) + (t2 * (y - yint)) + yint
return _nx, _ny
def _angled_mirror(slope, yint, objlist):
_angle = math.atan(slope)
#
# linear algebra reflection matrix coefficients
#
if abs(abs(_angle) - 45.0) < 1e-10:
_t1 = 0.0
_t2 = 0.0
_t3 = 1.0
else:
_cosine = math.cos(_angle)
_sine = math.sin(_angle)
_t1 = (2.0 * _cosine * _cosine) - 1.0
_t2 = (2.0 * _sine * _sine) - 1.0
_t3 = 2.0 * _cosine * _sine
for _obj in objlist:
_layer = _obj.getParent()
if _layer is None:
continue
_mobj = None
if isinstance(_obj, Point):
_x, _y = _obj.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_np = _test_point(_layer, _rx, _ry)
elif isinstance(_obj, Segment):
_p1, _p2 = _obj.getEndpoints()
_x, _y = _p1.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp1 = _test_point(_layer, _rx, _ry)
_x, _y = _p2.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp2 = _test_point(_layer, _rx, _ry)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
elif isinstance(_obj, Arc):
_x, _y = _obj.getCenter().getCoords()
_rcx, _rcy = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rcx, _rcy)
_ep1, _ep2 = _obj.getEndpoints()
_x, _y = _ep1
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_rtd = 180.0/math.pi
_ea = _rtd * math.atan2((_ry - _rcy), (_rx - _rcx))
if _ea < 0.0:
_ea = _ea + 360.0
_x, _y = _ep2
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_sa = _rtd * math.atan2((_ry - _rcy), (_rx - _rcx))
if _sa < 0.0:
_sa = _sa + 360.0
_mobj = _obj.clone()
_mobj.setCenter(_mp)
_mobj.setStartAngle(_sa)
_mobj.setEndAngle(_ea)
elif isinstance(_obj, (Circle, CCircle)):
_x, _y = _obj.getCenter().getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rx, _ry)
_mobj = _obj.clone()
_mobj.setCenter(_mp)
elif isinstance(_obj, HCLine):
_x, _y = _obj.getLocation().getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rx, _ry)
if abs(abs(_angle) - 45.0) < 1e-10:
_mobj = VCLine(_mp)
else:
_xi = (_y - yint)/slope
_mang = 180.0/math.pi * math.atan2((_ry - _y), (_rx - _xi))
if _mang < 0.0:
_mang = _mang + 360.0
_mobj = ACLine(_mp, _mang)
elif isinstance(_obj, VCLine):
_x, _y = _obj.getLocation().getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rx, _ry)
if abs(abs(_angle) - 45.0) < 1e-10:
_mobj = HCLine(_mp)
else:
_yi = (slope * _x) + yint
_mang = 180.0/math.pi * math.atan2((_ry - _yi), (_rx - _x))
if _mang < 0.0:
_mang = _mang + 360.0
_mobj = ACLine(_mp, _mang)
elif isinstance(_obj, ACLine):
_at45 = False
if abs(abs(_angle) - 45.0) < 1e-10:
_at45 = True
_x, _y = _obj.getLocation().getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rx, _ry)
_acl_angle = _obj.getAngle()
if _at45 and abs(_acl_angle) < 1e-10:
_mobj = VCLine(_mp)
elif _at45 and abs(abs(_acl_angle) - 90.0) < 1e-10:
_mobj = HCLine(_mp)
else:
if abs(_acl_angle) < 1e-10: # horizontal
_xi = (_y - yint)/slope
_yi = _y
elif abs(abs(_acl_angle) - 90.0) < 1e-10: # vertical
_xi = _x
_yi = (slope * _x) + yint
else:
_asl = math.tan((math.pi/180.0) * _acl_angle)
if abs(_asl - slope) < 1e-10: # parallel
_mang = _acl_angle
else:
_ayi = _y - (_asl * _x)
_xi = (_ayi - yint)/(slope - _asl)
_yi = (slope * _xi) + yint
_mang = 180.0/math.pi * math.atan2((_ry - _yi), (_rx - _xi))
if _mang < 0.0:
_mang = _mang + 360.0
_mobj = ACLine(_mp, _mang)
elif isinstance(_obj, CLine):
_p1, _p2 = _obj.getKeypoints()
_x, _y = _p1.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp1 = _test_point(_layer, _rx, _ry)
_x, _y = _p2.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp2 = _test_point(_layer, _rx, _ry)
_mobj = CLine(_mp1, _mp2)
elif isinstance(_obj, Leader):
_p1, _p2, _p3 = _obj.getPoints()
_x, _y = _p1.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp1 = _test_point(_layer, _rx, _ry)
_x, _y = _p2.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp2 = _test_point(_layer, _rx, _ry)
_x, _y = _p3.getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp3 = _test_point(_layer, _rx, _ry)
_mobj = _obj.clone()
_mobj.setP1(_mp1)
_mobj.setP2(_mp2)
_mobj.setP3(_mp3)
elif isinstance(_obj, Polyline):
_mpts = []
for _i in range(len(_obj)):
_x, _y = _obj.getPoint(_i).getCoords()
_rx, _ry = _reflect_point(_t1, _t2, _t3, yint, _x, _y)
_mp = _test_point(_layer, _rx, _ry)
_mpts.append(_mp)
_s = _obj.getStyle()
_mobj = Polyline(_mpts, _s)
_l = _obj.getLinetype()
if _l != _s.getLinetype():
_mobj.setLinetype(_l)
_c = _obj.getColor()
if _c != _s.getColor():
_mobj.setColor(_c)
_t = _obj.getThickness()
if abs(_t - _s.getThickness()) > 1e-10:
_mobj.setThickness(_t)
else:
print "Skipping object: " + `_obj`
if _mobj is not None:
_layer.addObject(_mobj)
def mirror_objects(mline, objlist):
if not isinstance(mline, (HCLine, VCLine, ACLine, CLine)):
raise TypeError, "Invalid mirror line type: " + `type(mline)`
if not isinstance(objlist, (list, tuple)):
raise TypeError, "Invalid object list: " + `type(objlist)`
if isinstance(mline, HCLine):
_x, _y = mline.getLocation().getCoords()
_horizontal_mirror(_y, objlist)
elif isinstance(mline, VCLine):
_x, _y = mline.getLocation().getCoords()
_vertical_mirror(_x, objlist)
elif isinstance(mline, ACLine):
_x, _y = mline.getLocation().getCoords()
_angle = mline.getAngle()
if abs(_angle) < 1e-10: # horizontal:
_horizontal_mirror(_y, objlist)
elif abs(abs(_angle) - 90.0) < 1e-10: # vertical
_vertical_mirror(_x, objlist)
else:
_slope = math.tan(_angle * (math.pi/180.0))
_yint = _y - (_slope * _x)
_angled_mirror(_slope, _yint, objlist)
elif isinstance(mline, CLine):
_p1, _p2 = mline.getKeypoints()
_p1x, _p1y = _p1.getCoords()
_p2x, _p2y = _p2.getCoords()
if abs(_p2y - _p1y) < 1e-10: # horizontal
_horizontal_mirror(_p1y, objlist)
elif abs(_p2x - _p1x) < 1e-10: # vertical
_vertical_mirror(_p1x, objlist)
else:
_slope = (_p2y - _p1y)/(_p2x - _p1x)
_yint = _p1y - (_slope * _p1x)
_angled_mirror(_slope, _yint, objlist)
else:
raise TypeError, "Unexpected mirror line type: " + `type(mline)`
|