1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
# -*- coding: utf-8 -*-
"""
Audio Feature Extractions
=========================
**Author**: `Moto Hira <moto@meta.com>`__
``torchaudio`` implements feature extractions commonly used in the audio
domain. They are available in ``torchaudio.functional`` and
``torchaudio.transforms``.
``functional`` implements features as standalone functions.
They are stateless.
``transforms`` implements features as objects,
using implementations from ``functional`` and ``torch.nn.Module``.
They can be serialized using TorchScript.
"""
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
# Preparation
# -----------
#
# .. note::
#
# When running this tutorial in Google Colab, install the required packages
#
# .. code::
#
# !pip install librosa
#
from IPython.display import Audio
import librosa
import matplotlib.pyplot as plt
from torchaudio.utils import download_asset
torch.random.manual_seed(0)
SAMPLE_SPEECH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
def plot_waveform(waveform, sr, title="Waveform"):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sr
figure, axes = plt.subplots(num_channels, 1)
axes.plot(time_axis, waveform[0], linewidth=1)
axes.grid(True)
figure.suptitle(title)
plt.show(block=False)
def plot_spectrogram(specgram, title=None, ylabel="freq_bin"):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or "Spectrogram (db)")
axs.set_ylabel(ylabel)
axs.set_xlabel("frame")
im = axs.imshow(librosa.power_to_db(specgram), origin="lower", aspect="auto")
fig.colorbar(im, ax=axs)
plt.show(block=False)
def plot_fbank(fbank, title=None):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or "Filter bank")
axs.imshow(fbank, aspect="auto")
axs.set_ylabel("frequency bin")
axs.set_xlabel("mel bin")
plt.show(block=False)
######################################################################
# Overview of audio features
# --------------------------
#
# The following diagram shows the relationship between common audio features
# and torchaudio APIs to generate them.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/torchaudio_feature_extractions.png
#
# For the complete list of available features, please refer to the
# documentation.
#
######################################################################
# Spectrogram
# -----------
#
# To get the frequency make-up of an audio signal as it varies with time,
# you can use :py:func:`torchaudio.transforms.Spectrogram`.
#
SPEECH_WAVEFORM, SAMPLE_RATE = torchaudio.load(SAMPLE_SPEECH)
plot_waveform(SPEECH_WAVEFORM, SAMPLE_RATE, title="Original waveform")
Audio(SPEECH_WAVEFORM.numpy(), rate=SAMPLE_RATE)
######################################################################
#
n_fft = 1024
win_length = None
hop_length = 512
# Define transform
spectrogram = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
)
######################################################################
#
# Perform transform
spec = spectrogram(SPEECH_WAVEFORM)
######################################################################
#
plot_spectrogram(spec[0], title="torchaudio")
######################################################################
# GriffinLim
# ----------
#
# To recover a waveform from a spectrogram, you can use ``GriffinLim``.
#
torch.random.manual_seed(0)
n_fft = 1024
win_length = None
hop_length = 512
spec = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)(SPEECH_WAVEFORM)
######################################################################
#
griffin_lim = T.GriffinLim(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)
######################################################################
#
reconstructed_waveform = griffin_lim(spec)
######################################################################
#
plot_waveform(reconstructed_waveform, SAMPLE_RATE, title="Reconstructed")
Audio(reconstructed_waveform, rate=SAMPLE_RATE)
######################################################################
# Mel Filter Bank
# ---------------
#
# :py:func:`torchaudio.functional.melscale_fbanks` generates the filter bank
# for converting frequency bins to mel-scale bins.
#
# Since this function does not require input audio/features, there is no
# equivalent transform in :py:func:`torchaudio.transforms`.
#
n_fft = 256
n_mels = 64
sample_rate = 6000
mel_filters = F.melscale_fbanks(
int(n_fft // 2 + 1),
n_mels=n_mels,
f_min=0.0,
f_max=sample_rate / 2.0,
sample_rate=sample_rate,
norm="slaney",
)
######################################################################
#
plot_fbank(mel_filters, "Mel Filter Bank - torchaudio")
######################################################################
# Comparison against librosa
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# For reference, here is the equivalent way to get the mel filter bank
# with ``librosa``.
#
mel_filters_librosa = librosa.filters.mel(
sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmin=0.0,
fmax=sample_rate / 2.0,
norm="slaney",
htk=True,
).T
######################################################################
#
plot_fbank(mel_filters_librosa, "Mel Filter Bank - librosa")
mse = torch.square(mel_filters - mel_filters_librosa).mean().item()
print("Mean Square Difference: ", mse)
######################################################################
# MelSpectrogram
# --------------
#
# Generating a mel-scale spectrogram involves generating a spectrogram
# and performing mel-scale conversion. In ``torchaudio``,
# :py:func:`torchaudio.transforms.MelSpectrogram` provides
# this functionality.
#
n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128
mel_spectrogram = T.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
norm="slaney",
onesided=True,
n_mels=n_mels,
mel_scale="htk",
)
melspec = mel_spectrogram(SPEECH_WAVEFORM)
######################################################################
#
plot_spectrogram(melspec[0], title="MelSpectrogram - torchaudio", ylabel="mel freq")
######################################################################
# Comparison against librosa
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# For reference, here is the equivalent means of generating mel-scale
# spectrograms with ``librosa``.
#
melspec_librosa = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=True,
pad_mode="reflect",
power=2.0,
n_mels=n_mels,
norm="slaney",
htk=True,
)
######################################################################
#
plot_spectrogram(melspec_librosa, title="MelSpectrogram - librosa", ylabel="mel freq")
mse = torch.square(melspec - melspec_librosa).mean().item()
print("Mean Square Difference: ", mse)
######################################################################
# MFCC
# ----
#
n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256
mfcc_transform = T.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
mfcc = mfcc_transform(SPEECH_WAVEFORM)
######################################################################
#
plot_spectrogram(mfcc[0])
######################################################################
# Comparison against librosa
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
melspec = librosa.feature.melspectrogram(
y=SPEECH_WAVEFORM.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
n_mels=n_mels,
htk=True,
norm=None,
)
mfcc_librosa = librosa.feature.mfcc(
S=librosa.core.spectrum.power_to_db(melspec),
n_mfcc=n_mfcc,
dct_type=2,
norm="ortho",
)
######################################################################
#
plot_spectrogram(mfcc_librosa)
mse = torch.square(mfcc - mfcc_librosa).mean().item()
print("Mean Square Difference: ", mse)
######################################################################
# LFCC
# ----
#
n_fft = 2048
win_length = None
hop_length = 512
n_lfcc = 256
lfcc_transform = T.LFCC(
sample_rate=sample_rate,
n_lfcc=n_lfcc,
speckwargs={
"n_fft": n_fft,
"win_length": win_length,
"hop_length": hop_length,
},
)
lfcc = lfcc_transform(SPEECH_WAVEFORM)
plot_spectrogram(lfcc[0])
######################################################################
# Pitch
# -----
#
pitch = F.detect_pitch_frequency(SPEECH_WAVEFORM, SAMPLE_RATE)
######################################################################
#
def plot_pitch(waveform, sr, pitch):
figure, axis = plt.subplots(1, 1)
axis.set_title("Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sr
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color="gray", alpha=0.3)
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, pitch.shape[1])
axis2.plot(time_axis, pitch[0], linewidth=2, label="Pitch", color="green")
axis2.legend(loc=0)
plt.show(block=False)
plot_pitch(SPEECH_WAVEFORM, SAMPLE_RATE, pitch)
######################################################################
# Kaldi Pitch (beta)
# ------------------
#
# Kaldi Pitch feature [1] is a pitch detection mechanism tuned for automatic
# speech recognition (ASR) applications. This is a beta feature in ``torchaudio``,
# and it is available as :py:func:`torchaudio.functional.compute_kaldi_pitch`.
#
# 1. A pitch extraction algorithm tuned for automatic speech recognition
#
# Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal and S.
# Khudanpur
#
# 2014 IEEE International Conference on Acoustics, Speech and Signal
# Processing (ICASSP), Florence, 2014, pp. 2494-2498, doi:
# 10.1109/ICASSP.2014.6854049.
# [`abstract <https://ieeexplore.ieee.org/document/6854049>`__],
# [`paper <https://danielpovey.com/files/2014_icassp_pitch.pdf>`__]
#
pitch_feature = F.compute_kaldi_pitch(SPEECH_WAVEFORM, SAMPLE_RATE)
pitch, nfcc = pitch_feature[..., 0], pitch_feature[..., 1]
######################################################################
#
def plot_kaldi_pitch(waveform, sr, pitch, nfcc):
_, axis = plt.subplots(1, 1)
axis.set_title("Kaldi Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sr
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color="gray", alpha=0.3)
time_axis = torch.linspace(0, end_time, pitch.shape[1])
ln1 = axis.plot(time_axis, pitch[0], linewidth=2, label="Pitch", color="green")
axis.set_ylim((-1.3, 1.3))
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, nfcc.shape[1])
ln2 = axis2.plot(time_axis, nfcc[0], linewidth=2, label="NFCC", color="blue", linestyle="--")
lns = ln1 + ln2
labels = [l.get_label() for l in lns]
axis.legend(lns, labels, loc=0)
plt.show(block=False)
plot_kaldi_pitch(SPEECH_WAVEFORM, SAMPLE_RATE, pitch, nfcc)
|