File: tedlium_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (144 lines) | stat: -rw-r--r-- 5,275 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import platform
from pathlib import Path

from torchaudio.datasets import tedlium
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, skipIfNoSox, TempDirMixin, TorchaudioTestCase

# Used to generate a unique utterance for each dummy audio file
_UTTERANCES = [
    "AaronHuey_2010X 1 AaronHuey_2010X 0.0 2.0 <o,f0,female> script1\n",
    "AaronHuey_2010X 1 AaronHuey_2010X 2.0 4.0 <o,f0,female> script2\n",
    "AaronHuey_2010X 1 AaronHuey_2010X 4.0 6.0 <o,f0,female> script3\n",
    "AaronHuey_2010X 1 AaronHuey_2010X 6.0 8.0 <o,f0,female> script4\n",
    "AaronHuey_2010X 1 AaronHuey_2010X 8.0 10.0 <o,f0,female> script5\n",
]

_PHONEME = [
    "a AH",
    "a(2) EY",
    "aachen AA K AH N",
    "aad AE D",
    "aaden EY D AH N",
    "aadmi AE D M IY",
    "aae EY EY",
]


def get_mock_dataset(dataset_dir):
    """
    dataset_dir: directory of the mocked dataset
    """
    mocked_samples = {}
    os.makedirs(dataset_dir, exist_ok=True)
    sample_rate = 16000  # 16kHz
    seed = 0

    for release in ["release1", "release2", "release3"]:
        data = get_whitenoise(sample_rate=sample_rate, duration=10.00, n_channels=1, dtype="float32", seed=seed)
        if release in ["release1", "release2"]:
            release_dir = os.path.join(
                dataset_dir,
                tedlium._RELEASE_CONFIGS[release]["folder_in_archive"],
                tedlium._RELEASE_CONFIGS[release]["subset"],
            )
        else:
            release_dir = os.path.join(
                dataset_dir,
                tedlium._RELEASE_CONFIGS[release]["folder_in_archive"],
                tedlium._RELEASE_CONFIGS[release]["data_path"],
            )
        os.makedirs(release_dir, exist_ok=True)
        os.makedirs(os.path.join(release_dir, "stm"), exist_ok=True)  # Subfolder for transcripts
        os.makedirs(os.path.join(release_dir, "sph"), exist_ok=True)  # Subfolder for audio files
        filename = f"{release}.sph"
        path = os.path.join(os.path.join(release_dir, "sph"), filename)
        save_wav(path, data, sample_rate)

        trans_filename = f"{release}.stm"
        trans_path = os.path.join(os.path.join(release_dir, "stm"), trans_filename)
        with open(trans_path, "w") as f:
            f.write("".join(_UTTERANCES))

        dict_filename = f"{release}.dic"
        dict_path = os.path.join(release_dir, dict_filename)
        with open(dict_path, "w") as f:
            f.write("\n".join(_PHONEME))

        # Create a samples list to compare with
        mocked_samples[release] = []
        for utterance in _UTTERANCES:
            talk_id, _, speaker_id, start_time, end_time, identifier, transcript = utterance.split(" ", 6)
            start_time = int(float(start_time)) * sample_rate
            end_time = int(float(end_time)) * sample_rate
            sample = (
                data[:, start_time:end_time],
                sample_rate,
                transcript,
                talk_id,
                speaker_id,
                identifier,
            )
            mocked_samples[release].append(sample)
        seed += 1
    return mocked_samples


class Tedlium(TempDirMixin):
    root_dir = None
    samples = {}

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        cls.root_dir = dataset_dir = os.path.join(cls.root_dir, "tedlium")
        cls.samples = get_mock_dataset(dataset_dir)

    def _test_tedlium(self, dataset, release):
        num_samples = 0
        for i, (data, sample_rate, transcript, talk_id, speaker_id, identifier) in enumerate(dataset):
            self.assertEqual(data, self.samples[release][i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == self.samples[release][i][1]
            assert transcript == self.samples[release][i][2]
            assert talk_id == self.samples[release][i][3]
            assert speaker_id == self.samples[release][i][4]
            assert identifier == self.samples[release][i][5]
            num_samples += 1

        assert num_samples == len(self.samples[release])

        dataset._dict_path = os.path.join(dataset._path, f"{release}.dic")
        phoneme_dict = dataset.phoneme_dict
        phoenemes = [f"{key} {' '.join(value)}" for key, value in phoneme_dict.items()]
        assert phoenemes == _PHONEME

    def test_tedlium_release1_str(self):
        release = "release1"
        dataset = tedlium.TEDLIUM(self.root_dir, release=release)
        self._test_tedlium(dataset, release)

    def test_tedlium_release1_path(self):
        release = "release1"
        dataset = tedlium.TEDLIUM(Path(self.root_dir), release=release)
        self._test_tedlium(dataset, release)

    def test_tedlium_release2(self):
        release = "release2"
        dataset = tedlium.TEDLIUM(self.root_dir, release=release)
        self._test_tedlium(dataset, release)

    def test_tedlium_release3(self):
        release = "release3"
        dataset = tedlium.TEDLIUM(self.root_dir, release=release)
        self._test_tedlium(dataset, release)


class TestTedliumSoundfile(Tedlium, TorchaudioTestCase):
    backend = "soundfile"


if platform.system() != "Windows":

    @skipIfNoSox
    class TestTedliumSoxIO(Tedlium, TorchaudioTestCase):
        backend = "sox_io"