File: lightning_train.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (431 lines) | stat: -rw-r--r-- 14,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#!/usr/bin/env python3

# pyre-strict
from argparse import ArgumentParser
from pathlib import Path
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, TypedDict, Union

import torch
import torchaudio
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from torch import nn
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from utils import metrics
from utils.dataset import utils as dataset_utils


class Batch(TypedDict):
    mix: torch.Tensor  # (batch, time)
    src: torch.Tensor  # (batch, source, time)
    mask: torch.Tensor  # (batch, source, time)


def sisdri_metric(
    estimate: torch.Tensor, reference: torch.Tensor, mix: torch.Tensor, mask: torch.Tensor
) -> torch.Tensor:
    """Compute the improvement of scale-invariant SDR. (SI-SDRi).

    Args:
        estimate (torch.Tensor): Estimated source signals.
            Tensor of dimension (batch, speakers, time)
        reference (torch.Tensor): Reference (original) source signals.
            Tensor of dimension (batch, speakers, time)
        mix (torch.Tensor): Mixed souce signals, from which the setimated signals were generated.
            Tensor of dimension (batch, speakers == 1, time)
        mask (torch.Tensor): Mask to indicate padded value (0) or valid value (1).
            Tensor of dimension (batch, 1, time)

    Returns:
        torch.Tensor: Improved SI-SDR. Tensor of dimension (batch, )

    References:
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
        Luo, Yi and Mesgarani, Nima
        https://arxiv.org/abs/1809.07454
    """
    with torch.no_grad():
        estimate = estimate - estimate.mean(axis=2, keepdim=True)
        reference = reference - reference.mean(axis=2, keepdim=True)
        mix = mix - mix.mean(axis=2, keepdim=True)

        si_sdri = metrics.sdri(estimate, reference, mix, mask=mask)

    return si_sdri.mean().item()


def sdri_metric(
    estimate: torch.Tensor,
    reference: torch.Tensor,
    mix: torch.Tensor,
    mask: torch.Tensor,
) -> torch.Tensor:
    """Compute the improvement of SDR. (SDRi).

    Args:
        estimate (torch.Tensor): Estimated source signals.
            Tensor of dimension (batch, speakers, time)
        reference (torch.Tensor): Reference (original) source signals.
            Tensor of dimension (batch, speakers, time)
        mix (torch.Tensor): Mixed souce signals, from which the setimated signals were generated.
            Tensor of dimension (batch, speakers == 1, time)
        mask (torch.Tensor): Mask to indicate padded value (0) or valid value (1).
            Tensor of dimension (batch, 1, time)

    Returns:
        torch.Tensor: Improved SDR. Tensor of dimension (batch, )

    References:
        - Conv-TasNet: Surpassing Ideal Time--Frequency Magnitude Masking for Speech Separation
        Luo, Yi and Mesgarani, Nima
        https://arxiv.org/abs/1809.07454
    """
    with torch.no_grad():
        sdri = metrics.sdri(estimate, reference, mix, mask=mask)
    return sdri.mean().item()


def si_sdr_loss(estimate: torch.Tensor, reference: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
    """Compute the Si-SDR loss.

    Args:
        estimate (torch.Tensor): Estimated source signals.
            Tensor of dimension (batch, speakers, time)
        reference (torch.Tensor): Reference (original) source signals.
            Tensor of dimension (batch, speakers, time)
        mask (torch.Tensor): Mask to indicate padded value (0) or valid value (1).
            Tensor of dimension (batch, 1, time)

    Returns:
        torch.Tensor: Si-SDR loss. Tensor of dimension (batch, )
    """
    estimate = estimate - estimate.mean(axis=2, keepdim=True)
    reference = reference - reference.mean(axis=2, keepdim=True)

    si_sdri = metrics.sdr_pit(estimate, reference, mask=mask)
    return -si_sdri.mean()


class ConvTasNetModule(LightningModule):
    """
    The Lightning Module for speech separation.

    Args:
        model (Any): The model to use for the classification task.
        train_loader (DataLoader): the training dataloader.
        val_loader (DataLoader or None): the validation dataloader.
        loss (Any): The loss function to use.
        optim (Any): The optimizer to use.
        metrics (List of methods): The metrics to track, which will be used for both train and validation.
        lr_scheduler (Any or None): The LR Scheduler.
    """

    def __init__(
        self,
        model: Any,
        train_loader: DataLoader,
        val_loader: Optional[DataLoader],
        loss: Any,
        optim: Any,
        metrics: List[Any],
        lr_scheduler: Optional[Any] = None,
    ) -> None:
        super().__init__()

        self.model: nn.Module = model
        self.loss: nn.Module = loss
        self.optim: torch.optim.Optimizer = optim
        self.lr_scheduler: Optional[_LRScheduler] = None
        if lr_scheduler:
            self.lr_scheduler = lr_scheduler

        self.metrics: Mapping[str, Callable] = metrics

        self.train_metrics: Dict = {}
        self.val_metrics: Dict = {}
        self.test_metrics: Dict = {}

        self.save_hyperparameters()
        self.train_loader = train_loader
        self.val_loader = val_loader

    def setup(self, stage: Optional[str] = None) -> None:
        if stage == "fit":
            self.train_metrics.update(self.metrics)
            self.val_metrics.update(self.metrics)
        else:
            self.test_metrics.update(self.metrics)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward defines the prediction/inference actions.
        """
        return self.model(x)

    def training_step(self, batch: Batch, batch_idx: int, *args: Any, **kwargs: Any) -> Dict[str, Any]:
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch: Batch, batch_idx: int, *args: Any, **kwargs: Any) -> Dict[str, Any]:
        """
        Operates on a single batch of data from the validation set.
        """
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch: Batch, batch_idx: int, *args: Any, **kwargs: Any) -> Optional[Dict[str, Any]]:
        """
        Operates on a single batch of data from the test set.
        """
        return self._step(batch, batch_idx, "test")

    def _step(self, batch: Batch, batch_idx: int, phase_type: str) -> Dict[str, Any]:
        """
        Common step for training, validation, and testing.
        """
        mix, src, mask = batch
        pred = self.model(mix)
        loss = self.loss(pred, src, mask)
        self.log(f"Losses/{phase_type}_loss", loss.item(), on_step=True, on_epoch=True)

        metrics_result = self._compute_metrics(pred, src, mix, mask, phase_type)
        self.log_dict(metrics_result, on_epoch=True)

        return loss

    def configure_optimizers(
        self,
    ) -> Tuple[Any]:
        lr_scheduler = self.lr_scheduler
        if not lr_scheduler:
            return self.optim
        epoch_schedulers = {"scheduler": lr_scheduler, "monitor": "Losses/val_loss", "interval": "epoch"}
        return [self.optim], [epoch_schedulers]

    def _compute_metrics(
        self,
        pred: torch.Tensor,
        label: torch.Tensor,
        inputs: torch.Tensor,
        mask: torch.Tensor,
        phase_type: str,
    ) -> Dict[str, torch.Tensor]:
        metrics_dict = getattr(self, f"{phase_type}_metrics")
        metrics_result = {}
        for name, metric in metrics_dict.items():
            metrics_result[f"Metrics/{phase_type}/{name}"] = metric(pred, label, inputs, mask)
        return metrics_result

    def train_dataloader(self):
        """Training dataloader"""
        return self.train_loader

    def val_dataloader(self):
        """Validation dataloader"""
        return self.val_loader


def _get_model(
    num_sources,
    enc_kernel_size=16,
    enc_num_feats=512,
    msk_kernel_size=3,
    msk_num_feats=128,
    msk_num_hidden_feats=512,
    msk_num_layers=8,
    msk_num_stacks=3,
    msk_activate="relu",
):
    model = torchaudio.models.ConvTasNet(
        num_sources=num_sources,
        enc_kernel_size=enc_kernel_size,
        enc_num_feats=enc_num_feats,
        msk_kernel_size=msk_kernel_size,
        msk_num_feats=msk_num_feats,
        msk_num_hidden_feats=msk_num_hidden_feats,
        msk_num_layers=msk_num_layers,
        msk_num_stacks=msk_num_stacks,
        msk_activate=msk_activate,
    )
    return model


def _get_dataloader(
    dataset_type: str,
    root_dir: Union[str, Path],
    num_speakers: int = 2,
    sample_rate: int = 8000,
    batch_size: int = 6,
    num_workers: int = 4,
    librimix_task: Optional[str] = None,
    librimix_tr_split: Optional[str] = None,
) -> Tuple[DataLoader]:
    """Get dataloaders for training, validation, and testing.

    Args:
        dataset_type (str): the dataset to use.
        root_dir (str or Path): the root directory of the dataset.
        num_speakers (int, optional): the number of speakers in the mixture. (Default: 2)
        sample_rate (int, optional): the sample rate of the audio. (Default: 8000)
        batch_size (int, optional): the batch size of the dataset. (Default: 6)
        num_workers (int, optional): the number of workers for each dataloader. (Default: 4)
        librimix_task (str or None, optional): the task in LibriMix dataset.
        librimix_tr_split (str or None, optional): the training split in LibriMix dataset.

    Returns:
        tuple: (train_loader, valid_loader, eval_loader)
    """
    train_dataset, valid_dataset, eval_dataset = dataset_utils.get_dataset(
        dataset_type, root_dir, num_speakers, sample_rate, librimix_task, librimix_tr_split
    )
    train_collate_fn = dataset_utils.get_collate_fn(dataset_type, mode="train", sample_rate=sample_rate, duration=3)

    test_collate_fn = dataset_utils.get_collate_fn(dataset_type, mode="test", sample_rate=sample_rate)

    train_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        collate_fn=train_collate_fn,
        num_workers=num_workers,
        drop_last=True,
    )
    valid_loader = DataLoader(
        valid_dataset,
        batch_size=batch_size,
        collate_fn=test_collate_fn,
        num_workers=num_workers,
        drop_last=True,
    )
    eval_loader = DataLoader(
        eval_dataset,
        batch_size=batch_size,
        collate_fn=test_collate_fn,
        num_workers=num_workers,
    )
    return train_loader, valid_loader, eval_loader


def cli_main():
    parser = ArgumentParser()
    parser.add_argument("--batch-size", default=6, type=int)
    parser.add_argument("--dataset", default="librimix", type=str, choices=["wsj0-mix", "librimix"])
    parser.add_argument(
        "--root-dir",
        type=Path,
        help="The path to the directory where the directory ``Libri2Mix`` or ``Libri3Mix`` is stored.",
    )
    parser.add_argument(
        "--librimix-tr-split",
        default="train-360",
        choices=["train-360", "train-100"],
        help="The training partition of librimix dataset. (default: ``train-360``)",
    )
    parser.add_argument(
        "--librimix-task",
        default="sep_clean",
        type=str,
        choices=["sep_clean", "sep_noisy", "enh_single", "enh_both"],
        help="The task to perform (separation or enhancement, noisy or clean). (default: ``sep_clean``)",
    )
    parser.add_argument(
        "--num-speakers", default=2, type=int, help="The number of speakers in the mixture. (default: 2)"
    )
    parser.add_argument(
        "--sample-rate",
        default=8000,
        type=int,
        help="Sample rate of audio files in the given dataset. (default: 8000)",
    )
    parser.add_argument(
        "--exp-dir", default=Path("./exp"), type=Path, help="The directory to save checkpoints and logs."
    )
    parser.add_argument(
        "--epochs",
        metavar="NUM_EPOCHS",
        default=200,
        type=int,
        help="The number of epochs to train. (default: 200)",
    )
    parser.add_argument(
        "--learning-rate",
        default=1e-3,
        type=float,
        help="Initial learning rate. (default: 1e-3)",
    )
    parser.add_argument(
        "--num-gpu",
        default=1,
        type=int,
        help="The number of GPUs for training. (default: 1)",
    )
    parser.add_argument(
        "--num-node",
        default=1,
        type=int,
        help="The number of nodes in the cluster for training. (default: 1)",
    )
    parser.add_argument(
        "--num-workers",
        default=4,
        type=int,
        help="The number of workers for dataloader. (default: 4)",
    )

    args = parser.parse_args()

    model = _get_model(num_sources=args.num_speakers)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
    lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.5, patience=5)
    train_loader, valid_loader, eval_loader = _get_dataloader(
        args.dataset,
        args.root_dir,
        args.num_speakers,
        args.sample_rate,
        args.batch_size,
        args.num_workers,
        args.librimix_task,
        args.librimix_tr_split,
    )
    loss = si_sdr_loss
    metric_dict = {
        "sdri": sdri_metric,
        "sisdri": sisdri_metric,
    }
    model = ConvTasNetModule(
        model=model,
        train_loader=train_loader,
        val_loader=valid_loader,
        loss=loss,
        optim=optimizer,
        metrics=metric_dict,
        lr_scheduler=lr_scheduler,
    )
    checkpoint_dir = args.exp_dir / "checkpoints"
    checkpoint = ModelCheckpoint(
        checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=True, verbose=True
    )
    callbacks = [
        checkpoint,
        EarlyStopping(monitor="Losses/val_loss", mode="min", patience=30, verbose=True),
    ]
    trainer = Trainer(
        default_root_dir=args.exp_dir,
        max_epochs=args.epochs,
        gpus=args.num_gpu,
        num_nodes=args.num_node,
        strategy="ddp_find_unused_parameters_false",
        limit_train_batches=1.0,  # Useful for fast experiment
        gradient_clip_val=5.0,
        callbacks=callbacks,
    )
    trainer.fit(model)
    model.load_from_checkpoint(checkpoint.best_model_path)
    state_dict = torch.load(checkpoint.best_model_path, map_location="cpu")
    state_dict = {k.replace("model.", ""): v for k, v in state_dict["state_dict"].items()}
    torch.save(state_dict, args.exp_dir / "best_model.pth")
    trainer.test(model, eval_loader)


if __name__ == "__main__":
    cli_main()