File: asr_inference_with_ctc_decoder_tutorial.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (597 lines) | stat: -rw-r--r-- 19,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
"""
ASR Inference with CTC Decoder
==============================

**Author**: `Caroline Chen <carolinechen@meta.com>`__

This tutorial shows how to perform speech recognition inference using a
CTC beam search decoder with lexicon constraint and KenLM language model
support. We demonstrate this on a pretrained wav2vec 2.0 model trained
using CTC loss.

"""

######################################################################
# Overview
# --------
#
# Beam search decoding works by iteratively expanding text hypotheses (beams)
# with next possible characters, and maintaining only the hypotheses with the
# highest scores at each time step. A language model can be incorporated into
# the scoring computation, and adding a lexicon constraint restricts the
# next possible tokens for the hypotheses so that only words from the lexicon
# can be generated.
#
# The underlying implementation is ported from `Flashlight <https://arxiv.org/pdf/2201.12465.pdf>`__'s
# beam search decoder. A mathematical formula for the decoder optimization can be
# found in the `Wav2Letter paper <https://arxiv.org/pdf/1609.03193.pdf>`__, and
# a more detailed algorithm can be found in this `blog
# <https://towardsdatascience.com/boosting-your-sequence-generation-performance-with-beam-search-language-model-decoding-74ee64de435a>`__.
#
# Running ASR inference using a CTC Beam Search decoder with a language
# model and lexicon constraint requires the following components
#
# -  Acoustic Model: model predicting phonetics from audio waveforms
# -  Tokens: the possible predicted tokens from the acoustic model
# -  Lexicon: mapping between possible words and their corresponding
#    tokens sequence
# -  Language Model (LM): n-gram language model trained with the `KenLM
#    library <https://kheafield.com/code/kenlm/>`__, or custom language
#    model that inherits :py:class:`~torchaudio.models.decoder.CTCDecoderLM`
#


######################################################################
# Acoustic Model and Set Up
# -------------------------
#
# First we import the necessary utilities and fetch the data that we are
# working with
#

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
#

import time
from typing import List

import IPython
import matplotlib.pyplot as plt
from torchaudio.models.decoder import ctc_decoder
from torchaudio.utils import download_asset

######################################################################
#
# We use the pretrained `Wav2Vec 2.0 <https://arxiv.org/abs/2006.11477>`__
# Base model that is finetuned on 10 min of the `LibriSpeech
# dataset <http://www.openslr.org/12>`__, which can be loaded in using
# :data:`torchaudio.pipelines.WAV2VEC2_ASR_BASE_10M`.
# For more detail on running Wav2Vec 2.0 speech
# recognition pipelines in torchaudio, please refer to `this
# tutorial <./speech_recognition_pipeline_tutorial.html>`__.
#

bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_10M
acoustic_model = bundle.get_model()


######################################################################
# We will load a sample from the LibriSpeech test-other dataset.
#

speech_file = download_asset("tutorial-assets/ctc-decoding/1688-142285-0007.wav")

IPython.display.Audio(speech_file)


######################################################################
# The transcript corresponding to this audio file is
#
# .. code-block::
#
#    i really was very much afraid of showing him how much shocked i was at some parts of what he said
#

waveform, sample_rate = torchaudio.load(speech_file)

if sample_rate != bundle.sample_rate:
    waveform = torchaudio.functional.resample(waveform, sample_rate, bundle.sample_rate)


######################################################################
# Files and Data for Decoder
# --------------------------
#
# Next, we load in our token, lexicon, and language model data, which are used
# by the decoder to predict words from the acoustic model output. Pretrained
# files for the LibriSpeech dataset can be downloaded through torchaudio,
# or the user can provide their own files.
#


######################################################################
# Tokens
# ~~~~~~
#
# The tokens are the possible symbols that the acoustic model can predict,
# including the blank and silent symbols. It can either be passed in as a
# file, where each line consists of the tokens corresponding to the same
# index, or as a list of tokens, each mapping to a unique index.
#
# .. code-block::
#
#    # tokens.txt
#    _
#    |
#    e
#    t
#    ...
#

tokens = [label.lower() for label in bundle.get_labels()]
print(tokens)


######################################################################
# Lexicon
# ~~~~~~~
#
# The lexicon is a mapping from words to their corresponding tokens
# sequence, and is used to restrict the search space of the decoder to
# only words from the lexicon. The expected format of the lexicon file is
# a line per word, with a word followed by its space-split tokens.
#
# .. code-block::
#
#    # lexcion.txt
#    a a |
#    able a b l e |
#    about a b o u t |
#    ...
#    ...
#


######################################################################
# Language Model
# ~~~~~~~~~~~~~~
#
# A language model can be used in decoding to improve the results, by
# factoring in a language model score that represents the likelihood of
# the sequence into the beam search computation. Below, we outline the
# different forms of language models that are supported for decoding.
#

######################################################################
# No Language Model
# ^^^^^^^^^^^^^^^^^
#
# To create a decoder instance without a language model, set `lm=None`
# when initializing the decoder.
#

######################################################################
# KenLM
# ^^^^^
#
# This is an n-gram language model trained with the `KenLM
# library <https://kheafield.com/code/kenlm/>`__. Both the ``.arpa`` or
# the binarized ``.bin`` LM can be used, but the binary format is
# recommended for faster loading.
#
# The language model used in this tutorial is a 4-gram KenLM trained using
# `LibriSpeech <http://www.openslr.org/11>`__.
#

######################################################################
# Custom Language Model
# ^^^^^^^^^^^^^^^^^^^^^
#
# Users can define their own custom language model in Python, whether
# it be a statistical or neural network language model, using
# :py:class:`~torchaudio.models.decoder.CTCDecoderLM` and
# :py:class:`~torchaudio.models.decoder.CTCDecoderLMState`.
#
# For instance, the following code creates a basic wrapper around a PyTorch
# ``torch.nn.Module`` language model.
#

from torchaudio.models.decoder import CTCDecoderLM, CTCDecoderLMState


class CustomLM(CTCDecoderLM):
    """Create a Python wrapper around `language_model` to feed to the decoder."""
    def __init__(self, language_model: torch.nn.Module):
        CTCDecoderLM.__init__(self)
        self.language_model = language_model
        self.sil = -1  # index for silent token in the language model
        self.states = {}

        language_model.eval()

    def start(self, start_with_nothing: bool = False):
        state = CTCDecoderLMState()
        with torch.no_grad():
            score = self.language_model(self.sil)

        self.states[state] = score
        return state

    def score(self, state: CTCDecoderLMState, token_index: int):
        outstate = state.child(token_index)
        if outstate not in self.states:
            score = self.language_model(token_index)
            self.states[outstate] = score
        score = self.states[outstate]

        return outstate, score

    def finish(self, state: CTCDecoderLMState):
        return self.score(state, self.sil)


######################################################################
# Downloading Pretrained Files
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Pretrained files for the LibriSpeech dataset can be downloaded using
# :py:func:`~torchaudio.models.decoder.download_pretrained_files`.
#
# Note: this cell may take a couple of minutes to run, as the language
# model can be large
#

from torchaudio.models.decoder import download_pretrained_files

files = download_pretrained_files("librispeech-4-gram")

print(files)


######################################################################
# Construct Decoders
# ------------------
# In this tutorial, we construct both a beam search decoder and a greedy decoder
# for comparison.
#


######################################################################
# Beam Search Decoder
# ~~~~~~~~~~~~~~~~~~~
# The decoder can be constructed using the factory function
# :py:func:`~torchaudio.models.decoder.ctc_decoder`.
# In addition to the previously mentioned components, it also takes in various beam
# search decoding parameters and token/word parameters.
#
# This decoder can also be run without a language model by passing in `None` into the
# `lm` parameter.
#

LM_WEIGHT = 3.23
WORD_SCORE = -0.26

beam_search_decoder = ctc_decoder(
    lexicon=files.lexicon,
    tokens=files.tokens,
    lm=files.lm,
    nbest=3,
    beam_size=1500,
    lm_weight=LM_WEIGHT,
    word_score=WORD_SCORE,
)


######################################################################
# Greedy Decoder
# ~~~~~~~~~~~~~~
#


class GreedyCTCDecoder(torch.nn.Module):
    def __init__(self, labels, blank=0):
        super().__init__()
        self.labels = labels
        self.blank = blank

    def forward(self, emission: torch.Tensor) -> List[str]:
        """Given a sequence emission over labels, get the best path
        Args:
          emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.

        Returns:
          List[str]: The resulting transcript
        """
        indices = torch.argmax(emission, dim=-1)  # [num_seq,]
        indices = torch.unique_consecutive(indices, dim=-1)
        indices = [i for i in indices if i != self.blank]
        joined = "".join([self.labels[i] for i in indices])
        return joined.replace("|", " ").strip().split()


greedy_decoder = GreedyCTCDecoder(tokens)


######################################################################
# Run Inference
# -------------
#
# Now that we have the data, acoustic model, and decoder, we can perform
# inference. The output of the beam search decoder is of type
# :py:class:`~torchaudio.models.decoder.CTCHypothesis`, consisting of the
# predicted token IDs, corresponding words (if a lexicon is provided), hypothesis score,
# and timesteps corresponding to the token IDs. Recall the transcript corresponding to the
# waveform is
#
# .. code-block::
#
#    i really was very much afraid of showing him how much shocked i was at some parts of what he said
#

actual_transcript = "i really was very much afraid of showing him how much shocked i was at some parts of what he said"
actual_transcript = actual_transcript.split()

emission, _ = acoustic_model(waveform)


######################################################################
# The greedy decoder gives the following result.
#

greedy_result = greedy_decoder(emission[0])
greedy_transcript = " ".join(greedy_result)
greedy_wer = torchaudio.functional.edit_distance(actual_transcript, greedy_result) / len(actual_transcript)

print(f"Transcript: {greedy_transcript}")
print(f"WER: {greedy_wer}")


######################################################################
# Using the beam search decoder:
#

beam_search_result = beam_search_decoder(emission)
beam_search_transcript = " ".join(beam_search_result[0][0].words).strip()
beam_search_wer = torchaudio.functional.edit_distance(actual_transcript, beam_search_result[0][0].words) / len(
    actual_transcript
)

print(f"Transcript: {beam_search_transcript}")
print(f"WER: {beam_search_wer}")


######################################################################
# .. note::
#
#    The :py:attr:`~torchaudio.models.decoder.CTCHypothesis.words`
#    field of the output hypotheses will be empty if no lexicon
#    is provided to the decoder. To retrieve a transcript with lexicon-free
#    decoding, you can perform the following to retrieve the token indices,
#    convert them to original tokens, then join them together.
#
#    .. code::
#
#       tokens_str = "".join(beam_search_decoder.idxs_to_tokens(beam_search_result[0][0].tokens))
#       transcript = " ".join(tokens_str.split("|"))
#
# We see that the transcript with the lexicon-constrained beam search
# decoder produces a more accurate result consisting of real words, while
# the greedy decoder can predict incorrectly spelled words like “affrayd”
# and “shoktd”.
#


######################################################################
# Timestep Alignments
# -------------------
# Recall that one of the components of the resulting Hypotheses is timesteps
# corresponding to the token IDs.
#


timesteps = beam_search_result[0][0].timesteps
predicted_tokens = beam_search_decoder.idxs_to_tokens(beam_search_result[0][0].tokens)

print(predicted_tokens, len(predicted_tokens))
print(timesteps, timesteps.shape[0])

######################################################################
# Below, we visualize the token timestep alignments relative to the original waveform.
#


def plot_alignments(waveform, emission, tokens, timesteps):
    fig, ax = plt.subplots(figsize=(32, 10))

    ax.plot(waveform)

    ratio = waveform.shape[0] / emission.shape[1]
    word_start = 0

    for i in range(len(tokens)):
        if i != 0 and tokens[i - 1] == "|":
            word_start = timesteps[i]
        if tokens[i] != "|":
            plt.annotate(tokens[i].upper(), (timesteps[i] * ratio, waveform.max() * 1.02), size=14)
        elif i != 0:
            word_end = timesteps[i]
            ax.axvspan(word_start * ratio, word_end * ratio, alpha=0.1, color="red")

    xticks = ax.get_xticks()
    plt.xticks(xticks, xticks / bundle.sample_rate)
    ax.set_xlabel("time (sec)")
    ax.set_xlim(0, waveform.shape[0])


plot_alignments(waveform[0], emission, predicted_tokens, timesteps)


######################################################################
# Beam Search Decoder Parameters
# ------------------------------
#
# In this section, we go a little bit more in depth about some different
# parameters and tradeoffs. For the full list of customizable parameters,
# please refer to the
# :py:func:`documentation <torchaudio.models.decoder.ctc_decoder>`.
#


######################################################################
# Helper Function
# ~~~~~~~~~~~~~~~
#


def print_decoded(decoder, emission, param, param_value):
    start_time = time.monotonic()
    result = decoder(emission)
    decode_time = time.monotonic() - start_time

    transcript = " ".join(result[0][0].words).lower().strip()
    score = result[0][0].score
    print(f"{param} {param_value:<3}: {transcript} (score: {score:.2f}; {decode_time:.4f} secs)")


######################################################################
# nbest
# ~~~~~
#
# This parameter indicates the number of best hypotheses to return, which
# is a property that is not possible with the greedy decoder. For
# instance, by setting ``nbest=3`` when constructing the beam search
# decoder earlier, we can now access the hypotheses with the top 3 scores.
#

for i in range(3):
    transcript = " ".join(beam_search_result[0][i].words).strip()
    score = beam_search_result[0][i].score
    print(f"{transcript} (score: {score})")


######################################################################
# beam size
# ~~~~~~~~~
#
# The ``beam_size`` parameter determines the maximum number of best
# hypotheses to hold after each decoding step. Using larger beam sizes
# allows for exploring a larger range of possible hypotheses which can
# produce hypotheses with higher scores, but it is computationally more
# expensive and does not provide additional gains beyond a certain point.
#
# In the example below, we see improvement in decoding quality as we
# increase beam size from 1 to 5 to 50, but notice how using a beam size
# of 500 provides the same output as beam size 50 while increase the
# computation time.
#

beam_sizes = [1, 5, 50, 500]

for beam_size in beam_sizes:
    beam_search_decoder = ctc_decoder(
        lexicon=files.lexicon,
        tokens=files.tokens,
        lm=files.lm,
        beam_size=beam_size,
        lm_weight=LM_WEIGHT,
        word_score=WORD_SCORE,
    )

    print_decoded(beam_search_decoder, emission, "beam size", beam_size)


######################################################################
# beam size token
# ~~~~~~~~~~~~~~~
#
# The ``beam_size_token`` parameter corresponds to the number of tokens to
# consider for expanding each hypothesis at the decoding step. Exploring a
# larger number of next possible tokens increases the range of potential
# hypotheses at the cost of computation.
#

num_tokens = len(tokens)
beam_size_tokens = [1, 5, 10, num_tokens]

for beam_size_token in beam_size_tokens:
    beam_search_decoder = ctc_decoder(
        lexicon=files.lexicon,
        tokens=files.tokens,
        lm=files.lm,
        beam_size_token=beam_size_token,
        lm_weight=LM_WEIGHT,
        word_score=WORD_SCORE,
    )

    print_decoded(beam_search_decoder, emission, "beam size token", beam_size_token)


######################################################################
# beam threshold
# ~~~~~~~~~~~~~~
#
# The ``beam_threshold`` parameter is used to prune the stored hypotheses
# set at each decoding step, removing hypotheses whose scores are greater
# than ``beam_threshold`` away from the highest scoring hypothesis. There
# is a balance between choosing smaller thresholds to prune more
# hypotheses and reduce the search space, and choosing a large enough
# threshold such that plausible hypotheses are not pruned.
#

beam_thresholds = [1, 5, 10, 25]

for beam_threshold in beam_thresholds:
    beam_search_decoder = ctc_decoder(
        lexicon=files.lexicon,
        tokens=files.tokens,
        lm=files.lm,
        beam_threshold=beam_threshold,
        lm_weight=LM_WEIGHT,
        word_score=WORD_SCORE,
    )

    print_decoded(beam_search_decoder, emission, "beam threshold", beam_threshold)


######################################################################
# language model weight
# ~~~~~~~~~~~~~~~~~~~~~
#
# The ``lm_weight`` parameter is the weight to assign to the language
# model score which to accumulate with the acoustic model score for
# determining the overall scores. Larger weights encourage the model to
# predict next words based on the language model, while smaller weights
# give more weight to the acoustic model score instead.
#

lm_weights = [0, LM_WEIGHT, 15]

for lm_weight in lm_weights:
    beam_search_decoder = ctc_decoder(
        lexicon=files.lexicon,
        tokens=files.tokens,
        lm=files.lm,
        lm_weight=lm_weight,
        word_score=WORD_SCORE,
    )

    print_decoded(beam_search_decoder, emission, "lm weight", lm_weight)


######################################################################
# additional parameters
# ~~~~~~~~~~~~~~~~~~~~~
#
# Additional parameters that can be optimized include the following
#
# - ``word_score``: score to add when word finishes
# - ``unk_score``: unknown word appearance score to add
# - ``sil_score``: silence appearance score to add
# - ``log_add``: whether to use log add for lexicon Trie smearing
#