File: util.py

package info (click to toggle)
pythoncad 0.1.35-4
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 3,536 kB
  • ctags: 4,286
  • sloc: python: 62,752; sh: 743; makefile: 39
file content (266 lines) | stat: -rw-r--r-- 7,643 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#
# Copyright (c) 2002, 2003, 2004 Art Haas
#
# This file is part of PythonCAD.
# 
# PythonCAD is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# 
# PythonCAD is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with PythonCAD; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
#
# miscellaneous utility functions
#

from math import fmod, pi
import types

from PythonCAD.Generic import tolerance

def get_float(val):
    _v = val
    if not isinstance(_v, float):
        if not isinstance(_v, (int, long)):
            raise TypeError, "Invalid non-numeric type: " + `type(_v)`
        _v = float(val)
    return _v

def test_boolean(val):
    if hasattr(types, 'BooleanType'):
        if not isinstance(val, types.BooleanType):
            raise TypeError, "Invalid non-boolean type: " + `type(val)`
    else:
        if val is not True and val is not False:
            raise TypeError, "Invalid non-boolean type: " + `type(val)`

def tuple_to_two_floats(t):
    if not isinstance(t, tuple):
        raise TypeError, "Argument must be a tuple: " + `type(t)`
    if len(t) != 2:
        raise ValueError, "Tuple must hold exactly two objects: " + str(t)
    _obj1, _obj2 = t
    _x = get_float(_obj1)
    _y = get_float(_obj2)
    return _x, _y

def tuple_to_three_floats(t):
    if not isinstance(t, tuple):
        raise TypeError, "Argument must be a tuple: " + `type(t)`
    if len(t) != 3:
        raise ValueError, "Tuple must hold exactly three objects: " + str(t)
    _obj1, _obj2, _obj3 = t
    _x = get_float(_obj1)
    _y = get_float(_obj2)
    _z = get_float(_obj3)
    return _x, _y, _z

def make_angle(angle):
    """Return an angle value such that -90 <= angle <= 90.

make_angle(angle)

The argument angle should be a float. Additionally the argument
is expected to be in degrees, not radians.
    """
    _angle = get_float(angle)
    if _angle < -90.0 or _angle > 90.0:
        _fa = fmod(_angle, 360.0)
        if abs(_fa) < 1e-10:
            _angle = 0.0
        elif _fa > 0.0:
            if _fa > 270.0:
                _angle = _fa - 360.0
            elif _fa > 90.0:
                _angle = _fa - 180.0
            else:
                _angle = _fa
        else:
            if _fa < -270.0:
                _angle = _fa + 360.0
            elif _fa < -90.0:
                _angle = _fa + 180.0
            else:
                _angle = _fa
    return _angle

def make_c_angle(angle):
    """Return an angle value such that 0 <= angle <= 360.

make_c_angle(angle)

The argument angle should be a float.
    """
    _a = get_float(angle)
    if _a < 0.0:
        _a = fmod(_a, 360.0) + 360.0
    elif _a > 360.0:
        _a = fmod(_a, 360.0)
    return _a

def make_coords(x, y):
    """Check and convert x/y values to float values.

make_coords(x, y)

This routine is used to ensure the values are float values.
    """
    _x = get_float(x)
    _y = get_float(y)
    return _x, _y

def make_region(xmin, ymin, xmax, ymax):
    """Return a validated region defined by (xmin, ymin) to (xmax, ymax).

make_region(xmin, ymin, xmax, ymax)

This routine is used to ensure the values are floats and
that xmin < xmax and ymin < ymax.
    """
    _xmin = get_float(xmin)
    _ymin = get_float(ymin)
    _xmax = get_float(xmax)
    if _xmax < _xmin:
        raise ValueError, "Invalid values: xmax < xmin"
    _ymax = get_float(ymax)
    if _ymax < _ymin:
        raise ValueError, "Invalid values: ymax < ymin"
    return _xmin, _ymin, _xmax, _ymax
    
def degrees(value):
    """Convert a value from radians to degrees.

degrees(value)

In Python 2.3 this is available as the math.degrees() function, but
the value isn't scaled from -360.0 <= angle <= 360.0
    """
    _value = get_float(value)
    return fmod(_value, 360.0)

def radians(value):
    """Convert a value from degrees to radians.

radians(value)

In Python 2.3 this is available ad the math.radians() function, but
the value isn't scaled from -2*pi <= angle <= 2*pi
    """
    _value = get_float(value)
    return fmod(_value, (2.0 * pi))

#
# map x/y coordinates to a (x1, y1)->(x2, y2) segment
#

def map_coords(x, y, x1, y1, x2, y2, tol=tolerance.TOL):
    """
map_coords(x, y, x1, y1, x2, y2[, tol])
    """
    _x = get_float(x)
    _y = get_float(y)
    _x1 = get_float(x1)
    _y1 = get_float(y1)
    _x2 = get_float(x2)
    _y2 = get_float(y2)
    _t = tolerance.toltest(tol)
    if ((_x < min(_x1, _x2) - _t) or
        (_y < min(_y1, _y2) - _t) or
        (_x > max(_x1, _x2) + _t) or
        (_y > max(_y1, _y2) + _t)):
        return None
    _sqlen = pow((_x2 - _x1), 2) + pow((_y2 - _y1), 2)
    if _sqlen < 1e-10: # coincident points
        return None
    _r = ((_x - _x1)*(_x2 - _x1) + (_y - _y1)*(_y2 - _y1))/_sqlen
    if _r < 0.0:
        _r = 0.0
    if _r > 1.0:
        _r = 1.0
    _px = _x1 + _r * (_x2 - _x1)
    _py = _y1 + _r * (_y2 - _y1)
    if abs(_px - _x) < _t and abs(_py - _y) < _t:
        return _px, _py
    return None

#
# test if line segments are visible within a rectangular region
#

def in_region(x1, y1, x2, y2, xmin, ymin, xmax, ymax):
    """Test if a segment from (x1, y1)->(x2, y2) is in region.

in_region(x1, y1, x2, y2, xmin, ymin, xmax, ymax)
    """
    _x1 = get_float(x1)
    _y1 = get_float(y1)
    _x2 = get_float(x2)
    _y2 = get_float(y2)
    _xmin = get_float(xmin)
    _ymin = get_float(ymin)
    _xmax = get_float(xmax)
    if _xmax < _xmin:
        raise ValueError, "Illegal values: xmax < xmin"
    _ymax = get_float(ymax)
    if _ymax < _ymin:
        raise ValueError, "Illegal values: ymax < ymin"
    if not ((_x1 < _xmin) or
            (_x1 > _xmax) or
            (_y1 < _ymin) or
            (_y1 > _ymax)):
        return True
    if not ((_x2 < _xmin) or
            (_x2 > _xmax) or
            (_y2 < _ymin) or
            (_y2 > _ymax)):
        return True
    #
    # simple horizontal/vertical testing
    #
    if abs(_y2 - _y1) < 1e-10: # horizontal
        if not ((_y1 < _ymin) or (_y1 > _ymax)):
            if min(_x1, _x2) < _xmin and max(_x1, _x2) > _xmax:
                return True
    if abs(_x2 - _x1) < 1e-10: # vertical
        if not ((_x1 < _xmin) or (_x1 > _xmax)):
            if min(_y1, _y2) < _ymin and max(_y1, _y2) > _ymax:
                return True
    #
    # see if segment intersects an imaginary segment
    # from (xmin, ymax) to (xmax, ymin)
    #
    # p1 = (xmin, ymax)
    # p2 = (xmax, ymin)
    # p3 = (x1, y1)
    # p4 = (x2, y2)
    #
    _d = ((_xmax - _xmin)*(_y2 - _y1)) - ((_ymin - _ymax)*(_x2 - _x1))
    if abs(_d) > 1e-10:
        _n = ((_ymax - _y1)*(_x2 - _x1)) - ((_xmin - _x1)*(_y2 - _y1))
        _r = _n/_d
        if 0.0 < _r < 1.0:
            return True
    #
    # see if segment intersects an imaginary segment
    # from (xmin, ymin) to (xmax, ymax)
    #
    # p1 = (xmin, ymin)
    # p2 = (xmax, ymax)
    # p3 = (x1, y1)
    # p4 = (x2, y2)
    #
    _d = ((_xmax - _xmin)*(_y2 - _y1)) - ((_ymax - _ymin)*(_x2 - _x1))
    if abs(_d) > 1e-10:
        _n = ((_ymin - _y1)*(_x2 - _x1)) - ((_xmin - _x1)*(_y2 - _y1))
        _r = _n/_d
        if 0.0 < _r < 1.0:
            return True
    return False