1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
"""
Speech Recognition with Wav2Vec2
================================
**Author**: `Moto Hira <moto@meta.com>`__
This tutorial shows how to perform speech recognition using using
pre-trained models from wav2vec 2.0
[`paper <https://arxiv.org/abs/2006.11477>`__].
"""
######################################################################
# Overview
# --------
#
# The process of speech recognition looks like the following.
#
# 1. Extract the acoustic features from audio waveform
#
# 2. Estimate the class of the acoustic features frame-by-frame
#
# 3. Generate hypothesis from the sequence of the class probabilities
#
# Torchaudio provides easy access to the pre-trained weights and
# associated information, such as the expected sample rate and class
# labels. They are bundled together and available under
# :py:mod:`torchaudio.pipelines` module.
#
######################################################################
# Preparation
# -----------
#
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
torch.random.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
######################################################################
#
import IPython
import matplotlib.pyplot as plt
from torchaudio.utils import download_asset
SPEECH_FILE = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
######################################################################
# Creating a pipeline
# -------------------
#
# First, we will create a Wav2Vec2 model that performs the feature
# extraction and the classification.
#
# There are two types of Wav2Vec2 pre-trained weights available in
# torchaudio. The ones fine-tuned for ASR task, and the ones not
# fine-tuned.
#
# Wav2Vec2 (and HuBERT) models are trained in self-supervised manner. They
# are firstly trained with audio only for representation learning, then
# fine-tuned for a specific task with additional labels.
#
# The pre-trained weights without fine-tuning can be fine-tuned
# for other downstream tasks as well, but this tutorial does not
# cover that.
#
# We will use :py:data:`torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H` here.
#
# There are multiple pre-trained models available in :py:mod:`torchaudio.pipelines`.
# Please check the documentation for the detail of how they are trained.
#
# The bundle object provides the interface to instantiate model and other
# information. Sampling rate and the class labels are found as follow.
#
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
print("Sample Rate:", bundle.sample_rate)
print("Labels:", bundle.get_labels())
######################################################################
# Model can be constructed as following. This process will automatically
# fetch the pre-trained weights and load it into the model.
#
model = bundle.get_model().to(device)
print(model.__class__)
######################################################################
# Loading data
# ------------
#
# We will use the speech data from `VOiCES
# dataset <https://iqtlabs.github.io/voices/>`__, which is licensed under
# Creative Commos BY 4.0.
#
IPython.display.Audio(SPEECH_FILE)
######################################################################
# To load data, we use :py:func:`torchaudio.load`.
#
# If the sampling rate is different from what the pipeline expects, then
# we can use :py:func:`torchaudio.functional.resample` for resampling.
#
# .. note::
#
# - :py:func:`torchaudio.functional.resample` works on CUDA tensors as well.
# - When performing resampling multiple times on the same set of sample rates,
# using :py:class:`torchaudio.transforms.Resample` might improve the performace.
#
waveform, sample_rate = torchaudio.load(SPEECH_FILE)
waveform = waveform.to(device)
if sample_rate != bundle.sample_rate:
waveform = torchaudio.functional.resample(waveform, sample_rate, bundle.sample_rate)
######################################################################
# Extracting acoustic features
# ----------------------------
#
# The next step is to extract acoustic features from the audio.
#
# .. note::
# Wav2Vec2 models fine-tuned for ASR task can perform feature
# extraction and classification with one step, but for the sake of the
# tutorial, we also show how to perform feature extraction here.
#
with torch.inference_mode():
features, _ = model.extract_features(waveform)
######################################################################
# The returned features is a list of tensors. Each tensor is the output of
# a transformer layer.
#
fig, ax = plt.subplots(len(features), 1, figsize=(16, 4.3 * len(features)))
for i, feats in enumerate(features):
ax[i].imshow(feats[0].cpu(), interpolation="nearest")
ax[i].set_title(f"Feature from transformer layer {i+1}")
ax[i].set_xlabel("Feature dimension")
ax[i].set_ylabel("Frame (time-axis)")
plt.tight_layout()
plt.show()
######################################################################
# Feature classification
# ----------------------
#
# Once the acoustic features are extracted, the next step is to classify
# them into a set of categories.
#
# Wav2Vec2 model provides method to perform the feature extraction and
# classification in one step.
#
with torch.inference_mode():
emission, _ = model(waveform)
######################################################################
# The output is in the form of logits. It is not in the form of
# probability.
#
# Let’s visualize this.
#
plt.imshow(emission[0].cpu().T, interpolation="nearest")
plt.title("Classification result")
plt.xlabel("Frame (time-axis)")
plt.ylabel("Class")
plt.show()
print("Class labels:", bundle.get_labels())
######################################################################
# We can see that there are strong indications to certain labels across
# the time line.
#
######################################################################
# Generating transcripts
# ----------------------
#
# From the sequence of label probabilities, now we want to generate
# transcripts. The process to generate hypotheses is often called
# “decoding”.
#
# Decoding is more elaborate than simple classification because
# decoding at certain time step can be affected by surrounding
# observations.
#
# For example, take a word like ``night`` and ``knight``. Even if their
# prior probability distribution are differnt (in typical conversations,
# ``night`` would occur way more often than ``knight``), to accurately
# generate transcripts with ``knight``, such as ``a knight with a sword``,
# the decoding process has to postpone the final decision until it sees
# enough context.
#
# There are many decoding techniques proposed, and they require external
# resources, such as word dictionary and language models.
#
# In this tutorial, for the sake of simplicity, we will perform greedy
# decoding which does not depend on such external components, and simply
# pick up the best hypothesis at each time step. Therefore, the context
# information are not used, and only one transcript can be generated.
#
# We start by defining greedy decoding algorithm.
#
class GreedyCTCDecoder(torch.nn.Module):
def __init__(self, labels, blank=0):
super().__init__()
self.labels = labels
self.blank = blank
def forward(self, emission: torch.Tensor) -> str:
"""Given a sequence emission over labels, get the best path string
Args:
emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.
Returns:
str: The resulting transcript
"""
indices = torch.argmax(emission, dim=-1) # [num_seq,]
indices = torch.unique_consecutive(indices, dim=-1)
indices = [i for i in indices if i != self.blank]
return "".join([self.labels[i] for i in indices])
######################################################################
# Now create the decoder object and decode the transcript.
#
decoder = GreedyCTCDecoder(labels=bundle.get_labels())
transcript = decoder(emission[0])
######################################################################
# Let’s check the result and listen again to the audio.
#
print(transcript)
IPython.display.Audio(SPEECH_FILE)
######################################################################
# The ASR model is fine-tuned using a loss function called Connectionist Temporal Classification (CTC).
# The detail of CTC loss is explained
# `here <https://distill.pub/2017/ctc/>`__. In CTC a blank token (ϵ) is a
# special token which represents a repetition of the previous symbol. In
# decoding, these are simply ignored.
#
######################################################################
# Conclusion
# ----------
#
# In this tutorial, we looked at how to use :py:class:`~torchaudio.pipelines.Wav2Vec2ASRBundle` to
# perform acoustic feature extraction and speech recognition. Constructing
# a model and getting the emission is as short as two lines.
#
# ::
#
# model = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.get_model()
# emission = model(waveforms, ...)
#
|