File: README.md

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (44 lines) | stat: -rw-r--r-- 1,997 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Conv-TasNet

This is a reference implementation of Conv-TasNet.

> Luo, Yi, and Nima Mesgarani. "Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.8 (2019): 1256-1266. Crossref. Web.

This implementation is based on [arXiv:1809.07454v3](https://arxiv.org/abs/1809.07454v3) and [the reference implementation](https://github.com/naplab/Conv-TasNet) provided by the authors.

For the usage, please checkout the [source separation README](../README.md).

## (Default) Training Configurations

The default training/model configurations follow the non-causal implementation from [Asteroid](https://github.com/asteroid-team/asteroid/tree/master/egs/librimix/ConvTasNet). (causal configuration is not implemented.)

 - Sample rate: 8000 Hz
 - Batch size: total 12 over distributed training workers
 - Epochs: 200
 - Initial learning rate: 1e-3
 - Gradient clipping: maximum L2 norm of 5.0
 - Optimizer: Adam
 - Learning rate scheduling: Halved after 5 epochs of no improvement in validation accuracy.
 - Objective function: SI-SNR
 - Reported metrics: SI-SNRi, SDRi
 - Sample audio length: 3 seconds (randomized position)
 - Encoder/Decoder feature dimension (N): 512
 - Encoder/Decoder convolution kernel size (L): 16
 - TCN bottleneck/output feature dimension (B): 128
 - TCN hidden feature dimension (H): 512
 - TCN skip connection feature dimension (Sc): 128
 - TCN convolution kernel size (P): 3
 - The number of TCN convolution block layers (X): 8
 - The number of TCN convolution blocks (R): 3
 - The mask activation function: ReLU

## Evaluation

The following is the evaluation result of training the model on Libri2Mix dataset.

### LibirMix 2speakers

|                     | Si-SNRi (dB) | SDRi (dB) | Epoch |
|:-------------------:|-------------:|----------:|------:|
| Reference (Asteroid)|         14.7 |      15.1 |   200 |
| torchaudio          |         15.3 |      15.6 |   200 |