1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
"""
Online ASR with Emformer RNN-T
==============================
**Author**: `Jeff Hwang <jeffhwang@meta.com>`__, `Moto Hira <moto@meta.com>`__
This tutorial shows how to use Emformer RNN-T and streaming API
to perform online speech recognition.
"""
######################################################################
#
# .. note::
#
# This tutorial requires FFmpeg libraries (>=4.1, <4.4) and SentencePiece.
#
# There are multiple ways to install FFmpeg libraries.
# If you are using Anaconda Python distribution,
# ``conda install 'ffmpeg<4.4'`` will install
# the required FFmpeg libraries.
#
# You can install SentencePiece by running ``pip install sentencepiece``.
######################################################################
# 1. Overview
# -----------
#
# Performing online speech recognition is composed of the following steps
#
# 1. Build the inference pipeline
# Emformer RNN-T is composed of three components: feature extractor,
# decoder and token processor.
# 2. Format the waveform into chunks of expected sizes.
# 3. Pass data through the pipeline.
######################################################################
# 2. Preparation
# --------------
#
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
#
import IPython
try:
from torchaudio.io import StreamReader
except ModuleNotFoundError:
try:
import google.colab
print(
"""
To enable running this notebook in Google Colab, install the requisite
third party libraries by running the following code block:
!add-apt-repository -y ppa:savoury1/ffmpeg4
!apt-get -qq install -y ffmpeg
"""
)
except ModuleNotFoundError:
pass
raise
######################################################################
# 3. Construct the pipeline
# -------------------------
#
# Pre-trained model weights and related pipeline components are
# bundled as :py:class:`torchaudio.pipelines.RNNTBundle`.
#
# We use :py:data:`torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH`,
# which is a Emformer RNN-T model trained on LibriSpeech dataset.
#
bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH
feature_extractor = bundle.get_streaming_feature_extractor()
decoder = bundle.get_decoder()
token_processor = bundle.get_token_processor()
######################################################################
# Streaming inference works on input data with overlap.
# Emformer RNN-T model treats the newest portion of the input data
# as the "right context" — a preview of future context.
# In each inference call, the model expects the main segment
# to start from this right context from the previous inference call.
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_context.png
#
# The size of main segment and right context, along with
# the expected sample rate can be retrieved from bundle.
#
sample_rate = bundle.sample_rate
segment_length = bundle.segment_length * bundle.hop_length
context_length = bundle.right_context_length * bundle.hop_length
print(f"Sample rate: {sample_rate}")
print(f"Main segment: {segment_length} frames ({segment_length / sample_rate} seconds)")
print(f"Right context: {context_length} frames ({context_length / sample_rate} seconds)")
######################################################################
# 4. Configure the audio stream
# -----------------------------
#
# Next, we configure the input audio stream using :py:class:`torchaudio.io.StreamReader`.
#
# For the detail of this API, please refer to the
# `StreamReader Basic Usage <./streamreader_basic_tutorial.html>`__.
#
######################################################################
# The following audio file was originally published by LibriVox project,
# and it is in the public domain.
#
# https://librivox.org/great-pirate-stories-by-joseph-lewis-french/
#
# It was re-uploaded for the sake of the tutorial.
#
src = "https://download.pytorch.org/torchaudio/tutorial-assets/greatpiratestories_00_various.mp3"
streamer = StreamReader(src)
streamer.add_basic_audio_stream(frames_per_chunk=segment_length, sample_rate=bundle.sample_rate)
print(streamer.get_src_stream_info(0))
print(streamer.get_out_stream_info(0))
######################################################################
# As previously explained, Emformer RNN-T model expects input data with
# overlaps; however, `Streamer` iterates the source media without overlap,
# so we make a helper structure that caches a part of input data from
# `Streamer` as right context and then appends it to the next input data from
# `Streamer`.
#
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_streamer_context.png
#
class ContextCacher:
"""Cache the end of input data and prepend the next input data with it.
Args:
segment_length (int): The size of main segment.
If the incoming segment is shorter, then the segment is padded.
context_length (int): The size of the context, cached and appended.
"""
def __init__(self, segment_length: int, context_length: int):
self.segment_length = segment_length
self.context_length = context_length
self.context = torch.zeros([context_length])
def __call__(self, chunk: torch.Tensor):
if chunk.size(0) < self.segment_length:
chunk = torch.nn.functional.pad(chunk, (0, self.segment_length - chunk.size(0)))
chunk_with_context = torch.cat((self.context, chunk))
self.context = chunk[-self.context_length :]
return chunk_with_context
######################################################################
# 5. Run stream inference
# -----------------------
#
# Finally, we run the recognition.
#
# First, we initialize the stream iterator, context cacher, and
# state and hypothesis that are used by decoder to carry over the
# decoding state between inference calls.
#
cacher = ContextCacher(segment_length, context_length)
state, hypothesis = None, None
######################################################################
# Next we, run the inference.
#
# For the sake of better display, we create a helper function which
# processes the source stream up to the given times and call it
# repeatedly.
#
stream_iterator = streamer.stream()
@torch.inference_mode()
def run_inference(num_iter=200):
global state, hypothesis
chunks = []
for i, (chunk,) in enumerate(stream_iterator, start=1):
segment = cacher(chunk[:, 0])
features, length = feature_extractor(segment)
hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
hypothesis = hypos[0]
transcript = token_processor(hypothesis[0], lstrip=False)
print(transcript, end="", flush=True)
chunks.append(chunk)
if i == num_iter:
break
return IPython.display.Audio(torch.cat(chunks).T.numpy(), rate=bundle.sample_rate)
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
run_inference()
######################################################################
#
# Tag: :obj:`torchaudio.io`
|