1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
"""Test definition common to CPU and CUDA"""
import itertools
import math
import warnings
import numpy as np
import torch
import torchaudio.functional as F
from parameterized import parameterized
from scipy import signal
from torchaudio_unittest.common_utils import (
beamform_utils,
get_sinusoid,
get_whitenoise,
nested_params,
rnnt_utils,
TestBaseMixin,
)
class Functional(TestBaseMixin):
def _test_resample_waveform_accuracy(
self, up_scale_factor=None, down_scale_factor=None, resampling_method="sinc_interpolation", atol=1e-1, rtol=1e-4
):
# resample the signal and compare it to the ground truth
n_to_trim = 20
sample_rate = 1000
new_sample_rate = sample_rate
if up_scale_factor is not None:
new_sample_rate = int(new_sample_rate * up_scale_factor)
if down_scale_factor is not None:
new_sample_rate = int(new_sample_rate / down_scale_factor)
duration = 5 # seconds
original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)
sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
estimate = F.resample(sound, sample_rate, new_sample_rate, resampling_method=resampling_method).squeeze()
new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[: estimate.size(0)]
ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)
# trim the first/last n samples as these points have boundary effects
ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
estimate = estimate[..., n_to_trim:-n_to_trim]
self.assertEqual(estimate, ground_truth, atol=atol, rtol=rtol)
def _test_costs_and_gradients(self, data, ref_costs, ref_gradients, atol=1e-6, rtol=1e-2):
logits_shape = data["logits"].shape
costs, gradients = rnnt_utils.compute_with_pytorch_transducer(data=data)
self.assertEqual(costs, ref_costs, atol=atol, rtol=rtol)
self.assertEqual(logits_shape, gradients.shape)
self.assertEqual(gradients, ref_gradients, atol=atol, rtol=rtol)
def test_lfilter_simple(self):
"""
Create a very basic signal,
Then make a simple 4th order delay
The output should be same as the input but shifted
"""
waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)
self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)
def test_lfilter_clamp(self):
input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
assert output_signal.max() <= 1
output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
assert output_signal.max() > 1
@parameterized.expand(
[
((44100,), (4,), (44100,)),
(
(3, 44100),
(4,),
(
3,
44100,
),
),
(
(2, 3, 44100),
(4,),
(
2,
3,
44100,
),
),
(
(1, 2, 3, 44100),
(4,),
(
1,
2,
3,
44100,
),
),
((44100,), (2, 4), (2, 44100)),
((3, 44100), (1, 4), (3, 1, 44100)),
((1, 2, 44100), (3, 4), (1, 2, 3, 44100)),
]
)
def test_lfilter_shape(self, input_shape, coeff_shape, target_shape):
waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
b_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
a_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs, batching=False)
assert input_shape == waveform.size()
assert target_shape == output_waveform.size()
def test_lfilter_9th_order_filter_stability(self):
"""
Validate the precision of lfilter against reference scipy implementation when using high order filter.
The reference implementation use cascaded second-order filters so is more numerically accurate.
"""
# create an impulse signal
x = torch.zeros(1024, dtype=self.dtype, device=self.device)
x[0] = 1
# get target impulse response
sos = signal.butter(9, 850, "hp", fs=22050, output="sos")
y = torch.from_numpy(signal.sosfilt(sos, x.cpu().numpy())).to(self.dtype).to(self.device)
# get lfilter coefficients
b, a = signal.butter(9, 850, "hp", fs=22050, output="ba")
b, a = torch.from_numpy(b).to(self.dtype).to(self.device), torch.from_numpy(a).to(self.dtype).to(self.device)
# predict impulse response
yhat = F.lfilter(x, a, b, False)
self.assertEqual(yhat, y, atol=1e-4, rtol=1e-5)
def test_filtfilt_simple(self):
"""
Check that, for an arbitrary signal, applying filtfilt with filter coefficients
corresponding to a pure delay filter imparts no time delay.
"""
waveform = get_whitenoise(sample_rate=8000, n_channels=2, dtype=self.dtype).to(device=self.device)
b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
padded_waveform = torch.cat((waveform, torch.zeros(2, 3, dtype=self.dtype, device=self.device)), axis=1)
output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)
self.assertEqual(output_waveform, padded_waveform, atol=1e-5, rtol=1e-5)
def test_filtfilt_filter_sinusoid(self):
"""
Check that, for a signal comprising two sinusoids, applying filtfilt
with appropriate filter coefficients correctly removes the higher-frequency
sinusoid while imparting no time delay.
"""
T = 1.0
samples = 1000
waveform_k0 = get_sinusoid(frequency=5, sample_rate=samples // T, dtype=self.dtype, device=self.device).squeeze(
0
)
waveform_k1 = get_sinusoid(
frequency=200,
sample_rate=samples // T,
dtype=self.dtype,
device=self.device,
).squeeze(0)
waveform = waveform_k0 + waveform_k1
# Transfer function numerator and denominator polynomial coefficients
# corresponding to 8th-order Butterworth filter with 100-cycle/T cutoff.
# Generated with
# >>> from scipy import signal
# >>> b_coeffs, a_coeffs = signal.butter(8, 0.2)
b_coeffs = torch.tensor(
[
2.39596441e-05,
1.91677153e-04,
6.70870035e-04,
1.34174007e-03,
1.67717509e-03,
1.34174007e-03,
6.70870035e-04,
1.91677153e-04,
2.39596441e-05,
],
dtype=self.dtype,
device=self.device,
)
a_coeffs = torch.tensor(
[
1.0,
-4.78451489,
10.44504107,
-13.45771989,
11.12933104,
-6.0252604,
2.0792738,
-0.41721716,
0.0372001,
],
dtype=self.dtype,
device=self.device,
)
# Extend waveform in each direction, preserving periodicity.
padded_waveform = torch.cat((waveform[:-1], waveform, waveform[1:]))
output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)
# Remove padding from output waveform; confirm that result
# closely matches waveform_k0.
self.assertEqual(
output_waveform[samples - 1 : 2 * samples - 1],
waveform_k0,
atol=1e-3,
rtol=1e-3,
)
@parameterized.expand([(0.0,), (1.0,), (2.0,), (3.0,)])
def test_spectrogram_grad_at_zero(self, power):
"""The gradient of power spectrogram should not be nan but zero near x=0
https://github.com/pytorch/audio/issues/993
"""
x = torch.zeros(1, 22050, requires_grad=True)
spec = F.spectrogram(
x,
pad=0,
window=None,
n_fft=2048,
hop_length=None,
win_length=None,
power=power,
normalized=False,
)
spec.sum().backward()
assert not x.grad.isnan().sum()
@parameterized.expand(
[
(1024,),
(2048,),
(4096,),
]
)
def test_spectrogram_normalization_hann_window(self, nfft):
"""This test assumes that currently, torch.stft and the existing math behind spectrogram are correct.
The test is checking that in relation to one another, the normalization factors correctly align based on
mathematical prediction. Using spec_false as a base, which has no normalization factors, we check to see that
turning normalized as ``True`` or ``"window"`` will have a normalization factor of the sum of squares of hann
window, which is calculated to be sqrt(3 * nfft / 8).
Next, when ``normalized`` is ``"frame_length"``, we are using the normalization in torch.stft, therefore we
assume that it is correctly normalized by a factor of sqrt(nfft). This test does not test the accuracy of
spectrogram, but is testing the relative factors of normalization and that they align upon the frame_length
and chosen normalize parameter.
https://github.com/pytorch/pytorch/issues/81428
"""
x = torch.rand(1, 22050)
spec_false = F.spectrogram(
x,
pad=0,
window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
n_fft=nfft,
hop_length=4,
win_length=nfft,
power=None,
normalized=False,
)
spec_true = F.spectrogram(
x,
pad=0,
window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
n_fft=nfft,
hop_length=4,
win_length=nfft,
power=None,
normalized=True,
)
spec_window = F.spectrogram(
x,
pad=0,
window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
n_fft=nfft,
hop_length=4,
win_length=nfft,
power=None,
normalized="window",
)
spec_frame = F.spectrogram(
x,
pad=0,
window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
n_fft=nfft,
hop_length=4,
win_length=nfft,
power=None,
normalized="frame_length",
)
norm_factor = math.sqrt(3 * nfft / 8)
frame_norm_factor = math.sqrt(nfft)
self.assertEqual(spec_true, spec_window)
self.assertEqual(spec_true, spec_false / norm_factor)
self.assertEqual(spec_frame, spec_false / frame_norm_factor)
def test_compute_deltas_one_channel(self):
specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
computed = F.compute_deltas(specgram, win_length=3)
self.assertEqual(computed, expected)
def test_compute_deltas_two_channels(self):
specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
computed = F.compute_deltas(specgram, win_length=3)
self.assertEqual(computed, expected)
@parameterized.expand([(100,), (440,)])
def test_detect_pitch_frequency_pitch(self, frequency):
sample_rate = 44100
test_sine_waveform = get_sinusoid(frequency=frequency, sample_rate=sample_rate, duration=5)
freq = F.detect_pitch_frequency(test_sine_waveform, sample_rate)
threshold = 1
s = ((freq - frequency).abs() > threshold).sum()
self.assertFalse(s)
@parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
def test_amplitude_to_DB_reversible(self, shape):
"""Round trip between amplitude and db should return the original for various shape
This implicitly also tests `DB_to_amplitude`.
"""
amplitude_mult = 20.0
power_mult = 10.0
amin = 1e-10
ref = 1.0
db_mult = math.log10(max(amin, ref))
spec = torch.rand(*shape, dtype=self.dtype, device=self.device) * 200
# Spectrogram amplitude -> DB -> amplitude
db = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=None)
x2 = F.DB_to_amplitude(db, ref, 0.5)
self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)
# Spectrogram power -> DB -> power
db = F.amplitude_to_DB(spec, power_mult, amin, db_mult, top_db=None)
x2 = F.DB_to_amplitude(db, ref, 1.0)
self.assertEqual(x2, spec)
@parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
def test_amplitude_to_DB_top_db_clamp(self, shape):
"""Ensure values are properly clamped when `top_db` is supplied."""
amplitude_mult = 20.0
amin = 1e-10
ref = 1.0
db_mult = math.log10(max(amin, ref))
top_db = 40.0
# A random tensor is used for increased entropy, but the max and min for
# each spectrogram still need to be predictable. The max determines the
# decibel cutoff, and the distance from the min must be large enough
# that it triggers a clamp.
spec = torch.rand(*shape, dtype=self.dtype, device=self.device)
# Ensure each spectrogram has a min of 0 and a max of 1.
spec -= spec.amin([-2, -1])[..., None, None]
spec /= spec.amax([-2, -1])[..., None, None]
# Expand the range to (0, 200) - wide enough to properly test clamping.
spec *= 200
decibels = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=top_db)
# Ensure the clamp was applied
below_limit = decibels < 6.0205
assert not below_limit.any(), "{} decibel values were below the expected cutoff:\n{}".format(
below_limit.sum().item(), decibels
)
# Ensure it didn't over-clamp
close_to_limit = decibels < 6.0207
assert close_to_limit.any(), f"No values were close to the limit. Did it over-clamp?\n{decibels}"
@parameterized.expand(
list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2], [0.33, 1.0]))
)
def test_mask_along_axis(self, shape, mask_param, mask_value, axis, p):
specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
if p != 1.0:
mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis, p=p)
else:
mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)
other_axis = 1 if axis == 2 else 2
masked_columns = (mask_specgram == mask_value).sum(other_axis)
num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
num_masked_columns = torch.div(num_masked_columns, mask_specgram.size(0), rounding_mode="floor")
if p != 1.0:
mask_param = min(mask_param, int(specgram.shape[axis] * p))
assert mask_specgram.size() == specgram.size()
assert num_masked_columns < mask_param
@parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3], [0.2, 1.0])))
def test_mask_along_axis_iid(self, mask_param, mask_value, axis, p):
specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
if p != 1.0:
mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis, p=p)
else:
mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
other_axis = 2 if axis == 3 else 3
masked_columns = (mask_specgrams == mask_value).sum(other_axis)
num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)
if p != 1.0:
mask_param = min(mask_param, int(specgrams.shape[axis] * p))
assert mask_specgrams.size() == specgrams.size()
assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()
@parameterized.expand(list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2])))
def test_mask_along_axis_preserve(self, shape, mask_param, mask_value, axis):
"""mask_along_axis should not alter original input Tensor
Test is run 5 times to bound the probability of no masking occurring to 1e-10
See https://github.com/pytorch/audio/issues/1478
"""
for _ in range(5):
specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
specgram_copy = specgram.clone()
F.mask_along_axis(specgram, mask_param, mask_value, axis)
self.assertEqual(specgram, specgram_copy)
@parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3])))
def test_mask_along_axis_iid_preserve(self, mask_param, mask_value, axis):
"""mask_along_axis_iid should not alter original input Tensor
Test is run 5 times to bound the probability of no masking occurring to 1e-10
See https://github.com/pytorch/audio/issues/1478
"""
for _ in range(5):
specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
specgrams_copy = specgrams.clone()
F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
self.assertEqual(specgrams, specgrams_copy)
@parameterized.expand(
list(
itertools.product(
["sinc_interpolation", "kaiser_window"],
[16000, 44100],
)
)
)
def test_resample_identity(self, resampling_method, sample_rate):
waveform = get_whitenoise(sample_rate=sample_rate, duration=1)
resampled = F.resample(waveform, sample_rate, sample_rate)
self.assertEqual(waveform, resampled)
@parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
def test_resample_waveform_upsample_size(self, resampling_method):
sr = 16000
waveform = get_whitenoise(
sample_rate=sr,
duration=0.5,
)
upsampled = F.resample(waveform, sr, sr * 2, resampling_method=resampling_method)
assert upsampled.size(-1) == waveform.size(-1) * 2
@parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
def test_resample_waveform_downsample_size(self, resampling_method):
sr = 16000
waveform = get_whitenoise(
sample_rate=sr,
duration=0.5,
)
downsampled = F.resample(waveform, sr, sr // 2, resampling_method=resampling_method)
assert downsampled.size(-1) == waveform.size(-1) // 2
@parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
def test_resample_waveform_identity_size(self, resampling_method):
sr = 16000
waveform = get_whitenoise(
sample_rate=sr,
duration=0.5,
)
resampled = F.resample(waveform, sr, sr, resampling_method=resampling_method)
assert resampled.size(-1) == waveform.size(-1)
@parameterized.expand(
list(
itertools.product(
["sinc_interpolation", "kaiser_window"],
list(range(1, 20)),
)
)
)
def test_resample_waveform_downsample_accuracy(self, resampling_method, i):
self._test_resample_waveform_accuracy(down_scale_factor=i * 2, resampling_method=resampling_method)
@parameterized.expand(
list(
itertools.product(
["sinc_interpolation", "kaiser_window"],
list(range(1, 20)),
)
)
)
def test_resample_waveform_upsample_accuracy(self, resampling_method, i):
self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0, resampling_method=resampling_method)
@nested_params([0.5, 1.01, 1.3])
def test_phase_vocoder_shape(self, rate):
"""Verify the output shape of phase vocoder"""
hop_length = 256
num_freq = 1025
num_frames = 400
batch_size = 2
spec = torch.randn(batch_size, num_freq, num_frames, dtype=self.complex_dtype, device=self.device)
phase_advance = torch.linspace(0, np.pi * hop_length, num_freq, dtype=self.dtype, device=self.device)[..., None]
spec_stretch = F.phase_vocoder(spec, rate=rate, phase_advance=phase_advance)
assert spec.dim() == spec_stretch.dim()
expected_shape = torch.Size([batch_size, num_freq, int(np.ceil(num_frames / rate))])
output_shape = spec_stretch.shape
assert output_shape == expected_shape
@parameterized.expand(
[
# words
["", "", 0], # equal
["abc", "abc", 0],
["ᑌᑎIᑕO", "ᑌᑎIᑕO", 0],
["abc", "", 3], # deletion
["aa", "aaa", 1],
["aaa", "aa", 1],
["ᑌᑎI", "ᑌᑎIᑕO", 2],
["aaa", "aba", 1], # substitution
["aba", "aaa", 1],
["aba", " ", 3],
["abc", "bcd", 2], # mix deletion and substitution
["0ᑌᑎI", "ᑌᑎIᑕO", 3],
# sentences
[["hello", "", "Tᕮ᙭T"], ["hello", "", "Tᕮ᙭T"], 0], # equal
[[], [], 0],
[["hello", "world"], ["hello", "world", "!"], 1], # deletion
[["hello", "world"], ["world"], 1],
[["hello", "world"], [], 2],
[
[
"Tᕮ᙭T",
],
["world"],
1,
], # substitution
[["Tᕮ᙭T", "XD"], ["world", "hello"], 2],
[["", "XD"], ["world", ""], 2],
["aba", " ", 3],
[["hello", "world"], ["world", "hello", "!"], 2], # mix deletion and substitution
[["Tᕮ᙭T", "world", "LOL", "XD"], ["world", "hello", "ʕ•́ᴥ•̀ʔっ"], 3],
]
)
def test_simple_case_edit_distance(self, seq1, seq2, distance):
assert F.edit_distance(seq1, seq2) == distance
assert F.edit_distance(seq2, seq1) == distance
@nested_params(
[-4, -2, 0, 2, 4],
)
def test_pitch_shift_shape(self, n_steps):
sample_rate = 16000
waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
waveform_shift = F.pitch_shift(waveform, sample_rate, n_steps)
assert waveform.size() == waveform_shift.size()
def test_rnnt_loss_basic_backward(self):
logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
loss = F.rnnt_loss(logits, targets, logit_lengths, target_lengths)
loss.backward()
def test_rnnt_loss_basic_forward_no_grad(self):
"""In early stage, calls to `rnnt_loss` resulted in segmentation fault when
`logits` have `requires_grad = False`. This test makes sure that this no longer
occurs and the functional call runs without error.
See https://github.com/pytorch/audio/pull/1707
"""
logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
logits.requires_grad_(False)
F.rnnt_loss(logits, targets, logit_lengths, target_lengths)
@parameterized.expand(
[
(rnnt_utils.get_B1_T2_U3_D5_data, torch.float32, 1e-6, 1e-2),
(rnnt_utils.get_B2_T4_U3_D3_data, torch.float32, 1e-6, 1e-2),
(rnnt_utils.get_B1_T2_U3_D5_data, torch.float16, 1e-3, 1e-2),
(rnnt_utils.get_B2_T4_U3_D3_data, torch.float16, 1e-3, 1e-2),
]
)
def test_rnnt_loss_costs_and_gradients(self, data_func, dtype, atol, rtol):
data, ref_costs, ref_gradients = data_func(
dtype=dtype,
device=self.device,
)
self._test_costs_and_gradients(
data=data,
ref_costs=ref_costs,
ref_gradients=ref_gradients,
atol=atol,
rtol=rtol,
)
def test_rnnt_loss_costs_and_gradients_random_data_with_numpy_fp32(self):
seed = 777
for i in range(5):
data = rnnt_utils.get_random_data(dtype=torch.float32, device=self.device, seed=(seed + i))
ref_costs, ref_gradients = rnnt_utils.compute_with_numpy_transducer(data=data)
self._test_costs_and_gradients(data=data, ref_costs=ref_costs, ref_gradients=ref_gradients)
def test_psd(self):
"""Verify the ``F.psd`` method by the numpy implementation.
Given the multi-channel complex-valued spectrum as the input,
the output of ``F.psd`` should be identical to that of ``psd_numpy``.
"""
channel = 4
n_fft_bin = 10
frame = 5
specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
psd = beamform_utils.psd_numpy(specgram)
psd_audio = F.psd(torch.tensor(specgram, dtype=self.complex_dtype, device=self.device))
self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_psd_with_mask(self, normalize: bool):
"""Verify the ``F.psd`` method by the numpy implementation.
Given the multi-channel complex-valued spectrum and the single-channel real-valued mask
as the inputs, the output of ``F.psd`` should be identical to that of ``psd_numpy``.
"""
channel = 4
n_fft_bin = 10
frame = 5
specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
mask = np.random.random((n_fft_bin, frame))
psd = beamform_utils.psd_numpy(specgram, mask, normalize)
psd_audio = F.psd(
torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
torch.tensor(mask, dtype=self.dtype, device=self.device),
normalize=normalize,
)
self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)
def test_mvdr_weights_souden(self):
"""Verify ``F.mvdr_weights_souden`` method by numpy implementation.
Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
and an integer indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
(Tensor of dimension `(..., freq, channel)`), which should be close to the output of
``mvdr_weights_souden_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = 0
psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
beamform_weights_audio = F.mvdr_weights_souden(
torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
reference_channel,
)
self.assertEqual(
torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
beamform_weights_audio,
atol=1e-3,
rtol=1e-6,
)
def test_mvdr_weights_souden_with_tensor(self):
"""Verify ``F.mvdr_weights_souden`` method by numpy implementation.
Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
and a one-hot Tensor indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
(Tensor of dimension `(..., freq, channel)`), which should be close to the output of
``mvdr_weights_souden_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = np.zeros(channel)
reference_channel[0] = 1
psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
beamform_weights_audio = F.mvdr_weights_souden(
torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
)
self.assertEqual(
torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
beamform_weights_audio,
atol=1e-3,
rtol=1e-6,
)
def test_mvdr_weights_rtf(self):
"""Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and an integer
indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
(Tensor of dimension `(..., freq, channel)`), which should be close to the output of
``mvdr_weights_rtf_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = 0
rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
beamform_weights_audio = F.mvdr_weights_rtf(
torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
reference_channel,
)
self.assertEqual(
torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
beamform_weights_audio,
atol=1e-3,
rtol=1e-6,
)
def test_mvdr_weights_rtf_with_tensor(self):
"""Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and a one-hot Tensor
indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
(Tensor of dimension `(..., freq, channel)`), which should be close to the output of
``mvdr_weights_rtf_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = np.zeros(channel)
reference_channel[0] = 1
rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
beamform_weights_audio = F.mvdr_weights_rtf(
torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
)
self.assertEqual(
torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
beamform_weights_audio,
atol=1e-3,
rtol=1e-6,
)
def test_rtf_evd(self):
"""Verify ``F.rtf_evd`` method by the numpy implementation.
Given the multi-channel complex-valued spectrum, we compute the PSD matrix as the input,
``F.rtf_evd`` outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
which should be identical to the output of ``rtf_evd_numpy``.
"""
n_fft_bin = 10
channel = 4
specgram = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
psd = np.einsum("fc,fd->fcd", specgram.conj(), specgram)
rtf = beamform_utils.rtf_evd_numpy(psd)
rtf_audio = F.rtf_evd(torch.tensor(psd, dtype=self.complex_dtype, device=self.device))
self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)
@parameterized.expand(
[
(1, True),
(2, False),
(3, True),
]
)
def test_rtf_power(self, n_iter, diagonal_loading):
"""Verify ``F.rtf_power`` method by numpy implementation.
Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
an integer indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
which should be identical to the output of ``rtf_power_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = 0
psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
rtf_audio = F.rtf_power(
torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
reference_channel,
n_iter,
diagonal_loading=diagonal_loading,
)
self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)
@parameterized.expand(
[
(1, True),
(2, False),
(3, True),
]
)
def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
"""Verify ``F.rtf_power`` method by numpy implementation.
Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
a one-hot Tensor indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
which should be identical to the output of ``rtf_power_numpy``.
"""
n_fft_bin = 10
channel = 4
reference_channel = np.zeros(channel)
reference_channel[0] = 1
psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
rtf_audio = F.rtf_power(
torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
n_iter,
diagonal_loading=diagonal_loading,
)
self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)
def test_apply_beamforming(self):
"""Verify ``F.apply_beamforming`` method by numpy implementation.
Given the multi-channel complex-valued spectrum and complex-valued
beamforming weights (Tensor of dimension `(..., freq, channel)`) as inputs,
``F.apply_beamforming`` outputs the single-channel complex-valued enhanced
spectrum, which should be identical to the output of ``apply_beamforming_numpy``.
"""
channel = 4
n_fft_bin = 10
frame = 5
beamform_weights = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
specgram_enhanced = beamform_utils.apply_beamforming_numpy(beamform_weights, specgram)
specgram_enhanced_audio = F.apply_beamforming(
torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
)
self.assertEqual(
torch.tensor(specgram_enhanced, dtype=self.complex_dtype, device=self.device), specgram_enhanced_audio
)
class FunctionalCPUOnly(TestBaseMixin):
def test_melscale_fbanks_no_warning_high_n_freq(self):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
F.melscale_fbanks(288, 0, 8000, 128, 16000)
assert len(w) == 0
def test_melscale_fbanks_no_warning_low_n_mels(self):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
F.melscale_fbanks(201, 0, 8000, 89, 16000)
assert len(w) == 0
def test_melscale_fbanks_warning(self):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
F.melscale_fbanks(201, 0, 8000, 128, 16000)
assert len(w) == 1
|