1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#!/usr/bin/env python3
import logging
import pathlib
from argparse import ArgumentParser
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3
from librispeech.lightning import LibriSpeechRNNTModule
from mustc.lightning import MuSTCRNNTModule
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from tedlium3.lightning import TEDLIUM3RNNTModule
def get_trainer(args):
checkpoint_dir = args.exp_dir / "checkpoints"
checkpoint = ModelCheckpoint(
checkpoint_dir,
monitor="Losses/val_loss",
mode="min",
save_top_k=5,
save_weights_only=True,
verbose=True,
)
train_checkpoint = ModelCheckpoint(
checkpoint_dir,
monitor="Losses/train_loss",
mode="min",
save_top_k=5,
save_weights_only=True,
verbose=True,
)
callbacks = [
checkpoint,
train_checkpoint,
]
return Trainer(
default_root_dir=args.exp_dir,
max_epochs=args.epochs,
num_nodes=args.num_nodes,
gpus=args.gpus,
accelerator="gpu",
strategy="ddp",
gradient_clip_val=args.gradient_clip_val,
callbacks=callbacks,
)
def get_lightning_module(args):
if args.model_type == MODEL_TYPE_LIBRISPEECH:
return LibriSpeechRNNTModule(
librispeech_path=str(args.dataset_path),
sp_model_path=str(args.sp_model_path),
global_stats_path=str(args.global_stats_path),
)
elif args.model_type == MODEL_TYPE_TEDLIUM3:
return TEDLIUM3RNNTModule(
tedlium_path=str(args.dataset_path),
sp_model_path=str(args.sp_model_path),
global_stats_path=str(args.global_stats_path),
)
elif args.model_type == MODEL_TYPE_MUSTC:
return MuSTCRNNTModule(
mustc_path=str(args.dataset_path),
sp_model_path=str(args.sp_model_path),
global_stats_path=str(args.global_stats_path),
)
else:
raise ValueError(f"Encountered unsupported model type {args.model_type}.")
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--model-type", type=str, choices=[MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC], required=True
)
parser.add_argument(
"--global-stats-path",
default=pathlib.Path("global_stats.json"),
type=pathlib.Path,
help="Path to JSON file containing feature means and stddevs.",
required=True,
)
parser.add_argument(
"--dataset-path",
type=pathlib.Path,
help="Path to datasets.",
required=True,
)
parser.add_argument(
"--sp-model-path",
type=pathlib.Path,
help="Path to SentencePiece model.",
required=True,
)
parser.add_argument(
"--exp-dir",
default=pathlib.Path("./exp"),
type=pathlib.Path,
help="Directory to save checkpoints and logs to. (Default: './exp')",
)
parser.add_argument(
"--num-nodes",
default=4,
type=int,
help="Number of nodes to use for training. (Default: 4)",
)
parser.add_argument(
"--gpus",
default=8,
type=int,
help="Number of GPUs per node to use for training. (Default: 8)",
)
parser.add_argument(
"--epochs",
default=120,
type=int,
help="Number of epochs to train for. (Default: 120)",
)
parser.add_argument(
"--gradient-clip-val", default=10.0, type=float, help="Value to clip gradient values to. (Default: 10.0)"
)
parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging")
return parser.parse_args()
def init_logger(debug):
fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
level = logging.DEBUG if debug else logging.INFO
logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")
def cli_main():
args = parse_args()
init_logger(args.debug)
model = get_lightning_module(args)
trainer = get_trainer(args)
trainer.fit(model)
if __name__ == "__main__":
cli_main()
|