1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
#!/usr/bin/env python3
"""
Create a data preprocess pipeline that can be run with libtorchaudio
"""
import argparse
import os
import torch
import torchaudio
class Pipeline(torch.nn.Module):
"""Example audio process pipeline.
This example load waveform from a file then apply effects and save it to a file.
"""
def __init__(self, rir_path: str):
super().__init__()
rir, sample_rate = torchaudio.load(rir_path)
self.register_buffer("rir", rir)
self.rir_sample_rate: int = sample_rate
def forward(self, input_path: str, output_path: str):
torchaudio.sox_effects.init_sox_effects()
# 1. load audio
waveform, sample_rate = torchaudio.load(input_path)
# 2. Add background noise
alpha = 0.01
waveform = alpha * torch.randn_like(waveform) + (1 - alpha) * waveform
# 3. Reample the RIR filter to much the audio sample rate
rir, _ = torchaudio.sox_effects.apply_effects_tensor(
self.rir, self.rir_sample_rate, effects=[["rate", str(sample_rate)]]
)
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])
# 4. Apply RIR filter
waveform = torch.nn.functional.pad(waveform, (rir.shape[1] - 1, 0))
waveform = torch.nn.functional.conv1d(waveform[None, ...], rir[None, ...])[0]
# Save
torchaudio.save(output_path, waveform, sample_rate)
def _create_jit_pipeline(rir_path, output_path):
module = torch.jit.script(Pipeline(rir_path))
print("*" * 40)
print("* Pipeline code")
print("*" * 40)
print()
print(module.code)
print("*" * 40)
module.save(output_path)
def _get_path(*paths):
return os.path.join(os.path.dirname(__file__), *paths)
def _parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--rir-path", default=_get_path("..", "data", "rir.wav"), help="Audio dara for room impulse response."
)
parser.add_argument("--output-path", default=_get_path("pipeline.zip"), help="Output JIT file.")
return parser.parse_args()
def _main():
args = _parse_args()
_create_jit_pipeline(args.rir_path, args.output_path)
if __name__ == "__main__":
_main()
|