1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
# -*- coding: utf-8 -*-
"""
Audio I/O
=========
**Author**: `Moto Hira <moto@meta.com>`__
This tutorial shows how to use TorchAudio's basic I/O API to load audio files
into PyTorch's Tensor object, and save Tensor objects to audio files.
"""
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
# Preparation
# -----------
#
# First, we import the modules and download the audio assets we use in this tutorial.
#
# .. note::
# When running this tutorial in Google Colab, install the required packages
# with the following:
#
# .. code::
#
# !pip install boto3
import io
import os
import tarfile
import tempfile
import boto3
import matplotlib.pyplot as plt
import requests
from botocore import UNSIGNED
from botocore.config import Config
from IPython.display import Audio
from torchaudio.utils import download_asset
SAMPLE_GSM = download_asset("tutorial-assets/steam-train-whistle-daniel_simon.gsm")
SAMPLE_WAV = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
SAMPLE_WAV_8000 = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042-8000hz.wav")
######################################################################
# Querying audio metadata
# -----------------------
#
# Function :py:func:`torchaudio.info` fetches audio metadata.
# You can provide a path-like object or file-like object.
#
metadata = torchaudio.info(SAMPLE_WAV)
print(metadata)
######################################################################
# Where
#
# - ``sample_rate`` is the sampling rate of the audio
# - ``num_channels`` is the number of channels
# - ``num_frames`` is the number of frames per channel
# - ``bits_per_sample`` is bit depth
# - ``encoding`` is the sample coding format
#
# ``encoding`` can take on one of the following values:
#
# - ``"PCM_S"``: Signed integer linear PCM
# - ``"PCM_U"``: Unsigned integer linear PCM
# - ``"PCM_F"``: Floating point linear PCM
# - ``"FLAC"``: Flac, `Free Lossless Audio
# Codec <https://xiph.org/flac/>`__
# - ``"ULAW"``: Mu-law,
# [`wikipedia <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`__]
# - ``"ALAW"``: A-law
# [`wikipedia <https://en.wikipedia.org/wiki/A-law_algorithm>`__]
# - ``"MP3"`` : MP3, MPEG-1 Audio Layer III
# - ``"VORBIS"``: OGG Vorbis [`xiph.org <https://xiph.org/vorbis/>`__]
# - ``"AMR_NB"``: Adaptive Multi-Rate
# [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec>`__]
# - ``"AMR_WB"``: Adaptive Multi-Rate Wideband
# [`wikipedia <https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_Wideband>`__]
# - ``"OPUS"``: Opus [`opus-codec.org <https://opus-codec.org/>`__]
# - ``"GSM"``: GSM-FR
# [`wikipedia <https://en.wikipedia.org/wiki/Full_Rate>`__]
# - ``"HTK"``: Single channel 16-bit PCM
# - ``"UNKNOWN"`` None of above
#
######################################################################
# **Note**
#
# - ``bits_per_sample`` can be ``0`` for formats with compression and/or
# variable bit rate (such as MP3).
# - ``num_frames`` can be ``0`` for GSM-FR format.
#
metadata = torchaudio.info(SAMPLE_GSM)
print(metadata)
######################################################################
# Querying file-like object
# -------------------------
#
# :py:func:`torchaudio.info` works on file-like objects.
#
url = "https://download.pytorch.org/torchaudio/tutorial-assets/steam-train-whistle-daniel_simon.wav"
with requests.get(url, stream=True) as response:
metadata = torchaudio.info(response.raw)
print(metadata)
######################################################################
# .. note::
#
# When passing a file-like object, ``info`` does not read
# all of the underlying data; rather, it reads only a portion
# of the data from the beginning.
# Therefore, for a given audio format, it may not be able to retrieve the
# correct metadata, including the format itself. In such case, you
# can pass ``format`` argument to specify the format of the audio.
######################################################################
# Loading audio data
# ------------------
#
# To load audio data, you can use :py:func:`torchaudio.load`.
#
# This function accepts a path-like object or file-like object as input.
#
# The returned value is a tuple of waveform (``Tensor``) and sample rate
# (``int``).
#
# By default, the resulting tensor object has ``dtype=torch.float32`` and
# its value range is ``[-1.0, 1.0]``.
#
# For the list of supported format, please refer to `the torchaudio
# documentation <https://pytorch.org/audio>`__.
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)
######################################################################
#
def plot_waveform(waveform, sample_rate):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sample_rate
figure, axes = plt.subplots(num_channels, 1)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].plot(time_axis, waveform[c], linewidth=1)
axes[c].grid(True)
if num_channels > 1:
axes[c].set_ylabel(f"Channel {c+1}")
figure.suptitle("waveform")
plt.show(block=False)
######################################################################
#
plot_waveform(waveform, sample_rate)
######################################################################
#
def plot_specgram(waveform, sample_rate, title="Spectrogram"):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
figure, axes = plt.subplots(num_channels, 1)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].specgram(waveform[c], Fs=sample_rate)
if num_channels > 1:
axes[c].set_ylabel(f"Channel {c+1}")
figure.suptitle(title)
plt.show(block=False)
######################################################################
#
plot_specgram(waveform, sample_rate)
######################################################################
#
Audio(waveform.numpy()[0], rate=sample_rate)
######################################################################
# Loading from file-like object
# -----------------------------
#
# The I/O functions support file-like objects.
# This allows for fetching and decoding audio data from locations
# within and beyond the local file system.
# The following examples illustrate this.
#
######################################################################
#
# Load audio data as HTTP request
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with requests.get(url, stream=True) as response:
waveform, sample_rate = torchaudio.load(response.raw)
plot_specgram(waveform, sample_rate, title="HTTP datasource")
######################################################################
#
# Load audio from tar file
tar_path = download_asset("tutorial-assets/VOiCES_devkit.tar.gz")
tar_item = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
with tarfile.open(tar_path, mode="r") as tarfile_:
fileobj = tarfile_.extractfile(tar_item)
waveform, sample_rate = torchaudio.load(fileobj)
plot_specgram(waveform, sample_rate, title="TAR file")
######################################################################
#
# Load audio from S3
bucket = "pytorch-tutorial-assets"
key = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
client = boto3.client("s3", config=Config(signature_version=UNSIGNED))
response = client.get_object(Bucket=bucket, Key=key)
waveform, sample_rate = torchaudio.load(response["Body"])
plot_specgram(waveform, sample_rate, title="From S3")
######################################################################
# Tips on slicing
# ---------------
#
# Providing ``num_frames`` and ``frame_offset`` arguments restricts
# decoding to the corresponding segment of the input.
#
# The same result can be achieved using vanilla Tensor slicing,
# (i.e. ``waveform[:, frame_offset:frame_offset+num_frames]``). However,
# providing ``num_frames`` and ``frame_offset`` arguments is more
# efficient.
#
# This is because the function will end data acquisition and decoding
# once it finishes decoding the requested frames. This is advantageous
# when the audio data are transferred via network as the data transfer will
# stop as soon as the necessary amount of data is fetched.
#
# The following example illustrates this.
#
# Illustration of two different decoding methods.
# The first one will fetch all the data and decode them, while
# the second one will stop fetching data once it completes decoding.
# The resulting waveforms are identical.
frame_offset, num_frames = 16000, 16000 # Fetch and decode the 1 - 2 seconds
url = "https://download.pytorch.org/torchaudio/tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
print("Fetching all the data...")
with requests.get(url, stream=True) as response:
waveform1, sample_rate1 = torchaudio.load(response.raw)
waveform1 = waveform1[:, frame_offset : frame_offset + num_frames]
print(f" - Fetched {response.raw.tell()} bytes")
print("Fetching until the requested frames are available...")
with requests.get(url, stream=True) as response:
waveform2, sample_rate2 = torchaudio.load(response.raw, frame_offset=frame_offset, num_frames=num_frames)
print(f" - Fetched {response.raw.tell()} bytes")
print("Checking the resulting waveform ... ", end="")
assert (waveform1 == waveform2).all()
print("matched!")
######################################################################
# Saving audio to file
# --------------------
#
# To save audio data in formats interpretable by common applications,
# you can use :py:func:`torchaudio.save`.
#
# This function accepts a path-like object or file-like object.
#
# When passing a file-like object, you also need to provide argument ``format``
# so that the function knows which format it should use. In the
# case of a path-like object, the function will infer the format from
# the extension. If you are saving to a file without an extension, you need
# to provide argument ``format``.
#
# When saving WAV-formatted data, the default encoding for ``float32`` Tensor
# is 32-bit floating-point PCM. You can provide arguments ``encoding`` and
# ``bits_per_sample`` to change this behavior. For example, to save data
# in 16-bit signed integer PCM, you can do the following.
#
# .. note::
#
# Saving data in encodings with a lower bit depth reduces the
# resulting file size but also precision.
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)
######################################################################
#
def inspect_file(path):
print("-" * 10)
print("Source:", path)
print("-" * 10)
print(f" - File size: {os.path.getsize(path)} bytes")
print(f" - {torchaudio.info(path)}")
print()
######################################################################
#
# Save without any encoding option.
# The function will pick up the encoding which
# the provided data fit
with tempfile.TemporaryDirectory() as tempdir:
path = f"{tempdir}/save_example_default.wav"
torchaudio.save(path, waveform, sample_rate)
inspect_file(path)
######################################################################
#
# Save as 16-bit signed integer Linear PCM
# The resulting file occupies half the storage but loses precision
with tempfile.TemporaryDirectory() as tempdir:
path = f"{tempdir}/save_example_PCM_S16.wav"
torchaudio.save(path, waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
inspect_file(path)
######################################################################
# :py:func:`torchaudio.save` can also handle other formats.
# To name a few:
#
formats = [
"flac",
"vorbis",
"sph",
"amb",
"amr-nb",
"gsm",
]
######################################################################
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV_8000)
with tempfile.TemporaryDirectory() as tempdir:
for format in formats:
path = f"{tempdir}/save_example.{format}"
torchaudio.save(path, waveform, sample_rate, format=format)
inspect_file(path)
######################################################################
# Saving to file-like object
# --------------------------
#
# Similar to the other I/O functions, you can save audio to file-like
# objects. When saving to a file-like object, argument ``format`` is
# required.
#
waveform, sample_rate = torchaudio.load(SAMPLE_WAV)
# Saving to bytes buffer
buffer_ = io.BytesIO()
torchaudio.save(buffer_, waveform, sample_rate, format="wav")
buffer_.seek(0)
print(buffer_.read(16))
|