1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
import os
import torch
from parameterized import parameterized
from torchaudio.datasets import musdb_hq
from torchaudio.datasets.musdb_hq import _VALIDATION_SET
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase
_SOURCE_SETS = [
(None,),
(["bass", "drums", "other", "vocals"],),
(["bass", "drums", "other"],),
(["bass", "drums", "vocals"],),
(["bass", "vocals", "other"],),
(["vocals", "drums", "other"],),
(["mixture"],),
]
seed_dict = {
"bass": 0,
"drums": 1,
"other": 2,
"mixture": 3,
"vocals": 4,
}
EXT = ".wav"
def _save_sample(dataset_dir, folder, song, source, sample_rate, seed):
# create and save audio samples to corresponding files
path = os.path.join(dataset_dir, folder)
os.makedirs(path, exist_ok=True)
song_path = os.path.join(path, str(song))
os.makedirs(song_path, exist_ok=True)
source_path = os.path.join(song_path, f"{source}{EXT}")
data = get_whitenoise(
sample_rate=sample_rate,
duration=5,
n_channels=2,
seed=seed,
)
save_wav(source_path, data, sample_rate)
sample = (data, sample_rate, 5 * sample_rate, song)
return sample
def _get_mocked_samples(dataset_dir, sample_rate):
sample_count = 5
all_samples = {"train": {}, "test": {}}
folders = ["train", "test"]
sources = ["bass", "drums", "other", "mixture", "vocals"]
curr_idx = 0
for folder in folders:
for _ in range(sample_count):
sample_list = []
for source in sources:
sample = _save_sample(dataset_dir, folder, str(curr_idx), source, sample_rate, seed_dict.get(source))
sample_list.append(sample)
all_samples[folder][str(curr_idx)] = sample_list
curr_idx += 1
if folder == "train":
for name in _VALIDATION_SET:
sample_list = []
for source in sources:
sample = _save_sample(dataset_dir, folder, name, source, sample_rate, seed_dict.get(source))
sample_list.append(sample)
all_samples[folder][name] = sample_list
return all_samples
def get_mock_dataset(dataset_dir):
"""
dataset_dir: directory to the mocked dataset
"""
os.makedirs(dataset_dir, exist_ok=True)
sample_rate = 44100
return _get_mocked_samples(dataset_dir, sample_rate)
class TestMusDB_HQ(TempDirMixin, TorchaudioTestCase):
root_dir = None
backend = "default"
train_all_samples = {}
train_only_samples = {}
validation_samples = {}
test_samples = {}
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
dataset_dir = os.path.join(cls.root_dir, "musdb18hq")
full_dataset = get_mock_dataset(dataset_dir)
cls.train_all_samples = full_dataset["train"]
cls.test_samples = full_dataset["test"]
for key in cls.train_all_samples:
if key in _VALIDATION_SET:
cls.validation_samples[key] = cls.train_all_samples[key]
else:
cls.train_only_samples[key] = cls.train_all_samples[key]
def _test_musdb_hq(self, dataset, data_samples, sources):
num_samples = 0
for _, (data, sample_rate, num_frames, name) in enumerate(dataset):
self.assertEqual(data, self.extractSources(data_samples[name], sources))
assert sample_rate == data_samples[name][0][1]
assert num_frames == data_samples[name][0][2]
assert name == data_samples[name][0][3]
num_samples += 1
assert num_samples == len(data_samples)
@parameterized.expand(_SOURCE_SETS)
def testMusDBSources_train_all(self, sources):
dataset = musdb_hq.MUSDB_HQ(self.root_dir, sources=sources, subset="train")
self._test_musdb_hq(dataset, self.train_all_samples, sources)
@parameterized.expand(_SOURCE_SETS)
def testMusDBSources_train_with_validation(self, sources):
dataset = musdb_hq.MUSDB_HQ(
self.root_dir,
sources=sources,
subset="train",
split="train",
)
self._test_musdb_hq(dataset, self.train_only_samples, sources)
@parameterized.expand(_SOURCE_SETS)
def testMusDBSources_validation(self, sources):
dataset = musdb_hq.MUSDB_HQ(
self.root_dir,
sources=sources,
subset="train",
split="validation",
)
self._test_musdb_hq(dataset, self.validation_samples, sources)
@parameterized.expand(_SOURCE_SETS)
def testMusDBSources_test(self, sources):
dataset = musdb_hq.MUSDB_HQ(
self.root_dir,
sources=sources,
subset="test",
)
self._test_musdb_hq(dataset, self.test_samples, sources)
def extractSources(self, samples, sources):
sources = ["bass", "drums", "other", "vocals"] if not sources else sources
return torch.stack([samples[seed_dict[source]][0] for source in sources])
|