File: trainer.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (153 lines) | stat: -rw-r--r-- 4,996 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import time
from collections import namedtuple
from typing import Tuple

import torch
import torch.distributed as dist
from utils import dist_utils, metrics

_LG = dist_utils.getLogger(__name__)

Metric = namedtuple("SNR", ["si_snri", "sdri"])
Metric.__str__ = lambda self: f"SI-SNRi: {self.si_snri:10.3e}, SDRi: {self.sdri:10.3e}"


def si_sdr_improvement(
    estimate: torch.Tensor, reference: torch.Tensor, mix: torch.Tensor, mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Compute the improvement of scale-invariant SDR. (SI-SNRi) and bare SDR (SDRi).

    Args:
        estimate (torch.Tensor): Estimated source signals.
            Shape: [batch, speakers, time frame]
        reference (torch.Tensor): Reference (original) source signals.
            Shape: [batch, speakers, time frame]
        mix (torch.Tensor): Mixed souce signals, from which the setimated signals were generated.
            Shape: [batch, speakers == 1, time frame]
        mask (torch.Tensor): Mask to indicate padded value (0) or valid value (1).
            Shape: [batch, 1, time frame]


    Returns:
        torch.Tensor: Improved SI-SDR. Shape: [batch, ]
        torch.Tensor: Absolute SI-SDR. Shape: [batch, ]

    References:
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
          Luo, Yi and Mesgarani, Nima
          https://arxiv.org/abs/1809.07454
    """
    with torch.no_grad():
        sdri = metrics.sdri(estimate, reference, mix, mask=mask)

    estimate = estimate - estimate.mean(axis=2, keepdim=True)
    reference = reference - reference.mean(axis=2, keepdim=True)
    mix = mix - mix.mean(axis=2, keepdim=True)

    si_sdri = metrics.sdri(estimate, reference, mix, mask=mask)
    return si_sdri, sdri


class OccasionalLogger:
    """Simple helper class to log once in a while or when progress is quick enough"""

    def __init__(self, time_interval=180, progress_interval=0.1):
        self.time_interval = time_interval
        self.progress_interval = progress_interval

        self.last_time = 0.0
        self.last_progress = 0.0

    def log(self, metric, progress, force=False):
        now = time.monotonic()
        if force or now > self.last_time + self.time_interval or progress > self.last_progress + self.progress_interval:
            self.last_time = now
            self.last_progress = progress
            _LG.info_on_master("train: %s [%3d%%]", metric, 100 * progress)


class Trainer:
    def __init__(
        self,
        model,
        optimizer,
        train_loader,
        valid_loader,
        eval_loader,
        grad_clip,
        device,
        *,
        debug,
    ):
        self.model = model
        self.optimizer = optimizer
        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.eval_loader = eval_loader
        self.grad_clip = grad_clip
        self.device = device
        self.debug = debug

    def train_one_epoch(self):
        self.model.train()
        logger = OccasionalLogger()

        num_batches = len(self.train_loader)
        for i, batch in enumerate(self.train_loader, start=1):
            mix = batch.mix.to(self.device)
            src = batch.src.to(self.device)
            mask = batch.mask.to(self.device)

            estimate = self.model(mix)

            si_snri, sdri = si_sdr_improvement(estimate, src, mix, mask)
            si_snri = si_snri.mean()
            sdri = sdri.mean()

            loss = -si_snri
            self.optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_clip, norm_type=2.0)
            self.optimizer.step()

            metric = Metric(si_snri.item(), sdri.item())
            logger.log(metric, progress=i / num_batches, force=i == num_batches)

            if self.debug:
                break

    def evaluate(self):
        with torch.no_grad():
            return self._test(self.eval_loader)

    def validate(self):
        with torch.no_grad():
            return self._test(self.valid_loader)

    def _test(self, loader):
        self.model.eval()

        total_si_snri = torch.zeros(1, dtype=torch.float32, device=self.device)
        total_sdri = torch.zeros(1, dtype=torch.float32, device=self.device)

        for batch in loader:
            mix = batch.mix.to(self.device)
            src = batch.src.to(self.device)
            mask = batch.mask.to(self.device)

            estimate = self.model(mix)

            si_snri, sdri = si_sdr_improvement(estimate, src, mix, mask)

            total_si_snri += si_snri.sum()
            total_sdri += sdri.sum()

            if self.debug:
                break

        dist.all_reduce(total_si_snri, dist.ReduceOp.SUM)
        dist.all_reduce(total_sdri, dist.ReduceOp.SUM)

        num_samples = len(loader.dataset)
        metric = Metric(total_si_snri.item() / num_samples, total_sdri.item() / num_samples)
        return metric