File: dr_vctk_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (135 lines) | stat: -rw-r--r-- 4,845 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from pathlib import Path

import pytest
from torchaudio.datasets import dr_vctk
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase


_SUBSETS = ["train", "test"]
_CONDITIONS = ["clean", "device-recorded"]
_SOURCES = ["DR-VCTK_Office1_ClosedWindow", "DR-VCTK_Office1_OpenedWindow"]
_SPEAKER_IDS = range(226, 230)
_CHANNEL_IDS = range(1, 6)


def get_mock_dataset(root_dir):
    """
    root_dir: root directory of the mocked data
    """
    mocked_samples = {}

    dataset_dir = Path(root_dir) / "DR-VCTK" / "DR-VCTK"
    dataset_dir.mkdir(parents=True, exist_ok=True)

    config_dir = dataset_dir / "configurations"
    config_dir.mkdir(parents=True, exist_ok=True)

    sample_rate = 16000
    seed = 0

    for subset in _SUBSETS:
        mocked_samples[subset] = []

        for condition in _CONDITIONS:
            audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k"
            audio_dir.mkdir(parents=True, exist_ok=True)

        config_filepath = config_dir / f"{subset}_ch_log.txt"
        with open(config_filepath, "w") as f:
            if subset == "train":
                f.write("\n")
            f.write("File Name\tMain Source\tChannel Idx\n")

            for speaker_id in _SPEAKER_IDS:
                utterance_id = 1
                for source in _SOURCES:
                    for channel_id in _CHANNEL_IDS:
                        filename = f"p{speaker_id}_{utterance_id:03d}.wav"
                        f.write(f"{filename}\t{source}\t{channel_id}\n")

                        data = {}
                        for condition in _CONDITIONS:
                            data[condition] = get_whitenoise(
                                sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed
                            )
                            audio_dir = dataset_dir / f"{condition}_{subset}set_wav_16k"
                            audio_file_path = audio_dir / filename
                            save_wav(audio_file_path, data[condition], sample_rate)
                            seed += 1

                        sample = (
                            data[_CONDITIONS[0]],
                            sample_rate,
                            data[_CONDITIONS[1]],
                            sample_rate,
                            "p" + str(speaker_id),
                            f"{utterance_id:03d}",
                            source,
                            channel_id,
                        )
                        mocked_samples[subset].append(sample)
                        utterance_id += 1

    return mocked_samples


class TestDRVCTK(TempDirMixin, TorchaudioTestCase):
    backend = "default"

    root_dir = None
    samples = {}

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        cls.samples = get_mock_dataset(cls.root_dir)

    def _test_dr_vctk(self, dataset, subset):
        num_samples = 0
        for i, (
            waveform_clean,
            sample_rate_clean,
            waveform_dr,
            sample_rate_dr,
            speaker_id,
            utterance_id,
            source,
            channel_id,
        ) in enumerate(dataset):
            self.assertEqual(waveform_clean, self.samples[subset][i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate_clean == self.samples[subset][i][1]
            self.assertEqual(waveform_dr, self.samples[subset][i][2], atol=5e-5, rtol=1e-8)
            assert sample_rate_dr == self.samples[subset][i][3]
            assert speaker_id == self.samples[subset][i][4]
            assert utterance_id == self.samples[subset][i][5]
            assert source == self.samples[subset][i][6]
            assert channel_id == self.samples[subset][i][7]

            num_samples += 1

        assert num_samples == len(self.samples[subset])

    def test_dr_vctk_train_str(self):
        subset = "train"
        dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset)
        self._test_dr_vctk(dataset, subset)

    def test_dr_vctk_test_str(self):
        subset = "test"
        dataset = dr_vctk.DR_VCTK(self.root_dir, subset=subset)
        self._test_dr_vctk(dataset, subset)

    def test_dr_vctk_train_path(self):
        subset = "train"
        dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset)
        self._test_dr_vctk(dataset, subset)

    def test_dr_vctk_test_path(self):
        subset = "test"
        dataset = dr_vctk.DR_VCTK(Path(self.root_dir), subset=subset)
        self._test_dr_vctk(dataset, subset)

    def test_dr_vctk_invalid_subset(self):
        subset = "invalid"
        with pytest.raises(RuntimeError, match=f"The subset '{subset}' does not match any of the supported subsets"):
            dr_vctk.DR_VCTK(self.root_dir, subset=subset)